Effect of doping metal on the catalytic performance of manganese-based layered double hydroxides in the aerobic oxidation of alcohols

Abstract

The selective aerobic oxidation of alcohols to produce corresponding aldehydes is a highly significant protocol in organic synthesis. In this study, a series of metal-doped MgMn layered double hydroxides (LDHs) have been fabricated (MMgMn-LDHs, M = Cu, Co or Ni), characterized, and explored for their performance in the aerobic oxidation of alcohols. The findings reveal that doping with metals can regulate the electronic properties of manganese and the distribution of surface oxygen species. Among them, Cu doping in CuMgMn-LDH results in the generation of stable low-state Mn species (Mn2+ and Mn3+ species), and oxygen vacancies, which exhibits the lowest activation energy, as well as the best performances toward benzyl alcohol oxidation. Kinetic studies indicate that the aerobic oxidation of benzyl alcohol follows pseudo-first-order kinetics. Mechanism investigations reveal that Mn2+ and Mn3+ species can accelerate the aerobic oxidation of alcohols through HAT (hydrogen atom transfer) and PCET (proton coupled electron transfer) processes, respectively, with the former being the dominant pathway. Moreover, the CuMgMn-LDH catalytic system demonstrates broad substrate tolerance, good catalytic stability, and recyclability, highlighting its convenience and practicality as a catalytic process for aldehyde production.

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
07 Jul 2025
Accepted
14 Aug 2025
First published
14 Aug 2025

Catal. Sci. Technol., 2025, Accepted Manuscript

Effect of doping metal on the catalytic performance of manganese-based layered double hydroxides in the aerobic oxidation of alcohols

D. Liang, J. Yan, X. Yin, Y. Wang, J. Du, J. Qian, M. He and W. Zhou, Catal. Sci. Technol., 2025, Accepted Manuscript , DOI: 10.1039/D5CY00816F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements