A water-soluble NIR-II fluorescent probe for non-invasive real-time detection of blood ATP via optoacoustic and fluorescence imaging†

Abstract

Adenosine triphosphate (ATP) is a critical biomolecule in cellular energy metabolism, with abnormal levels in the bloodstream linked to pathological conditions such as ischemia, cancer, and inflammatory disorders. Accurate and real-time detection of ATP is essential for early diagnosis and disease monitoring. However, conventional biochemical assays and other techniques suffer from limitations, including invasive sample collection, time-consuming procedures, and the inability to provide dynamic, in vivo monitoring. To address these challenges, we present a water-soluble near-infrared-II (NIR-II) fluorescent probe based on a heptamethine-cyanine/Zn2+ complex for the dual-modal detection of ATP via NIR-II fluorescence and optoacoustic imaging. The probe is designed with polyethylene glycol-functionalized benzindole groups for enhanced water solubility and biocompatibility as well as a dipicolylamine-Zn2+ complex that selectively binds ATP. Upon interaction with ATP, the probe exhibits a distinct absorption band (700-850 nm), enhanced NIR-II fluorescence (900–1200 nm, peak at 924 nm), and strong optoacoustic signals, enabling non-invasive and real-time ATP monitoring. This approach offers significant advantages over existing detection methods by combining high sensitivity and dynamic imaging capabilities. Our findings demonstrate that the selective responsiveness of the probe to ATP renders it highly suitable for real-time in-vivo monitoring of ATP levels.

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
21 May 2025
Accepted
20 Aug 2025
First published
21 Aug 2025

J. Mater. Chem. B, 2025, Accepted Manuscript

A water-soluble NIR-II fluorescent probe for non-invasive real-time detection of blood ATP via optoacoustic and fluorescence imaging†

Y. Zhang, F. Zeng and S. Wu, J. Mater. Chem. B, 2025, Accepted Manuscript , DOI: 10.1039/D5TB01208B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements