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The emergence of suspect screening has enabled the comprehensive characterization of micropollutants

in water systems. In this work, we developed a sensitive suspect screening workflow and applied it to char-

acterize the occurrence of micropollutants in eighteen water samples collected from an urban water sys-

tem in New York State. We used high-resolution mass spectrometry to collect full-scan and data-

dependent tandem mass spectra from the water samples and compiled a suspect database that contained

1113 chemical substances including pesticides, pharmaceuticals, personal care products, and industrial

chemicals. The suspect screening workflow included peak picking, suspect database matching, isotopic

pattern scoring, a replication filter, blank subtraction and artifact removal, and clustering of suspect hits.

Each step in the workflow relied only on the quality of the analytical data, and was optimized and validated

using a set of compounds that covered a broad range of physicochemical properties. After applying the

optimized suspect screening workflow to the data acquired from the water samples, we developed a series

of prioritization strategies that ranked the resulting suspect hits according to metrics that we hypothesized

would favor true positive detections. We then acquired authentic standards for suspect hits based on their

ranking on the priority lists to confirm or reject their occurrence. With this approach, we confirmed the

presence of 112 micropollutants in at least one of the eighteen water samples. Comparing these results to

the scope of conventional micropollutant monitoring methods, we approximate that our suspect screening

approach more than doubled the number of micropollutants that may otherwise have been identified.

Introduction

Micropollutants can be defined as synthetic organic
chemicals that have been measured in water and wastewater
systems at trace concentrations.1–3 Despite our growing un-
derstanding of micropollutant occurrence in water systems
around the world, analytical methods that can be applied to
evaluate micropollutant occurrence in water quality monitor-
ing campaigns are still developing. Quantitative target screen-
ing remains the standard approach, wherein a sensitive ana-

lytical method is developed and validated, typically with
liquid chromatography and mass spectrometry, and is ap-
plied to quantify the occurrence of a finite set of micro-
pollutants in different types of aquatic matrices.4,5 Advances
in target screening have led to the development of broad,
multi-residue analytical methods that enable quantification
of over one hundred micropollutants at low ng L−1 concentra-
tions in a single analysis.6,7

Despite the clear value of the data acquired during target
screening, there remain limitations to this approach. First,
target screening focuses water quality monitoring on a fixed
set of micropollutants. However, the numbers and types of
micropollutants that may occur in a water system are depen-
dent on a variety of local features such as land use,8 proxim-
ity to industry,9 type of sewer system,10 type of wastewater
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Water impact

Man-made chemicals such as pesticides, pharmaceuticals, and personal care products have been measured in water resources around the world. This work
introduces a new approach to comprehensively characterize the occurrence of these so-called micropollutants in environmental samples. With this ap-
proach, we identified 112 micropollutants occurring in at least one sample collected from drinking water, wastewater, and surface water systems.
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treatment system,10 and population demographics.11 These
factors suggest that analytical methods need to be flexible
and easily adaptable to address the numbers and types of
micropollutants that may occur in any region of interest. Sec-
ond, target screening requires the use of authentic standards
for the identification and quantification of target analytes. In
addition to being laborious and economically inefficient, the
process of selecting analytes for a target screening method is
particularly challenging when the types of micropollutants
that may be present in a water system are unknown. Finally,
even the broadest multi-residue target screening methods
only evaluate the occurrence of a fraction of the micro-
pollutants that are expected to occur in any water system. As
a result, risk assessments based on the results of target
screening methods can significantly underestimate the chem-
ical risk associated with micropollutant occurrence.12

Recent advances in high-resolution mass spectrometry
(HRMS) have enabled the development of more comprehen-
sive and versatile analytical methods for water quality moni-
toring without the need for authentic standards.13–16 Suspect
screening is an emerging approach that relies on the high
mass accuracy and high mass resolution afforded by HRMS
to link features in mass spectral acquisitions to suspect
chemicals that may occur in a sample.17 The general ap-
proach involves peak picking in the full-scan mass spectral
acquisition and matching the accurate masses of the picked
peaks to the exact masses of the major adducts (e.g., [M + H]+

or [M − H]−) and the theoretical isotopic patterns of suspect
chemicals. Each match is a tentative detection of a suspect
chemical and is referred to subsequently as a “suspect hit.”
Suspect screening methods have been described for identify-
ing suspect chemicals in a variety of matrices including water
and wastewater,12 lake sediments,18 urine,19 and processed
animal products.20

There are at least two important considerations that must
be addressed prior to developing a new suspect screening
workflow for a particular application. First, it is important to
consider the numbers and types of chemical substances to be
included as suspect chemicals. One approach is to “screen
smart”, where a relatively small number of suspect chemicals
is selected whose presence will provide key insights into a
particular problem. For example, suspect screening has been
applied to identify putative transformation products of sul-
fonamide antibiotics,21 photo-degradation products of iodin-
ated contrast media,22 and biotransformation products of
structurally-similar chemical substances.23,24 Another ap-
proach is to “screen big”, where a suspect database that in-
cludes thousands of suspect chemicals is built to represent
the universe of likely chemical substances that may be pres-
ent in a particular sample.13,16,25 This latter approach may be
the most appropriate when the goal is comprehensive charac-
terization of micropollutants in environmental samples,
though large suspect databases should be applied with cau-
tion as more suspect chemicals are likely to result in more
false positive detections. Second, it is important to consider
how the suspect screening workflow should be optimized.

Much recent research has focused on improving the false
positive rate of suspect screening methods. Some commonly
explored strategies include in silico prediction of the reten-
tion times26–28 or tandem mass spectral (MS2) fragments of
suspect chemicals,13,29 data which can be incorporated into
suspect screening workflows to further evaluate suspect hits.
Others have considered intensity-dependent mass error ad-
justments30 or statistical rejection filters.31,32 Whereas these
techniques have led to successful suspect screening discover-
ies and a general reduction in false positive rates, those bene-
fits come at the expense of higher false negative rates, which
narrow the comprehensiveness of the suspect screening. An-
other optimization approach is to balance the false positive
and false negative rates,14,33,34 though the concession made
in balancing the error rates may also lead to less comprehen-
sive coverage of the suspect screening method. To the best of
our knowledge, no suspect screening method has been de-
scribed that explicitly aims to minimize the false negative
rate to enable the most comprehensive characterization of
micropollutant occurrence in a water system.

The goal of this research was to develop and apply a sus-
pect screening workflow to comprehensively characterize the
occurrence of micropollutants in an urban water system in
New York State. To meet this goal, we collected water sam-
ples at the intake and from the finished water of a drinking
water treatment plant (DWTP), at the influent and effluent of
a wastewater treatment plant (WWTP), and from a surface
water system that receives the effluent of the WWTP. We
then: (i) developed and optimized a novel suspect screening
workflow; (ii) validated the performance of the suspect
screening workflow in each of the matrices; and (iii) applied
the suspect screening workflow to the set of water samples to
identify suspect micropollutants. Our approach was to
“screen smart” while remaining comprehensive because the
occurrence of micropollutants had never been assessed in
the study area. Therefore, the suspect database contained
1113 chemical substances that have been reported as water-
relevant micropollutants in water systems around the world
and are likely to be detected by our HRMS analytical method.
Additionally, we systematically optimized the suspect screen-
ing workflow to minimize the false negative rate. We then de-
veloped a series of novel prioritization strategies to rank sus-
pect hits in a way that we expected would give priority to true
positive detections. Authentic standards were acquired to
confirm or reject the occurrence of all prioritized suspect
chemicals.

Methods
Standards and reagents

All authentic standards were acquired from Sigma Aldrich ex-
cept for emtricitabine and N,N-didesmethyl-venlafaxine which
were acquired from Toronto Research Chemicals. Stock solu-
tions of each chemical were prepared at a concentration of
0.5 or 1 g L−1 using 100% HPLC-grade methanol (EMD Milli-
pore), 100% anhydrous ethanol (Decon Labs), ACS-grade
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dimethyl sulfoxide (Macron Fine Chemicals), HPLC-grade
acetonitrile (Fisher Chemical), or nanopure water produced
by a Milli-Q system (EMD Millipore) depending on the solu-
bility of the chemical. The stock solutions were used to pre-
pare authentic standards at a concentration of 100 μg L−1 or
a chemical mix at a concentration of 5 mg L−1 using nano-
pure water. The stock solutions were stored in a freezer at
−20 °C while the chemical standards and mix were stored in
a refrigerator at 4 °C.

Environmental sample collection

Water samples were collected from an urban water system in
New York State during four sampling events in May, July,
September, and December 2015. We collected time-propor-
tional, 24 hour composite samples at the raw water intake
and from a continuously-flowing stream of the finished
drinking water of a DWTP and at the influent and effluent of
a WWTP. We did not collect a sample of the finished drink-
ing water in May 2015 due to logistical challenges. ISCO auto-
matic samplers were used with a 15 minute sampling interval
for all 24 hour composite samples. Samples were cooled on
ice during sampling and during transportation to the labora-
tory for analysis. In addition to samples collected at the
DWTP and the WWTP, a grab sample was collected in May,
July, and September from a freshwater lake that receives the
effluent of the WWTP; grab samples were collected at a depth
of approximately 180 centimeters below the lake surface. A
December sample was not collected from the freshwater lake
due to ice cover on the lake surface.

Sample enrichment

Within 48 hours of sample collection, 500 mL (May and July)
or 1 L samples (September and December) were filtered
(GF/F; 0.7 μm, Whatman) and pH-adjusted to 6.3–6.7 (using
formic acid and ammonia solutions). We adapted a previ-
ously reported offline solid phase extraction (SPE) method
for sample enrichment.35 The mixed bed cartridge was
designed to enrich neutral, cationic, and anionic species with
a broad range of polarities, though we acknowledge that
some types of chemicals may not be adequately recovered
with even broad SPE methods. More details on the SPE
method are provided in the ESI.†

Analytical method

We adapted the analytical method from one previously
reported for the non-target and suspect screening of transfor-
mation products of organic micropollutants by means of
high-performance liquid chromatography (HPLC) coupled
with high-resolution mass spectrometry (HRMS, quadru-
pole-orbitrap, QExactive, Thermo Fisher Scientific).36,37

Briefly, the mobile phase consisted of LC/MS-grade water
(A, Fisher Scientific) and HPLC-grade methanol (B, Fisher
Scientific), each amended with 0.1% (volume) MS-grade
formic acid (Fisher Scientific). The mobile phase was
pumped to a reversed-phase analytical column (XBridge C18

column, 2.1 × 50 mm, particle size 3.5 μm, Waters) at a
flow rate of 200 μL min−1. Other separation techniques in-
cluding hydrophilic interaction liquid chromatography
(HILIC) could enhance the breadth of chemicals that are
separated into clearly identifiable peaks,15 though the ma-
jority of the chemicals included in this suspect screening
are expected to be adequately separated by reversed-phase
chromatography.12,14 The mass spectrometer was coupled
with electrospray ionization and acquired full-scan mass
spectra at an m/z (hereafter referred to as “mass”) range of
100 to 1000 in positive and negative polarity modes. Data-
dependent tandem mass spectra (MS2) were acquired in
separate experiments at the exact masses of all investigated
micropollutants. MS2 experiments were performed on all
authentic chemical standards to identify diagnostic MS2
fragments and on each of the samples following analysis
and interpretation of the full-scan data to develop an inclu-
sion list. Inclusion lists contained the exact masses of the
[M + H]+ and [M − H]− adducts of all micropollutants
detected in the suspect screening. We used XCalibur
v3.1.66.10 (Thermo Fisher Scientific) software for analysis
and interpretation of extracted ion chromatograms (EICs),
mass spectra (MS), and tandem mass spectra (MS2). Further
details on the instrument method and parameters for the
MS and MS2 acquisitions are available in the ESI.†

Compilation of a suspect database

The chemical substances included in the suspect database
were collected from three sources: the “Eawag Compounds in
MassBank” database, which contains 815 micropollutants
known to occur in water resources around the world;38 the
New York State Pesticide Product, Ingredient and Manufac-
turer System (PIMS) database, which contains all pesticides
previously or currently registered for use in New York State;39

and the pharmaceutical compounds included in the United
States Geological Survey (USGS) Wastewater Methods, which
contain a number of pharmaceuticals that are particularly rel-
evant for the study area.4,5 After compiling the chemical sub-
stances from these sources, we manually trimmed the list to
include only those substances that are expected to be amena-
ble to analysis by means of our HPLC HRMS method, as has
been previously described.14 We removed all compounds with
a mass less than 100 Da or greater than 1000 Da, all com-
pounds that contained no carbon atoms, all compounds that
contained no heteroatoms, and all compounds that incorpo-
rated a metallic element such as copper or iron. The final
suspect database contained 1113 chemical substances includ-
ing pesticides (e.g., herbicides, insecticides, biocides; 524),
pharmaceuticals (423), lifestyle chemicals (e.g., personal care
products, food additives; 30) and “other” compounds such as
industrial chemicals and naturally produced chemicals (136).
The database included the names, the SMILES notation, the
molecular formula, and the exact masses of the neutral mole-
cule and [M + H]+ and [M − H]− adducts for each of the 1113
chemical substances.
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Dilution series of validation compounds

We selected 45 chemical substances from the suspect data-
base to serve as validation compounds in the optimization
and validation of the suspect screening workflow. The 45 vali-
dation compounds included 25 pharmaceuticals or pharma-
ceutical transformation products (TPs), 17 pesticides or pesti-
cide TPs, 2 lifestyle chemicals, and 1 industrial chemical. The
45 chemical substances were selected to represent chemicals
with a broad range of physicochemical properties and ioniz-
able functional groups. More details on the 45 validation
compounds are provided in the ESI.† An analytical mix
containing the 45 validation compounds was prepared at a
concentration of 5 mg L−1 and diluted in nanopure water to
generate a dilution series at volumes of 1 L and individual
compound concentrations of 0 ng L−1, 5 ng L−1, 25 ng L−1, 50
ng L−1, 100 ng L−1, 250 ng L−1, 350 ng L−1, 500 ng L−1, and
750 ng L−1. Each sample in the dilution series was concen-
trated by means of SPE and analyzed by means of HPLC
HRMS as described in the preceding.

Results and discussion

The goal of this research was to develop a suspect screening
workflow and apply it to comprehensively characterize the oc-
currence of micropollutants in an urban water system in New
York State. To meet this goal, we first developed and opti-
mized a suspect screening workflow and then validated its
performance in a variety of environmental matrices. We fi-
nally applied the validated suspect screening workflow to
characterize the occurrence of micropollutants in eighteen
water samples. The steps involved in the development and
optimization, validation, and application of the suspect
screening workflow are provided schematically in Fig. 1 and
described in the following.

Development and optimization of suspect screening
workflow

We used the full-scan mass spectra acquired from the dilu-
tion series containing the 45 validation compounds to de-
velop and optimize a suspect screening workflow, and used
the full suspect database containing 1113 suspect chemicals
to identify suspect hits. We evaluated a number of potential
steps to be included in the suspect screening workflow. After
application of each step, we identified the number of suspect
hits that matched one of the 45 validation compounds (true
positives, TR), the number of suspect hits that did not match
one of the 45 validation compounds (false positives, FP), and
the number of validation compounds for which there were
no matching suspect hits (false negatives, FN). We then cal-
culated method sensitivity as TR/(TR+FN) and method selec-
tivity as TR/(TR+FP). The workflow was systematically opti-
mized with the primary objective of maximizing method
sensitivity and a secondary objective of maximizing method
selectivity. As such, we didn't include any steps in the final
suspect screening workflow that relied on in silico predictions
of the properties of the suspect chemicals13,26–29 that in-
creased the false negative rate. Instead, we included a series
of conservative suspect screening steps that relied solely on
the quality of the analytical data and were systematically opti-
mized to meet our objectives. The steps included in the final
suspect screening workflow were peak picking, suspect data-
base matching, isotope pattern scoring, a replication filter,
blank subtraction and artifact removal, and clustering of sus-
pect hits.

We used the TraceFinder v3.1 software for peak picking,
though a number of open source software packages are avail-
able for peak picking within high-resolution mass spec-
tra.40,41 Peak picking algorithms rely on a number of user-

Fig. 1 Schematic of the steps involved in the development and optimization, validation, and application of the suspect screening workflow.
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defined peak picking parameters that determine how mass
spectra are clustered and whether or not a cluster of mass
spectra will be defined as a peak. We systematically adjusted
the magnitude of each peak picking parameter to investigate
its effect on the results. We then compared the accurate
masses of each of the picked peaks with the exact masses of
the [M + H]+ and [M − H]− adducts of each of the 1113
chemicals in the suspect database to identify suspect hits.
Other major adducts such as [M + Na]+ or [M + NH4]

+ were
not considered during suspect database matching because
our analyses demonstrated that inclusion of other adducts
did not improve the method sensitivity but significantly
lowered the method selectivity. We optimized each peak pick-
ing parameter by identifying the parameter value that
resulted in identification of all 45 validation compounds
while minimizing the total number of suspect hits identified
in representative high (750 ng L−1) and low (25 ng L−1) con-
centration samples of the dilution series. The parameters
that had the largest influence on the results of peak picking
were the area noise factor, the peak noise factor, the baseline
window, the peak area threshold, and the signal-to-noise ra-
tio. Details on the optimization of each of these parameters
are provided in the ESI.†

The optimized peak picking and suspect database
matching routine was applied to the full-scan mass spectra
acquired from the representative high and low concentration
samples from the dilution series. A total of 893 and 647 sus-
pect hits were identified in each of the samples, respectively,
as shown in Fig. 2. Peaks representing each of the 45 valida-
tion compounds were picked in both samples reflecting a
method sensitivity of 100%. However, the large number of
suspect hits yielded a poor method selectivity of 6.0% across
the dilution series. Therefore, additional suspect screening
workflow steps were developed to reduce false positive sus-
pect hits and improve the method selectivity.

Isotopic pattern scoring can be applied to suspect screen-
ing workflows to remove suspect hits that do not contain an
isotopic pattern matching the theoretical isotopic pattern of
the suspect chemical. Isotopic pattern scores can be assigned

in TraceFinder or other software packages based on devia-
tions between the measured and predicted masses and inten-
sities of the isotopic pattern. We optimized the isotopic pat-
tern scoring in the same way that we optimized the peak
picking parameters as described in the preceding, details of
which are available in the ESI.† After applying the optimized
isotopic pattern scoring routine to the high and low concen-
tration samples of the dilution series, the total number of sus-
pect hits was reduced to 604 and 452, respectively, as shown
in Fig. 2. Isotopic pattern scoring had no effect on method
sensitivity, but the reduction in the total number of suspect
hits resulted in an improved method selectivity of 8.8%.

The remaining steps in the suspect screening workflow
were developed to remove false positive suspect hits resulting
from analytical noise or matrix constituents. First, the replica-
tion filter was developed to remove suspect hits that were not
detected robustly over replicate analytical injections from the
same sample. We reasoned that the peak picking algorithm
may pick peaks related to noise or other transient substances
in any single analytical injection, but chemical substances
that are present and stable in the sample should generate a
robust series of picked peaks across a set of multiple injec-
tions. We determined that three replicate analytical injections
was sufficient to eliminate a significant number of false posi-
tive suspect hits resulting from analytical noise, as detailed in
the ESI.† Second, the blank subtraction and artifact removal
step was added to remove matrix constituents from the list of
suspect hits. For blank subtraction, we removed suspect hits
from a sample if a suspect hit was present in the 0 ng L−1

sample (the blank) and had a peak area greater than or equal
to the peak area measured for that suspect hit in the sample.
This is a conservative approach that does not incorporate a
peak area amplifier into blank subtraction as has been
reported elsewhere.12 Instead, we developed artifact removal
which removed all suspect hits that were identified in every
sample of the dilution series and had peak areas that did not
vary significantly over the dilution series. Artifact removal en-
ables removal of matrix constituents that may be present in
the blank at slightly lower peak areas than in the sample with-
out the need for applying an arbitrary amplifier. Finally, the
clustering of suspect hits removes all extra annotations of a
single suspect chemical to generate a list of unique suspect
hits identified in each sample. The effects that each of these
steps had on reducing the total number of suspect hits are
presented in Fig. 2. After applying the full suspect screening
workflow, the total number of suspect hits was reduced to 203
and 164 in the high and low concentration samples from the
dilution series, respectively. One of the validation compounds
(primidone) was lost from the low concentration sample dur-
ing the blank subtraction step resulting in a method sensitiv-
ity of 98.9%. However, the continued reduction in the total
number of suspect hits resulted in an improved method selec-
tivity of 24.8%. It is important to note that selectivity is a func-
tion of the number of chemical substances contained in the
suspect database. For example, if the suspect database
contained only the 45 validation compounds, the selectivity of

Fig. 2 The total number of suspect hits identified in the high and low
concentration samples from the dilution series after peak picking and
suspect database matching and the number of suspect hits remaining
after each step of the suspect screening workflow.
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the suspect screening workflow would be 100%. Therefore,
the optimization of the suspect screening workflow resulted
in a highly sensitive method that has a method selectivity of
approximately 25% when the suspect database contains 1113
chemical substances.

Validation of suspect screening workflow

The goal of the method validation was to evaluate the perfor-
mance of the suspect screening workflow when applied to wa-
ter samples with varying matrices. Therefore, we applied the
optimized suspect screening workflow to the full-scan mass
spectra acquired from the eighteen environmental samples
and used a suspect database containing only the 45 valida-
tion compounds to identify suspect hits. Simultaneously, we
manually inspected extracted ion chromatograms (EICs) at
an extraction width of 5 ppm, MS data, and MS2 data from
each of the eighteen water samples to confirm or reject the
occurrence of each of the 45 validation compounds. A valida-
tion compound was confirmed to occur in a sample when the
EIC contained a chromatographic peak containing at least
five MS scans, and the retention time, MS spectra, and MS2
fragments matched those of the authentic standard. Suspect
hits that were confirmed to occur following manual inspec-
tion of the analytical data were defined as true positives. Sus-
pect hits that were rejected following manual inspection of
the analytical data were defined as false positives. Validation
compounds that were confirmed to occur following manual
inspection of the analytical data but were not identified as
suspect hits were defined as false negatives.

An accounting of the true positive and false negative de-
tections is presented in Fig. 3. Twenty four of the 45 valida-
tion compounds were confirmed to occur in at least one of
the eighteen water samples. The suspect screening yielded a
total of 349 suspect hits among the eighteen water samples;
203 of those were confirmed as true positives and the
remaining 146 were false positives. The majority of false posi-
tives were identified as such based on non-matching reten-
tion times when compared to the authentic standard. While
an in silico retention time prediction step may have elimi-
nated many of the false positive hits, the increased selectivity
would have come at the expense of reduced sensitivity due to
the uncertainty inherent in retention time prediction. This
observation highlights the need for improved in silico tools
for the prediction of retention times of suspect chemicals in
liquid chromatography applications. Some false positive sus-
pect hits were also rejected following inspection of MS or
MS2 spectra. These were substances that were measured with
very low intensities that either did not yield strong MS sig-
nals or did not trigger the dd-MS2 experiment. These sub-
stances could be considered as true positives that were below
the limit of detection of the suspect screening workflow, but
were conservatively identified as false positives here.

There were also 24 instances in which validation com-
pounds were confirmed to occur following manual inspection
of the analytical data but were not identified as suspect hits

and are therefore false negatives. The majority of the com-
pounds that were identified as false negatives were filtered out
of the suspect screening workflow during the isotopic pattern
scoring step, though the isotopic pattern was clear upon man-
ual inspection. Adjusting the isotopic pattern scoring threshold
or the allowable mass and intensity deviations did not improve
the performance of the suspect screening method, so no modi-
fications were made to the suspect screening workflow based
on this observation. Other validation compounds were lost dur-
ing the replication filter, particularly substances that were pres-
ent at low intensity and in complex wastewater influent or ef-
fluent matrices. Together, these observations suggest that the
limit of detection of our suspect screening workflow will not be
as low as the limit of detection of an analogous targeted analyt-
ical method. Nevertheless, the method sensitivity across vary-
ing matrices based on these results was 89.4% and the method
selectivity was 58.2%.

Application of suspect screening workflow

We applied the optimized suspect screening workflow to the
full-scan mass spectra acquired from the eighteen water sam-
ples collected from an urban catchment in New York State
and used the full suspect database containing 1113 chemical
substances. The results of peak picking and suspect database
matching yielded an average of 2000 suspect hits per sample,
reflecting the chemical complexity of the environmental sam-
ples. It is important to note that these 2000 suspect hits are
not necessarily unique suspect chemicals. Rather, some

Fig. 3 An accounting of the 24 validation compounds that were
confirmed to occur in at least one of the eighteen water samples. TR
indicates that the detection was a true positive in the suspect
screening workflow; FN indicates that the detection was a false
negative in the suspect screening workflow and only identified
following manual inspection of the analytical data. 5-Methyl-1H-benz
is short for 5-methyl-1H-benzotriazole.
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suspect chemicals were counted multiple times because mul-
tiple peaks were picked at a single accurate mass or were
detected in each polarity mode, allowing the total number of
suspect hits counted at this step to be greater than the actual
number of chemical substances contained in the suspect da-
tabase. However, the average percent reduction in suspect
hits was greater after each step of the suspect screening
workflow for the environmental samples than the optimiza-
tion samples as detailed in the ESI,† though the difference
was not always significant. The average number of suspect
hits remaining for each of the eighteen water samples follow-
ing the clustering of suspect hits was 200, which compares
well in magnitude to the number of suspect hits remaining
following method optimization. This average number of sus-
pect hits ranged between 99 in the May DWTP influent to
344 in the September WWTP effluent. A total of 534 unique
suspect hits were identified among the eighteen water sam-
ples. Based on the criteria established during the develop-
ment and optimization of the suspect screening workflow,
each of the suspect hits had: a chromatographic peak that
was picked by the TraceFinder software with a peak area
greater than 1E6 (arbitrary units) and an accurate mass that
matched the exact mass of a major adduct of a suspect chem-
ical within a mass tolerance of 5 ppm; a TraceFinder isotopic
pattern score greater than 65% with mass deviations of theo-
retical isotopes within 10 ppm and intensity deviations of
theoretical isotopes within 10%; presence of these analytical
features in triplicate measurements of the same sample; and
either absence of these analytical features in the blank or ab-
sence from a list of analytical artifacts.

Prioritization of suspect hits for confirmation

The challenge that remains following application of a sensi-
tive suspect screening workflow is defining a means to priori-
tize the suspect hits in a way that favors true positive detec-
tions. For example, a recent study described a method to
prioritize suspect hits based on an expected threshold of toxi-
cological concern.42 The authors approximated the concentra-
tion and toxicological impact of each suspect hit based on
the relative height of the picked peak. While the prioritiza-
tion was biased towards suspect hits with larger peak
heights, this prioritization strategy enabled the authors to
confirm 24 of the suspect hits.42

We developed two groups of novel prioritization strategies
that ranked the resulting suspect hits according to metrics
that we hypothesized would favor true positive detections.
We then acquired authentic standards (when available) for
suspect hits in the order in which they were ranked on the
priority list and collected analytical data for confirmation of
the suspect hits. We continued evaluating suspect hits on
each priority list until we investigated the top 30 suspect hits
or the running selectivity of the prioritization dropped below
60%, whichever came later. We selected 60% as the running
selectivity threshold based on the results of method valida-
tion; we reasoned that attaining the selectivity obtained when

applying the suspect screening method with a suspect list
that contained only 45 chemical substances would be an am-
bitious benchmark to achieve with a larger suspect database.
The running selectivity was calculated as the selectivity of the
method as a function of the number of true positives and
false positives identified as we evaluated the priority list. Sus-
pect hits for which authentic standards were not acquired
were included in the calculation of running selectivity and
were assigned a selectivity of 25%, which is based on the con-
servative assumption that only one out of four suspect hits
for which authentic standards were not acquired is a true
positive, as was observed during method optimization.

The first group of prioritization strategies was based on
Web of Science (WOS) searches for each of the 534 suspect
hits using the search string “environment* AND water AND
[name of suspect hit]”. We ranked each of the suspect hits
based on the number of WOS search returns that were re-
ceived for each suspect hit as of February 2016. We reasoned
that suspect hits with more WOS search returns would be
more likely to occur in our water samples. As is summarized
in Table 1, the WOS prioritization resulted in the investiga-
tion of 36 suspect hits with an authentic standard and 22 of
those were confirmed for a confirmation rate of 61%. The
running selectivity of the method dropped to 60% after 38
suspect hits were investigated, and there were two suspect
hits for which authentic standards could not be acquired. We
then coupled the WOS ranking with other metrics aiming to
further refine the prioritization of the suspect hits. For exam-
ple, we developed a priority list based on the WOS rankings
and considered only suspect hits that were present in both
the WWTP influent and effluent samples during at least two
sampling events (WOS + WWTPs). We reasoned that this
strategy would prioritize persistent wastewater-derived micro-
pollutants. We investigated 63 suspect hits based on this pri-
oritization and confirmed 46 of them, 36 of which were addi-
tional unique confirmations beyond the WOS priority list
alone. We also prioritized suspect hits based on the WOS
ranking of suspect hits present in all lake samples (WOS +
lake), present in all DWTP intake samples (WOS + DWTP),
containing at least one chlorine atom (WOS + Cl), contained
in the USGS wastewater methods (WOS + USGS), contained
in the New York State PIMS database (WOS + PIMS), and
pharmaceuticals that were present in the WWTP influent and
effluent during at least two sampling events (WOS + WWTPs
+ pharmaceuticals). All combinations resulted in the con-
firmed identification of unique compounds beyond the WOS
priority list alone. The results of these prioritization strate-
gies are summarized in Table 1.

The second group of prioritization strategies was based on
the maximum peak area recorded for each suspect hit. We
reasoned that there would be greater confidence in the re-
sults of each of the steps in the suspect screening workflow
for suspect hits with larger peak areas. Further, this was a
means to prioritize suspect hits in a way that is independent
of whether or not the suspect chemical has been previously
reported as a water pollutant. As is summarized in Table 2,
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the peak area prioritization resulted in 44 suspect hits inves-
tigated with an authentic standard and 38 of those were con-
firmed for a confirmation rate of 86%. The running selectiv-
ity of the method reached 60% after 77 suspect hits were
investigated. We coupled the peak area metric to the same
metrics described for the WOS search and those results are
presented in Table 2.

In total, the WOS group of prioritization strategies en-
abled the confirmation of 103 suspect hits and the peak area
group of prioritization strategies enabled the confirmation of
92 suspect hits. Many suspect hits were prioritized and con-
firmed in both strategies, but 20 suspect hits were only prior-
itized and confirmed in the WOS group and 9 suspect hits
were only prioritized and confirmed in the peak area group.
Plots of the running selectivity for each of the prioritization
strategies and a complete list of all suspect hits compared
with an authentic standard are provided in the ESI.† Suspect
hits that were not confirmed or rejected with an authentic
standard are not discussed in this manuscript.

Confirmed compounds

The application of our suspect screening workflow and subse-
quent prioritization of suspect hits resulted in the confirma-
tion of 112 micropollutants in at least one of the eighteen wa-
ter samples. An accounting of the 88 micropollutants that
were confirmed beyond the 24 confirmed during method vali-
dation are presented in Fig. 4. In addition, 58 suspect hits

were evaluated and identified as false positives following
comparison with an authentic standard. Therefore, when
considering only the suspect hits that were investigated
based on their inclusion on a priority list, the final suspect
screening method had a selectivity of 65.9%. This selectivity
is significantly greater than the selectivity observed during
method optimization and validation, demonstrating the effi-
cacy of our prioritization strategies for ranking suspect hits
in a way that favors true positives.

We compared the numbers of micropollutants confirmed
by our suspect screening approach to the numbers that may
otherwise have been identified using more conventional tar-
get screening approaches. The USGS National Water Quality
Laboratory maintains an index of target screening methods
for micropollutants in water and wastewater matrices. When
five of the most comprehensive methods are
combined,4,5,43–45 they enable target screening for over 250
micropollutants amenable to analysis by HPLC HRMS includ-
ing pharmaceuticals, pesticides, personal care products and
industrial chemicals. Of the 112 micropollutants identified in
this research, 54 of them are included in these target screen-
ing methods. The fractions of micropollutants identified in
each of our water samples that are or are not included in
these target screening methods is provided in Fig. 5. Based
on this comparison, we approximate that our suspect screen-
ing approach more than doubled the number of micro-
pollutants that may have otherwise been identified, even with
very a comprehensive target screening approach.

Table 1 Summary of prioritization strategies based on Web of Science rankings

Length of
list

Cmpds
Investigated

Confirmed
Cmpds

%
confirmed

Unique
confirmationsa

% unique
confirmations

Web of Science (WOS) 38 36 22 61% — —
WOS + WWTPs 87 63 46 73% 36 78%
WOS + lake 30 23 15 65% 12 80%
WOS + DWTP 30 18 14 78% 12 86%
WOS + Cl 33 26 18 69% 12 67%
WOS + USGS 89 57 45 79% 36 80%
WOS + PIMS 30 25 12 48% 5 42%
WOS + WWTPs + Pharms 97 69 51 74% 24 47%

a Unique confirmations are confirmations made beyond the WOS prioritization alone. For the WOS + WWTPs + Pharms prioritization strategy,
unique confirmations are confirmations beyond the WOS + WWTPs prioritization.

Table 2 Summary of prioritization strategies based on maximum peak area rankings

Length of
list

Cmpds
investigated

Confirmed
Cmpds

%
confirmed

Unique
confirmationa

% unique
confirmations

Peak area 77 44 38 86% — —
Peak area + WWTPs 78 44 38 86% 3 8%
Peak area + lake 32 19 16 84% 1 6%
Peak area + DWTP 30 18 14 78% 2 14%
Peak area + Cl 42 26 21 81% 20 95%
Peak area + USGS 97 60 49 82% 22 45%
Peak area + PIMS 30 15 9 60% 7 78%
Peak area + WWTPs + Pharms 81 48 40 83% 17 43%

a Unique confirmations are confirmations made beyond the peak area prioritization alone. For the peak area + WWTPs + Pharms prioritization
strategy, unique confirmations are confirmations beyond the peak area + WWTPs prioritization.
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An exhaustive discussion of the types of micropollutants
that we identified in this work is beyond the scope of this
manuscript. However, there are several observations worth
noting. First, there were 8 micropollutants that were present
in every WWTP effluent sample and in every lake sample:
5-methyl-1H-benzotriazole, atenolol acid, caffeine, DEET,
gabapentin, metformin, saccharin, and sucralose. The impor-
tance of each of these persistent micropollutants as indica-
tors of anthropogenic influence and concerns over their re-

spective toxicities has been discussed elsewhere,46–49 though
we are unaware of any previous work that has identified this
mixture of micropollutants in a single water system or with a
single analytical approach. Second, some micropollutants
that were detected have received attention for their putative
or known health effects on exposed ecosystems or human
populations. Two perfluorinated alkyl substances (PFASs)
were confirmed to occur in wastewater and surface water
samples (PFOA and PFBA) in the study area. There has been

Fig. 4 An accounting of the 88 suspect chemicals that were confirmed to occur in at least one of the eighteen water samples. All confirmed
suspect chemicals are true positives (TR).1 Carbamazepine-10,11-epoxide;2 dextromethorphan;3 ethyl 3-(N-butylacetamido) propionate;4

hydrochlorothiazide; 5N4-acetylsulfamethoxazole;6 perfluorobutyric acid;7 perfluorooctanoic acid;8 trisĲ1,3-dichloro-2-propyl)phosphate;9 trisĲ2-
chloro-ethyl) phosphate.
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increasing concern over the occurrence of PFASs in water,
particularly in areas adjacent to military installations or
chemical manufacturing industries.9 The study area is not
situated near these types of sources, but the trace detection
of two PFASs demonstrates their prevalence in the environ-
ment. Additionally, a number of the pesticides (e.g., 2,4-d,
atrazine, metolachlor, simazine) identified in the surface
water samples are known or putative endocrine disruptors
and their occurrence must be noted.50 Third, most of the
micropollutants that were detected in this research are polar
chemicals that are expected to favor partitioning to water,
but some have exhibited the potential for bioaccumulation
including the PFASs and the UV filters benzophenone and
benzophenone-3.51,52 Finally, many of the micropollutants
confirmed in our study have frequently been reported to
occur in water resources around the world. However, some of
the micropollutants have rarely been reported as water
contaminants or are believed to be reported here for the first
time. These include the anticonvulsant levetiracetam, the
antihistamine fexofenadine, the antiviral drug emtricitabine,
the cough suppressant dextromethorphan, the diuretic
triamterene, the fungicide iodocarb, the insect repellant ethyl
butylacetylaminopropionate, and the muscle relaxants
carisoprodol, metaxalone, and methocarbamol. These results
are not only interesting from a novelty perspective, but also
demonstrate the breadth of chemical coverage that suspect
screening affords, as these chemical substances represent a
broad range of chemical structures and physicochemical
properties and are unlikely to be included together in
conventional target screening methods.

Conclusions

One of the major challenges in addressing the micropollutant
problem in water resources is the incredible number of
chemical substances that may be present in a water system at

any point in time or space. The aggregate of all of these
chemical substances makes up the environmental exposome,
or the complete set of chemicals to which an individual or an
ecosystem is exposed in a lifetime. There is considerable
interest in characterizing the environmental exposome, as
the majority of cases of human morbidity and mortality are
caused by exposures to toxic substances.53 Suspect screening
offers a step forward in the characterization of the environ-
mental exposome. The suspect screening approach described
in this manuscript is novel in at least two ways. First, the sus-
pect screening workflow was developed and optimized to
maximize sensitivity. In other words, we explicitly aimed to
maximize the likelihood of characterizing suspect chemicals
that were actually in the samples. Second, maximizing
method sensitivity consequently resulted in a relatively low
method selectivity; we addressed the low method selectivity
by exploring a series of novel prioritization strategies that
aimed to rank the suspect hits based on their likelihood of
being true positives. The result of this approach enabled us
to confirm the identity of 112 micropollutants in the study
area. While this remains a small fraction of the environmen-
tal exposome, we approximate that this suspect screening ap-
proach more than doubled the number of micropollutants
that would have otherwise been identified using a more con-
ventional approach. As suspect screening and other similar
environmental forensics tools develop, the environmental
exposome will become more fully elucidated which will en-
able more comprehensive risk assessments and the develop-
ment of concomitant water pollution prevention or remedia-
tion practices.
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