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Water treatment plants (WTPs) are tasked with providing safe potable water to consumers. However, WTPs

face numerous potential obstacles, including changes in source water quality and quantity, financial bur-

dens related to operations and upgrades, and stringent water quality regulations. Moreover, these chal-

lenges may be exacerbated by climate change in the form of long-term climatic perturbations and the

increasing frequency and intensity of extreme weather events. To help WTPs overcome these issues, decision

support systems (DSSs), which are used to aid and enhance the quality and consistency of decision-making,

have been developed. This paper reviews the scientific literature on the development and application of

DSSs for water treatment, including physically-based models, statistical models, and artificial intelligence

techniques, and suggests future directions in the field. We first set the context of how water quality is im-

pacted by climate change and extreme weather events. We then provide a comprehensive review of

DSSs and conclude by offering a series of recommendations for future DSS efforts for WTPs, suggesting

that these tools should (1) more accurately reflect the practical needs of WTPs, (2) represent the tradeoffs

between the multiple competing objectives inherent to water treatment, (3) explicitly handle uncertainty

to better inform decision makers, (4) incorporate nonstationarity, especially with regard to extreme

weather events and climate change for long-term planning, and (5) use standardized terminology to ac-

celerate the dissemination of knowledge in the field.

1. Introduction

The production of potable water is ranked among the most
important developments in public health,1,2 and water treat-
ment plants (WTPs) are responsible for providing this re-
source to consumers, by treating source water to turn it into
potable drinking water (Fig. 1). WTP failures can have devas-
tating impacts on human health and can erode consumer
confidence in the safety and reliability of the water supply.
To minimize the risk of such failures and promote public
health, the United States Environmental Protection Agency

(US EPA)3 and similar entities around the world enact strict
laws which regulate potable water quality.4 As the impact of
contaminants on human health has become more fully un-
derstood, additional regulations have been enacted over time.
While these laws benefit public health, WTPs must shoulder
the fiscal burden to improve their system, if necessary, to re-
main in compliance.

In addition to meeting the regulations in the near future,
WTP planners must also consider whether the plant will re-
main in compliance for years to come. Nonstationarity, with
regard to a changing climate and the shifting nature of ex-
treme weather events,5–12 makes forecasting future compli-
ance increasingly difficult because these climatic factors (e.g.
drought, extreme precipitation, temperature increase) have
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Water treatment plants (WTPs) must reliably provide clean drinking water to their consumers. To do so, water planners must make decisions about WTP
infrastructure and operations despite uncertainties about the future. In this paper, we review tools which can aid in this decision-making process and ex-
plore potential impacts of future climate on WTPs.
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been linked to source water quality degradation.13–20 Further-
more, the physical, chemical, and biological impacts on
source waters may have important design, operating, and
cost implications for future drinking water treatment pro-
cesses (Fig. 1).16–18 In the US, specifically, changes in source
water quality could impact compliance with regulations such
as Surface Water Treatment Rules and Disinfectants and Dis-
infection Byproducts Rules (stage 1 and 2). Concerns about
climate change amplify the already complex decision-making
problem for WTPs, which face regulatory and budgetary con-
straints, tradeoffs between performance and cost objectives,
and high levels of uncertainty.

To deal with system complexity and improve decision-
making, WTPs can employ a decision support system (DSS),
which is a computer-based aid for decision-making that cod-
ifies stakeholder decision variables (possible actions), objec-
tives (measures that quantify performance), and constraints
(relationships that maintain desired performance). DSSs have
been used in water treatment and throughout related fields
to improve the quality, efficiency, and consistency of deci-
sion-making.21–24 To date, DSSs in water treatment have
aided in operational and infrastructural decision-making on
both short- and long-term time horizons.

2. Scope of review

The purpose of this paper is to review existing literature of
DSSs regarding WTPs and highlight opportunities for ad-
vancement in this field. This review complements other wa-
ter and wastewater treatment DSS reviews such as Hamouda
et al.21 and Zhang et al.24 but differs in that it exclusively fo-
cuses on water treatment and addresses climatic impacts on
water quality. The paper begins by discussing the effect of
climate change and extreme weather on both source and
drinking water quality and identifying the types of decisions
water managers can choose among to prepare for such
events and remain in compliance with regulations. Subse-
quently, we discuss how DSSs can aid in water treatment
decision-making more generally and critically review WTP
DSS efforts in the literature. Based on this review, we pro-
vide recommendations for the development of future DSSs
in the field.

Although this paper covers a wide range of topics, there
are many important research areas that were beyond the
scope of this work. First of all, this review focuses on WTP
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DSSs rather than the entire “catchment to consumer” potable
water system which includes source water management,
water treatment, and distribution. For more information re-
garding source water and drinking water distribution deci-
sion-making, we direct the interested reader to the following
references on the motivation for source water protection and
catchment management (Emelko et al.16 and Honti et al.25),
source water DSS (Arabi et al.,26 Borsuk et al.,27 Ferguson
et al.,28 Heberling et al.,29 and Rossi et al.30) and water distri-
bution DSS (Kleiner et al.31 and van Zyl et al.32). For a de-
tailed treatment of the impact of climate change and extreme
weather events on water quality, the reader should consult
Khan et al.,17 Stanford et al.,18 and Delpla et al.,15 since we
only cover this topic briefly in this paper.

3. Influence of climate change and
extreme weather events on drinking
water quality

For WTPs, the physical, chemical, and biological impacts on
source waters due to climate change and extreme weather
events may have important design, operating, and cost impli-
cations for future drinking water treatment processes.16–18

This is evidenced by the results of a recent survey by the Wa-
ter Research Foundation that covered major water utilities in
the United States and Australia. In this survey, utilities
expressed concern about the impacts of climatic events on
drinking water quality.18 US participants stated that the lead-
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Fig. 1 The impact of climate change and extreme weather events on drinking water quality. Degraded source water quality can lead to higher
costs for WTPs and elevated health risk for consumers.
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ing water quality issues from extreme events were related to
the formation of disinfection byproducts (DBPs) and changes
in source water quality. Other areas of concern for water
quality included cyanobacteria and related algae blooms and
distribution system water quality degradation. The same sur-
vey of Australian utilities produced slightly different results,
likely due to differences in DBP regulations between the two
countries. In both countries, only a minority of utilities
expressed concern for long-term climate trends, such as
warming temperatures, rising sea level, and a longer hot sea-
son. In general, utilities expressed the greatest interest in ex-
treme events, such as rainfall, flooding, and drought.

For utilities looking to mitigate the impact of extreme
events, the literature has suggested that planners consider
redesigning treatment processes, diversifying water sourcing
options, increasing redundancy of plant design, altering
long-term operations and maintenance plans, developing ef-
fective extreme event response plans, and enhancing water
quality monitoring.15,17,18 To aid in this decision-making pro-
cess, we provide information about the water quality implica-
tions of climate change and extreme weather events in the
following sections.

Because the magnitude of water quality impacts are
highly variable and depend on local conditions,18 we will
focus our discussion on general water quality trends. For
the sake of illustration, we will discuss the overall water
quality implications of climate change and note a few com-
mon extremes (i.e. drought, wildfire, extreme precipitation,
and floods to inform water planners) that will likely be im-
pacted by climate change in the following sections (Fig. 1).
Although it is beyond the scope of this paper, planners
should also consider other impacts, such as changing land
use, which also contributes to nonstationary source water
quality.33–35

3.1 Climate change

As noted by the Intergovernmental Panel on Climate Change
(IPCC),10 climate change effects on hydrology show both in-
creasing and decreasing trends in streamflow magnitudes
depending on the local geography, precipitation regime and
whether the system is snowmelt dominated. However, far
fewer studies have assessed the climatic influences on water
quality, mostly conducted in isolated studies. Studies from a
variety of time periods indicate that in areas with greater pre-
cipitation and runoff, pollutant loads tend to increase as
more pollutants are continuously transferred from the near
surface soil to the channel (e.g. Curriero et al.;14 Tetzlaff
et al.36). Temperature also plays a dominant role in water
quality, as greater temperatures promote pathogens37 and al-
gal blooms38 to flourish, thereby producing more dissolved
organic matter (e.g. Benítez-Gilabert et al.39), and less
dissolved oxygen.40 Though trends are mostly statistically sig-
nificant from local studies, direct relationships between cli-
mate and water quality remain largely unknown on a global
scale due to the scarcity of climate change water quality stud-

ies and the spatial heterogeneity of anthropogenic impacts
and land use pollutant sources.

3.2 Drought

Reduced rainfall associated with drought decreases runoff
within a watershed, altering the transport of materials, such
as nutrients and metals, to source waters.41,42 Decreased wa-
ter volumes also increase the impact of point-sources (e.g.
wastewater treatment effluent) on source water quality. More-
over, droughts may encourage algal blooms by increasing nu-
trient concentrations, water temperatures, and residence
times.43,44 Collectively, drought impacts can fundamentally
alter nutrient cycling and biota within watersheds and reser-
voirs for months or even years.42

Although droughts tend to degrade water quality among
source waters, the impacts on riverine systems and lakes and
reservoirs may differ.41 Additionally, the timing of droughts
determines the severity of water quality impacts; if droughts
are in sequence with other extreme events, their adverse im-
pacts on water quality may compound. For instance, storm
events following periods of prolonged drought have been
found to markedly increase organic matter concentrations.45

3.3 Wildfires

Water quality impacts due to wildfires are particularly signifi-
cant because forest catchments are high quality, high quan-
tity source waters. For instance, forest catchments provide
one-third of the 105 largest cities in the world with a signifi-
cant amount of their drinking water and provide two-thirds
of all water supplies in western North America, including
drinking water for approximately 180 million U.S.
citizens.16,46

Among several impacts on ecosystems, wildfires are
known to affect water quality. Wildfires can increase soil ero-
sion rates by several orders of magnitude due to 1) reduced
soil stability and 2) increased exposure to precipitation
caused by loss of vegetation, and 3) induced soil water-
resistance which increases runoff.47,48 This erosion often
leads to increased levels of suspended sediment and
sediment-related contaminants (particularly nutrients, or-
ganic carbon, and heavy elements) in source water,46,47,49 al-
though better characterization of the mobilization of organic
carbon is still being investigated.50 While wildfires can cause
erosion, the magnitude is dependent on an area's susceptibil-
ity to erosion,51 precipitation patterns, and the severity, spa-
tial extent, and frequency of wildfires.52,53

3.4 Extreme precipitation and floods

Compared to other storm events, floods are responsible for
the highest rates of soil erosion in streams.54 Increases in ex-
treme precipitation and flooding due to climate change
heighten the likelihood of high erosion and subsequent tur-
bidity events due to increased overland flow30,55,56 and may
intensify bacterial and contaminant metal fluxes.57,58 Further-
more, extreme precipitation events are often associated with
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waterborne disease outbreaks: heavy rainfall can overwhelm
WTPs, cross-contaminate sewage and drinking-water pipes
(especially for old systems), and lead to sewage overflow into
source waters.13,20 In the United States, 51% of waterborne
disease outbreaks were preceded by precipitation events
above the 90th percentile and 68% by events above the 80th
percentile.14

3.5 Source water quality linked to drinking water quality

In the previous sections, we discussed the potential impacts
climate change and extreme events can have on source water
quality. In this section, we explore how such source water
quality changes can impact drinking water quality. Specifi-
cally, we focus on how source water affects three drinking wa-
ter contaminants of concern: DBPs, pathogens, and algal
toxins.

DBPs are unintended byproducts formed as a result of
adding disinfectants (e.g. chlorine and chloramine) to treat
drinking water. They are formed via the reaction between
chemical disinfectants and naturally occurring organic mat-
ter. Since increased organic matter is often associated with
extreme events, this series of events portends a greater poten-
tial for DBP formation. DBPs have been associated with can-
cer risks as well as other acute and chronic effects to human
health.59 The concentration and type of DBP in drinking wa-
ter are dictated by source water quality characteristics, such
as pH, temperature, presence of organic matter, and levels of
bromide and iodide.60 By law, US WTPs must adhere to the
US EPA's maximum contaminant levels for DBPs—including
total trihalomethanes, haloacetic acids, bromate, and chlorite
—as well as regulations for the DBP precursor, total organic
carbon under stages 1 and 2 of the Disinfectants and Disin-
fection Byproducts Rules.61

As described above, flooding and extreme precipitation
can increase the occurrence of pathogens in source waters. In
the context of drinking water treatment, if pathogen concen-
trations exceed the removal capacity of the WTP, disease out-
breaks and other human health impacts can occur. Bacterial
parameters (e.g. E. coli, coliform, fecal streptococcal, and
Clostridium perfringens counts) have been found to increase
considerably during extreme runoff events.57 Furthermore,
increased turbidity levels, such as those caused by wildfires
and floods, can cause a decrease in filtration effectiveness
and are often associated with elevated levels of viruses, para-
sites, and bacteria.62

Most closely linked with droughts, projected temperature
increases, changes in water quality, and enhanced stratifica-
tion promote the growth of harmful algal and cyanobacterial
blooms.43,44 These blooms can produce potent neurotoxins of
concern in drinking water, including microcystin.60,63 In ad-
dition to health risks, algal and cyanobacterial blooms can
produce geosmin and 2-methylisoborneol—non-toxic com-
pounds associated with taste and odor issues in water which
can lead to distrust among consumers.64 Lastly, algae can re-
lease DBP precursors within a drinking water system.65

In summary, the future occurrence of algal toxins, DBPs,
and pathogens in drinking water is projected to increase be-
cause of changing extreme events due to climate change. Ele-
vated levels of these contaminants pose a risk to consumer
health and may increase the treatment costs associated with
drinking water. The extent of these impacts, however, is both
uncertain and variable from site to site. So what tools can wa-
ter planners use to make decisions under such uncertain fu-
ture conditions? Furthermore, do these tools meet the actual
needs of water planners? In the following section, we attempt
to answer these questions by looking to DSS literature in wa-
ter treatment.

4. Decision support systems

DSSs are frameworks designed to aid in decision-making.
The nature of DSSs can vary greatly in terms of data require-
ments, time horizon, and purpose. For instance, many quan-
titative models (e.g. physically-based models or Bayesian net-
works) can be used to optimize objective functions such as
minimizing cost or maximizing the utility (as defined by the
stakeholders) of a set of long-term infrastructural decisions.
Contrastingly, a rule-based DSS could be used to inform a
water treatment operator how to troubleshoot uncommon wa-
ter quality issues. In general, DSSs comprise a model and a
database and are flexible to accommodate changes in the
problem formulation and the decision-making approach of
stakeholders.66 These types of systems have been successfully
used in a range of environmental applications for decision-
making, including the development of regional energy strate-
gies,67,68 wastewater treatment,21,24 and remediation of
contaminated soils.69,70 In decision-making, there are also
tools similar to DSS known as risk assessment tools which
quantify or diagnose areas of risk and suggest corrective ac-
tion to mitigate potential failure (see Schijven et al.,71 Smid
et al.,72 Lindhe et al.,73,74 Arvai et al.,67 and Ferguson
et al.28) and are popularly used and developed by organiza-
tions such as the World Health Organization, the US EPA,
and International Organization for Standardization. The term
risk assessment tool is often used in public health, microbiol-
ogy, and risk analysis and management literature but less fre-
quently found in engineering and business management,
which use decision support system terminology. Based on its
similarities with models commonly used in DSSs (e.g.
physically-based and data-driven models), we will include risk
assessment tools in this review and frame them with DSS
terminology.

In the field of water and wastewater treatment DSSs,
Zhang et al.24 and Hamouda et al.21 provide comprehensive
reviews but dedicate their work predominantly on wastewater
rather than water treatment. This emphasis on wastewater
DSSs is reflective of the greater body of literature compared
to water treatment DSSs. Nonetheless, numerous DSSs for
water treatment have been developed in recent decades but
they have yet to be compiled into a comprehensive review
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until this work. In this paper, we will review DSSs for drink-
ing water treatment, specifically.

In the following sections, we provide a brief overview for
DSS development in environmental management. An exact
framework for the development of DSSs is not widely agreed
upon (McIntosh et al.75 and Poch et al.76) but there are com-
mon steps found in environmental decision-making literature
(see Poch et al.,76 Cortés et al.,77 Hamouda et al.21 for exam-
ples). These steps are generally to (1) identify stakeholders,
decision makers, and modelers; (2) formulate the problem;
(3) collect/analyze data; (4) choose the appropriate DSS; (5)
implement and evaluate/verify the DSS. Due to the wide vari-
ety of DSSs, we will not attempt to define a general frame-
work for this paper. Instead, we will focus our discussion on
steps 1, 2, and 4 listed above, which we feel are widely shared
among DSSs and are important to understand for readers
interested in DSS development.

4.1 The role of stakeholders, decision makers, and modelers

While DSSs have the potential to improve a project, the
amount of information and insight provided from stake-
holders and decision makers will ultimately determine the
quality and usefulness of the DSS.78–80 All parties that have
an interest in the WTP need to be identified, such as opera-
tors, water managers, and government officials, so the DSS is
representative of the objectives of the entire group, the sys-
tem is realistically constructed, and practical decisions are
considered. In gathering information, modelers should be
impartial and attempt to represent the stated preferences of
the stakeholders as accurately as possible. This is especially
important for a class of applications termed “wicked prob-
lems”, in which there are a variety of stakeholders and deci-
sion makers with conflicting values and diverging ideas for

solutions81—in which public health and welfare is at
stake.82–84 To create the DSS, stakeholders must agree on the
scope of the DSS in what is known as the problem formulation.

4.2 Problem formulation

The problem formulation is made up of decision variables,
objectives, and constraints. Decision variables (D), also
known as decision levers, are parameters a decision maker
can realistically change; objectives (O) are metrics that seek
to quantify the system's performance (e.g., cost, measure-
ments of water quality, and environmental impact); and con-
straints (C) are required aspects of the system that must not
be violated, such as stakeholders' desired performance. Fig. 2
illustrates these concepts and how they can be applied to wa-
ter treatment. Depending on the decision context of the prob-
lem, various aspects of the problem formulation may be
more or less important. For example, a DSS could be
constructed to quantitatively evaluate the performance of a
given management plan, in which case the decisions could be
fixed, but the objective outputs are of paramount impor-
tance.22 There could also be a situation in which managers
are trying to meet a given regulation, so the set of considered
objectives is fixed, but the decisions that could be considered
are quite dynamic and need to be found intelligently.

Additionally, the stakeholders must determine the time
horizon—the frequency at which a decision problem is evalu-
ated—for their formulation. This is because a DSS can be
used regularly, perhaps on a daily basis, or it may only be
used once to determine a large, infrastructural decision. De-
termining the correct time horizon for long-term planning,
for example, is important so decision-making plans strike
the balance between adaptability and efficiency of decision-
making. This and other aspects of long-term decision-making

Fig. 2 Illustration of the decision context of water treatment. Water managers have a range of operational and infrastructural decision variables to
consider for WTPs. The performance of decision variables can be measured as objectives and, to be acceptable to the decision maker, they cannot
violate constraints.
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are discussed in more detail in section 5. Once stakeholders
agree upon the details of the problem formulation, including
the time horizon, the appropriate DSS must be selected for
the task.

4.3 DSS selection and review

To begin a discussion about the selection of appropriate
DSSs, it is important to note that, given the broad definition
of DSSs, the terminology used to categorize DSS models is
not widely agreed upon within environmental and water
management. We invite the interested reader to compare be-
tween Cortés et al.,77 Poch et al.,76 Hamouda et al.,21 Kelly
(Letcher) et al.,22 Denzer,85 Rizzoli and Young,86 and Zhang
et al.24 to explore various classifications. In this paper, we
will discuss three categories of DSSs: those based on
physically-based models (PBMs), statistical models (SMs),
and artificial intelligence (AI). This aligns most closely with
the classification found in Cortés et al.,77 Poch et al.,75,76 and
Hamouda et al.21 In this section, we discuss both the theory
behind DSS selection and review how these have been ap-
plied to water treatment literature (Table 1). In Table 1, we re-
view DSSs (or major DSS components) found in WTP litera-
ture, provide a brief description of these tools, their
objectives, the water quality parameters considered, their
treatment of uncertainty, and their intended time horizon for
decision-making (e.g. short- or long-term).

We begin with a discussion of PBMs and SMs because
there is overlap between the techniques used in these DSSs.
PBMs simulate systems based on equations which represent
their fundamental physics and chemistry. SMs, on the other
hand, represent systems based on data and are commonly
presented as probability distributions. Next, we discuss AI
DSS which are used to mimic human reasoning. Within this
diverse class of DSS, there are knowledge-based systems
(KBSs), Bayesian networks (BNs), and artificial neural net-
works (ANNs). KBSs, also known as expert systems, consist of
a knowledge base and rules or a procedure to make a deci-
sion.87 BNs and ANNs are both data-driven models but are
distinct in their approach to decision support. BNs represent
decision-making using conditional probabilities, while ANNs
comprise interconnected neurons capable of predictive
modeling of non-linear relationships.

4.3.1 Physically-based and statistical models. Because
PBMs are derived from theory, they are particularly useful for
prediction problems for which it is impractical or impossible
to collect the data required for a SM. For example, if engi-
neers are designing infrastructure for extreme weather, data
on such events is inherently rare. In this case, PBMs may of-
fer a superior level of accuracy of how the system might per-
form than a SM based on limited data would. However, these
two models are by no means mutually exclusive. At times,
models may include a hybrid approach, using both
physically-based and empirical equations, for example. More-
over, within these two types of models, they can be further di-
vided into deterministic and stochastic (or probabilistic).

For deterministic models, each set of inputs produces only
one set of outputs each time the model is run. This determin-
istic approach, which is more common for PBMs than SMs
(see Table 1), does not accurately reflect the uncertainty of
real-world water planning problems. In the case of planning
and managing WTPs, for example, the removal efficiency of
the plant may be slightly variable over time and deviate from
the theoretical conditions in the model. Stochastic models,
on the other hand, can incorporate this randomness. While
these uncertainties exist in the system, they are not always in-
corporated into modeling efforts.

To better reflect uncertainties in model parameters, two
techniques are typically applied to models: sensitivity analy-
ses, which seek to test the sensitivity of system performance
to perturbations of uncertain model parameters,88 and Monte
Carlo simulations, which sample from probability distribu-
tions of uncertain parameters in order to develop distribu-
tions of model outputs.89,90 In addition to the previously
mentioned uncertainties, decision makers should be aware of
how model structure impacts predictions as it is a primary
source of uncertainty. However, for practical reasons, this so-
called structural uncertainty is rarely considered in environ-
mental modeling due to its difficulty.91 The interested reader
can refer to Boccelli et al.92 for an example on dealing with
model structure uncertainty in water treatment simulation,
Refsgaard et al.91 regarding a framework for dealing with un-
certainty due to model structure, and Refsgaard et al.93 on a
general framework for dealing with uncertainty in environ-
mental modeling.

Lastly, techniques coupled with PBMs and SMs, such as
scenario analysis and optimization, are necessary to generate
and choose between various alternatives. In scenario analysis,
a user can explore the system performance for a range of de-
cisions and conditions. For instance, in WTP planning, a
stakeholder may want to determine what plant design will
perform best, on average, for two different seasons. To ap-
proach this problem using scenario analysis, the modeler
may specify two influent water quality conditions representa-
tive of the different seasons and three design alternatives for
a total of six scenarios. Based on the cost and effluent water
quality for each model run, the user could then decide which
of the three alternatives performs the best, on average. Alter-
natively, optimization techniques can be coupled with
models to explore preferred decisions in a more automated
fashion (Fig. 3).

When performing optimization using a model, one should
refer to the objective (or objectives) defined in the problem
formulation. The most common optimization approach in
this review is known as least-cost optimization. In this
method, cost is minimized and regulations constrain the ef-
fluent water quality. Because there is a single objective to op-
timize, this process yields a single solution. In multi-
objective formulations, a concept referred to as Pareto opti-
mality defines a set of multiple solutions for the problem. In
a Pareto set, each solution represents one compromise be-
tween the multiple objectives; a solution is Pareto optimal if
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it is not exceeded in any of its objectives by another feasible
solution.94

In water treatment DSS literature, PBMs are commonly used
for design applications (Table 1). Most PBMs have been devel-
oped for individual WTPs and were based off of a least-cost
plant design optimization approach outlined in Wiesner
et al.95 For least-cost optimization, the performance of the
treatment plant is constrained by water quality regulations and
the cost is minimized. New optimization techniques, sensitivity
analyses, improved model physics, and new treatment technol-
ogies advanced this approach,88,96,97 but until Boccelli et al.89

the uncertainty in these models was not comprehensively con-
sidered. To choose designs that are robust across a range of
uncertainties, Boccelli et al.89 stressed the importance of con-
sidering the inherent variability and uncertainty in a decision-
making framework. In a shift from least-cost optimization
PBMs, recent literature has explored scenario-based modeling
for multiple objectives. Both Worm et al.98 and Rietveld et al.99

use scenario-based numerical models to inform operational de-
cision-making. Furthermore, Ribera et al.100 uses a scenario-
based approach to perform a life cycle and human health risk
assessment on nanofiltration alternatives.

In water treatment DSS literature, SMs have been generally
used for risk assessment and as predictive models. For in-
stance, in risk assessment, Schijven et al.101 collected quanti-
tative microbial, source water quality, and water treatment
data to analyze microbial risk from drinking water produced
from surface water. These data were then fitted to probability
distributions and sampled using Monte Carlo techniques to
determine exposure and infection risk and inform decision-
making. Additionally, both Collins and Ellis102 and Van
Leeuwen et al.103 use statistical regression techniques for pre-
dictive modeling to inform operational decision-making for
WTPs. These regression models are quite similar to ANNs
(discussed in section 4.3.2.3) in that they are data-driven, pre-
dictive models. While these models could have been
discussed alongside one another as “predictive models”, due
to their differing roots—ANNs were created by artificial intel-
ligence engineers and computer scientists while statisticians
developed statistical models—we have followed convention of
considering ANNs AI rather than a statistical technique.104 A

similar argument could be made for considering BNs (see
section 4.3.2.2) as SMs since they are heavily based on statis-
tical methods.

4.3.2 Artificial intelligence. Artificial intelligence (AI) has
been widely used in water treatment literature to mimic hu-
man decision-making. These include knowledge-based systems
(KBSs), Bayesian networks (BNs), and artificial neural networks
(ANNs), which span from simple to complex in their DSS ar-
chitecture. Broadly speaking, AIs have focused on operational
decision support in water treatment literature, and in recent
times, data-driven AI methods, such as BNs and ANNs, have
grown in popularity with the rise of ‘big data’.

4.3.2.1 Knowledge-based systems. Knowledge-based systems,
also known as expert systems, consist of a knowledge base and
rules or a procedure to make a decision.87 KBSs include rule-
based models, in which “if-then” rules guide the decision
maker through possible alternatives; case-based models, in
which past events are used to inform decisions regarding simi-
lar events; and logic-based models, in which a decision is
made based on a series of logical statements. Like many AI
tools, these decision-making structures, often conceptualized
as decision trees, are relatively intuitive to users because they
mimic human reasoning.

While there are many more complex variations, a simplis-
tic decision tree is represented by Fig. 4. The left side of this
figure represents the entirety of the tree, with several levels of
branches that lead to an ultimate decision. The call out sec-
tion on the right illustrates one possible pathway. Within the
call out, the KBS tests if some numerical data (Xraw), which
represents a raw water quality parameter, is greater than 4
units. If it is greater, decision D1 is chosen. If it is less than
4, the alternative is chosen. The other branches in this
graphic could be used to classify other aspects of the plant,
such as plant size, geographic location, type of disinfectant,
whether it has advanced treatment or not, etc. to inform deci-
sion-making.

KBSs are advantageous in that, like BNs, they can system-
atically incorporate expert opinions into decision-making105

and they can also handle both quantitative and qualitative

Fig. 4 Example of one branch of a rule-based KBS for water treat-
ment. In this branch, a choice between two decisions (D1 and D2) are
determined based on the raw water quality (Xraw) at the treatment
plant.

Fig. 3 Example of optimization of a PBM. In this model, the raw water
quality (Xraw) and a set of decisions (D) are the inputs. They are then
simulated and processed into outputs of the objectives: cost (Ocost)
and effluent water quality (Oeff). Additionally, this simulation model
could be coupled with an optimization model to generate one or more
optimal solutions.
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information. Furthermore, the scope of these models can
range in detail from the detailed analysis of a small number
of specific processes, to the holistic modeling of an entire
system. Unlike BNs, which explicitly express uncertainty,
KBSs do not commonly incorporate uncertainty into rules or
their knowledge base.22

In water treatment DSS literature, the majority of KBSs
have been developed to advise operational decision-making
in WTPs by incorporating expert opinion. These systems were
designed to codify the accumulated knowledge of plant oper-
ators about chemical dosages and problem diagnoses.102,106

Over time, more advanced techniques, such as fuzzy set the-
ory and multi-criteria analysis, have been used in decision-
making.107–109 Even with improved techniques, KBSs alone
cannot be used to represent all types of problems. By
coupling KBSs with other types of DSSs, however, authors
have been able to look at more complex problems. For in-
stance, Delpla et al.,110 which couples a PBM and a KBS, cre-
ated a practical decision support tool for small and medium
treatment plants planning for climate change. In this two-
part DSS, the KBS is used to make catchment management
and treatment recommendations based on semi-quantitative
data associated with catchment type, climatic conditions,
and treatment operations, and the PBM is used to assess the
health risk of the plant considering both current and
projected water quality levels.

Additionally, a logic-based KBS, known as fault tree analy-
sis, has been used for risk analysis from catchment to con-
sumer in Lindhe et al.73,74 In general, “a fault tree analysis is
a risk estimation tool with the ability to model interaction be-
tween events… [and] identifies potential causes of system
failure.”73 Using primarily expert judgment and some histori-
cal data, Lindhe et al. defines hundreds of probability distri-
butions for model variables to describe the system's potential
risk due to events that could lead to water quality or quantity
failure. Based on this method, users can estimate the proba-
bility of failure, mean failure rate, and overall mean down-
time of the system and individual sub-systems.

4.3.2.2 Bayesian networks. A BN is a stochastic model
which defines causal influences between system variables—
such as decisions and objectives—and quantifies the
strength of these relationships through conditional
probabilities.111–113 BNs are represented by a directed acyclic
graph which links nodes (random variables) to represent the
relationships between variables; specifically, a node is
classified as either a parent or child node.114 A child node is
one that is dependent on one or many parent nodes, which
is graphically represented by arrows linking related nodes. A
node with no parent is an input variable, whereas a node
with no child is an output variable.

With the exception of input variables, each variable has an
associated conditional probability distribution based on ob-
served data or expert judgment.115 For example, if there is a
node which represents the cost of a given decision, the prob-
ability distribution could be based on an operational cost
dataset collected by the WTP. If there are no data available, a

WTP expert could estimate this distribution given their accu-
mulated knowledge in the field. These probability distribu-
tions are considered conditional because they vary depending
on the value of the parent node. Using this information, deci-
sion makers can determine the most likely value of their ob-
jectives for a given set of decisions and also understand the
level of uncertainty involved in their decision. This probabi-
listic approach to decision-making is what sets BNs apart
from most other DSSs. We illustrate this approach for a water
treatment application in Fig. 5.

The inputs of the illustrative BN in Fig. 5 are influent raw
water quality parameters (Xraw) and a set of operational or in-
frastructural decision variables (D). Xraw and D are distinct
types of input variables. D is deterministic, meaning that
users will define a set of their choosing. Contrastingly, Xraw is
a random variable which represents uncertain raw water
quality characteristics as a probability distribution. Based on
these input variables, conditional probability distributions
for three objectives—cost (Ocost), effluent water quality (Oeff),
and environmental impact (Oenv)—are generated. Further-
more, a conditional probability distribution for a fourth ob-
jective, human health risk (Ohealth), is created based on its
parent node Oeff. In this example, decision makers can deter-
mine the likely performance of various decisions and raw wa-
ter qualities for the four objectives.

The stochastic nature of these models means that they ex-
plicitly handle uncertainties based on assumptions about the
system. BNs are also unique in that they can incorporate
stakeholder objectives and can be used to optimize the
expected utility of these stated objectives. These qualities
make BNs successful in fields of water management, such as
water resources and environmental management.114,116,117

BNs are relatively simple to construct because although they
are capable of representing complex systems, they do not ex-
plicitly model each process. On the other hand, if stake-
holders were concerned with the detail of a specific process,

Fig. 5 Example of Bayesian network for water treatment in which
probabilistic information about objectives—cost, effluent water quality,
environmental impact, and human health risk—are determined based
on influent raw water quality parameters (Xraw) and decisions (D).
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BNs would not be suited for such an application. For a de-
tailed discussion about evaluating the performance and un-
certainty of BNs, see Marcot.118

In water treatment literature, BNs have been used to better
represent the uncertainties involved in decision-making and
to diagnose treatment issues. Zhu and McBean119 used BNs
to represent the tradeoff among uncertainties in a decision
maker's belief and the expected utility of infrastructural and
operational decisions for multiple objectives. To quantify the
benefit of various objective values, the authors created what
are known as utility functions. Utility functions (U) represent
the expected utility—between 0 and 1—that a stakeholder
gains from an objective. For instance, a simple cost utility
function could be represented by eqn (1).

(1)

The decision that yields the highest utility, based on the sum-
mation of all utility functions, is the preferred solution. With
regard to diagnosis, Pike120 used BNs, which were informed
by expert opinions and quantitative data, to pinpoint the
cause of water quality violations at treatment plants—finding
most violations could be attributed to human errors. For
readers new to BNs used for water quality decision-making,
Kragt121 provides concise explanations on BN theory, multi-
ple examples of real BN applications in the field, and a com-
parison of applicable software.

4.3.2.3 Artificial neural networks. An artificial neural
network (ANN) is an artificial intelligence method inspired
by the biological nervous system.122,123 Constructed from
multiple layers of interconnected neurons, ANNs are able to
model non-linear relationships between parameters.123 By
training ANNs with large amounts of data, the strength of the
connection between neurons adapts to minimize error be-
tween the neural network prediction value and the known pa-
rameter value. Their ability to deal with non-linear relation-
ships makes them well-suited to predict complex water
treatment processes.124 To eliminate the need for routine jar
testing for coagulation, for example, several papers suggest
using ANNs to predict the optimal alum dose for plant opera-
tion.103,122,123,125,126 Fig. 6 represents a simplistic architecture
for an ANN used for such an application.

In Fig. 6, any water quality parameters that are useful indi-
cators of coagulant dose would serve as input nodes (e.g. tur-
bidity, pH, color, UV254, alkalinity, etc.). Any hidden layers—
in this example there is only one—then connect the input wa-
ter quality parameters to the output alum dose prediction.
The performance of an ANN is dependent on the architec-
tural parameters chosen by the modeler, such as the number
of hidden layers, the number of neurons within each layer,
the rate at which the model “learns”, and initial weights on
the connections between neurons.127

In addition to their use in coagulant dose prediction, wa-
ter treatment ANNs been used for optimal chlorine disinfec-
tion dosage,128 the prediction of DBPs,129 and modeling
nanofiltration127,130 and are generally geared toward the opti-
mization of operations. For guidelines on developing ANNs
for water treatment, we direct the interested reader to Baxter
et al.,124 Wu et al.,131 and Maier et al.132

ANNs have the advantage of being flexible, able to handle
non-linear water quality relationships, and can be used in
process automation. For instance, neural networks can be
trained using common operational data and can adjust pre-
dictions over time based on new data.128 Moreover, when
integrated into supervisory control and data acquisition
(SCADA) systems, ANNs can inform plant operators about op-
timal chemical doses and chemical costs in real-time or can
automate these processes directly.122 However, ANNs require
large quantities of representative historical data to make use-
ful predictions128 in contrast with mechanistic models which
require little input data. Furthermore, unlike mechanistic
models which are grounded in the fundamental physics and
chemistry behind a process, ANNs are criticized for their lack
of explanatory power due to the ‘black box’ nature of their
hidden layers.

5. Analysis of DSSs and
recommendations for future work

The reviewed DSSs consider a wide range of decisions and
objectives in water treatment for numerous time horizons.
Predictive models, such as ANNs and some SMs, can aid op-
erators in day-to-day decision-making, such as selecting opti-
mal coagulant and disinfectant doses. Optimization using
PBMs can inform least-cost designs and do not require large
amounts of data to makes accurate predictions. KBSs, such
as case-based reasoning, can help operators troubleshoot

Fig. 6 Simplistic architecture of an ANN for the prediction of the
optimal alum dose during coagulation.
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when a treatment plant experiences conditions beyond their
level of expertise. BNs explicitly acknowledge the uncertainty
involved in real-world decision-making by representing
choices probabilistically. This ensemble of DSSs presents a
number of options for water managers or researchers inter-
ested in computer-assisted decision-making for water treat-
ment. However, future research in this field should be im-
proved in a number of areas. Based on our review of DSSs for
water treatment, we recommend that future work should
have the following characteristics:

(1) More accurately reflect the practical needs of WTPs.
DSSs are developed, first and foremost, to inform decision

makers. For this reason, DSS studies should inherently be
application-oriented and include stakeholder input. However,
the practical implications of these models are often
overlooked in water treatment literature, as noted by Boccelli
et al.89 and Dharmappa et al.96 These authors provide context
for when DSSs—in their case, least-cost optimization PBMs—
are appropriate and discuss their limitations. Moreover,
Dharmappa et al. creates a practical framework for integrat-
ing data from bench- and pilot-scale studies into DSSs
throughout the design process. Worm et al.98 and Rietveld
et al.99 also provide good examples of practical DSS research.
Their papers include discussions of the graphical user inter-
face, a case study for DSS implementation, and additional
features such as operator training support. Other DSS litera-
ture which examine practical case studies include Lindhe
et al.,73,74 Poch et al.,76 and Kragt.121 These examples of
application-based research serve to narrow the gap between
DSS theory and application.

(2) Explicitly handle uncertainty in DSSs to better inform
decision makers.

There is uncertainty inherent to any DSS but few of these
tools accurately express that uncertainty to the decision
maker. BNs and fault tree analyses are notable exceptions;
however, there are few examples of these types of DSSs that
have been developed for WTPs (Table 1). To more accurately
consider the uncertainty of WTP decision-making, DSSs
should conduct a sensitivity analysis of the parameters, when
applicable, and also consider the systematic (epistemic) and
inherit variability in a system. Representing such uncer-
tainties can be improved through techniques such as Monte
Carlo simulations,89,90 Bayesian methods,119,120 and fuzzy set
theory,107,108 but these are not always used in practice. For ex-
ample, Bayesian techniques have been proposed to represent
model uncertainty in ANNs without adding prohibitive com-
putational cost but these have not been widely adopted.134,135

(3) Incorporate nonstationarity in WTP DSSs, especially
with regard to extreme weather events and climate change for
long-term planning.

Nearly all models reviewed implicitly assume stationarity
in their systems—an assumption which is challenged by cli-
mate change, population growth, water demand, and land
use change. The stationarity assumption can lead to a mis-
representation of the system for long-term decision-making—
sometimes in unanticipated ways. For instance, it is impor-

tant for WTPs to consider changing trends in water use, such
as increased uptake water-efficient technologies, because they
can cause flows to decrease in the distribution system. Subse-
quently, low flows increase water age and thus increase the
formation of DBPs.136,137 Therefore, in this case, treating wa-
ter demand as stationary over time would underestimate the
actual risks posed to consumers.

Until recently, water treatment planners have assumed sta-
tionarity in projecting future climate. Due to the effects of an-
thropogenic climate change, however, stationarity can no lon-
ger be assumed.5–8 To prepare for possible climate futures in
long-term planning, DSSs must consider the implications of
nonstationary source water quality parameters and estimate
their uncertainty. Nonstationarity amplifies the risk and un-
certainty in our natural and manmade water systems, espe-
cially with respect to extreme weather events (i.e. flooding,
drought, heat waves, wildfires, and cyclones).9,56,138–140 Thus
far, as noted by Khan et al.,17 the impact of extreme weather
events on drinking water treatment decision-making remains
largely unstudied. Moreover, we also find few examples of
DSS which address climate change in this review.71,110 There
needs to be more effort directed toward the development of
DSSs which consider these climatic conditions for long-term
planning. By using robust decision-making techniques, creat-
ing such a DSS for long-term planning is possible.

Long-term planners often face deep uncertainty, in which
decision makers do not know or cannot agree on the extents
of the system, their objectives and relative weights of each, or
the probability distribution for uncertain inputs to the sys-
tem.141,142 To cope with deep uncertainty, such as when con-
sidering a nonstationary climate, decision-making should be
robust, i.e. largely insensitive to possible future scenar-
ios.143,144 Robustness can be either static, in which decision
makers implement a fixed policy that will perform reasonably
well in practically all conceivable situations,142 or adaptive, in
which decision makers are prepared to change the policy over
time, in case conditions change.142–144 Such strategies for
decision-making under deep uncertainty are increasingly be-
ing used in the water resources domain for long-term viabil-
ity of management plans and strategies,82 so it is likely that
water treatment DSSs could benefit from these techniques.

(4) Represent the tradeoffs between the multiple compet-
ing objectives inherent to water treatment in optimization-
based DSSs.

Water treatment is often described as a problem with mul-
tiple potentially conflicting goals, including minimizing cost,
system failure, health risk, and environmental impact. None-
theless, for the case of optimization, historically there has
been a desire to cast the problem with a singular objective
(e.g. minimize cost), especially if a regulation calls for a par-
ticular set of requirements that must be made. A growing
body of evidence suggests, however, that a multi-objective for-
mulation can provide a more holistic view of a problem.94,144

In fact, multi-objective optimization techniques have been
successfully used to explore tradeoffs in related fields,
such as wastewater treatment,145,146 water distribution
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networks,147,148 water resources management,149–151 and
groundwater remediation.152,153

Consider the problem of designing WTPs facing extreme
events. Although it would be ideal to be able to design a
plant to meet regulations under all plausible conditions, do-
ing so would make them prohibitively expensive. Therefore,
it may be less advantageous to use the traditional least-cost,
regulation-constrained optimization, which dictates that the
system must not fail even for extreme events. In reality, a
WTP that faces extreme conditions may fail in some manner,
which leads to consideration of frequency-based performance
objectives that have been shown to be popular in the area of
water resources planning and other fields. In this case, the
decision maker may care about how likely the system is to
fail (reliability), how quickly it recovers from failure (resil-
iency), and how severe the consequences of failure may be
(vulnerability).154 By adding one or more of these failure met-
rics, the decision maker can better understand the tradeoff
between cost and potential failure and make an informed de-
cision accordingly—similar failure metrics were used in fault
tree analysis of water systems in Lindhe et al.73 While failure
could also be represented as a constraint (e.g. 95% reliability)
to maintain the single-objective formulation, this would
mask the tradeoff between cost and reliability, which could
be of interest to the stakeholder. For example, if increasing
the reliability from 95% to 97% is cost-effective, the stake-
holder may choose a slightly higher cost to the added reduc-
tion in risk.

(5) Use standardized terminology to accelerate the dissem-
ination of knowledge in the field.

Lastly, we recommend that standardized terminology be
developed in water and environmental management decision
support literature. Because drinking water safety is an inter-
disciplinary field, researchers in public health, environmental
and water resources engineering, and risk assessment and
management, each have developed decision-making tools
which cater to and use the vocabulary of their respective dis-
cipline. If a standard terminology cannot be agreed upon, the
inconsistencies in wording between these similar decision-
making tools, commonly under the names decision support
systems or risk assessment tools, should at least be noted in
the literature. Even within reviews of DSSs, there is little con-
sistency in terminology regarding DSS architecture and devel-
opment frameworks. These inconsistencies in language make
it difficult for researchers to find relevant literature and slows
progress.155 We hope that the interdisciplinary nature of this
critical review may improve the connectedness of the litera-
ture and begins a discussion toward more uniform terminol-
ogy in water and environmental management decision support.

6. Conclusions

Climate change and shifting climate extremes have been
shown to degrade source water quality. Consequently, these
changes are expected to adversely impact the performance of
WTPs. In response, WTPs are seeking better approaches for

long-term planning and risk management.18 This paper
highlighted how DSSs can be improved to tackle these com-
plex issues. In the process, we critically reviewed DSSs in wa-
ter treatment more generally in an effort to improve the field
as a whole. We found that relative to other branches of water
and environmental management, water treatment DSSs re-
ceive little attention. Given the complexity nonstationarity
adds to decision-making, however, DSSs are more relevant to
water treatment than ever. Water planners could benefit from
increased uptake of, and improvement upon, water treatment
DSSs, especially with regard to long-term planning. Advance-
ments in these DSSs can be informed by the literature
referenced in this paper and our recommendations for future
work.
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