Data-driven chemistry for predicting catalytic activity of nucleic acid enzymes using AI

Abstract

Nucleic acids (NA), namely DNA and RNA, dynamically fold and unfold to perform their functions in cells. Functional NAs include NA enzymes, such as ribozymes and DNAzymes. Their folding and target binding are governed by interactions between nucleobases, including base pairings, which follow thermodynamic principles. To elucidate biological mechanisms and enable diverse technical applications, it is essential to clarify the relationship between the primary sequence and the catalytic activity of NA enzymes. Unlike methods for predicting the stability of NA duplexes, which have been widely used for over half a century, predictive approaches for the catalytic activity of NA enzymes remain limited due to the low throughput of activity assays. However, recent advances in genome analysis and computational data science have significantly improved our understanding of the sequence-function relationship in NA enzymes. This article reviews the contributions of data-driven chemistry to understanding the reaction mechanisms of NA enzymes at the nucleotide level and predicting novel NA enzymes with catalytic activity from sequence information. Furthermore, we discuss potential databases for predicting NA enzyme activity under various solution conditions and their integration with artificial intelligence for future applications.

Article information

Article type
Review Article
Submitted
30 Apr 2025
Accepted
18 Aug 2025
First published
21 Aug 2025
This article is Open Access
Creative Commons BY-NC license

RSC Chem. Biol., 2025, Accepted Manuscript

Data-driven chemistry for predicting catalytic activity of nucleic acid enzymes using AI

S. Takahashi, M. Hamada, H. Tateishi-Karimata and N. Sugimoto, RSC Chem. Biol., 2025, Accepted Manuscript , DOI: 10.1039/D5CB00105F

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements