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The phenomenal advances of machine learning in the context of drug design and discovery have led to
the development of a plethora of molecular descriptors. In fact, many of these “standard” descriptors are
now readily available via open source, easy-to-use computational tools. As a result, it is not uncommon to
take advantage of large numbers — up to thousands in some cases - of these descriptors to predict the
functional properties of drug-like molecules. This “strength in numbers” approach does usually provide ex-
cellent flexibility — and thus, good numerical accuracy - to the machine learning framework of choice;
however, it suffers from a lack of transparency, in that it becomes very challenging to pinpoint the — usu-
ally, few — descriptors that are playing a key role in determining the functional properties of a given mole-
cule. In this work, we show that just a handful of well-tailored molecular descriptors may often be capable
to predict the functional properties of drug-like molecules with an accuracy comparable to that obtained
by using hundreds of standard descriptors. In particular, we apply feature selection and genetic algorithms
to in-house descriptors we have developed building on junction trees and symmetry functions, respec-
tively. We find that information from as few as 10-20 molecular fragments is often enough to predict with
decent accuracy even complex biomedical activities. In addition, we demonstrate that the usage of small
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sets of optimised symmetry functions may pave the way towards the prediction of the physical properties
of drugs in their solid phases - a pivotal challenge for the pharmaceutical industry. Thus, this work brings

DOI: 10.1039/c9me00109¢ strong arguments in support of the usage of small numbers of selected descriptors to discover the struc-

ture-function relation of drug-like molecules - as opposed to blindly leveraging the flexibility of the thou-

rsc.li/molecular-engineering sands of molecular descriptors currently available.

Design, System, Application

This work provides evidence that when trying to predict the functional properties of relatively small data sets of drug-like molecules via machine learning,
constructing and selecting a small set of carefully tailored molecular descriptors may offer equally or even more accurate results compared to the usage of
large numbers of descriptors - a worrying trend in the recent literature. In particular, we introduce two simple and yet effective classes of descriptors that
can unravel part of the structure-function relation we desperately need to understand - in order to achieve the truly rational design of the next generation
of drugs. In addition, our descriptors pave the way toward predictive frameworks taking into account three-dimensional models of either crystalline and
amorphous formulations as well - a pivotal challenge for the pharmaceutical industry. As such, our findings provide practical guidelines for the community
working in the field of machine learning for drug design and discovery; in fact, we have made available via a public repository our computational frame-
work, so as to make our work immediately leverageable by several research groups across the globe - thus supporting the collaborative quest toward a con-
crete impact of machine learning on the drug discovery and design pipeline.

1 Introduction ery.”” Despite the fact that deep learning is considered by
many to sit at the very top of the hype cycle,’ recent collabo-
rative efforts between some of the major pharmaceutical
companies® indicate that there is a strong driving force to im-

prove on the existing ML algorithms and thus deliver the next

In the last two decades, the pharmaceutical industry has
invested enormously in machine learning (ML) as a tool to
transform the current paradigm of drug design and discov-
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generation of drugs. One of the most important consequences
of this ambition is the ever-increasing amount of experimental
data that is being accumulated on the many functional proper-
ties and/or biomedical activities of drug-like molecules.” In
fact, the volume, as well as the quality of the experimental
data available to us are and will still be the key ingredients of
any ML framework we may think of developing.

Perhaps unsurprisingly, such a tremendous industrial
interest has also substantially boosted the academic progress
in the field:® in turn, this resulted in a sizeable contribution
to the already fast-developing area of ML algorithms, many of
which are now readily available via open source packages
such as the Python-based scikit-learn.” Similarly, a plethora
of molecular descriptors have been devised and implemented
within the past few years.® These mathematical objects are
essential to process the information about the molecular
structures of interest into a form digestible by ML algo-
rithms, and packages such as RDKit® allow for access to an
impressive number of them very easily indeed. Crucially,
given a certain molecular dataset, the choice of the descrip-
tors has almost always a much greater impact on the predic-
tive power of a ML framework if compared to the influence
of picking a certain ML algorithm - albeit advanced frame-
works such as the SchNet approach of Schiitt et al.® or paral-
lel multistream training"' have to potential to improve the
state of the art even further.

While all the progress detailed above provides a great op-
portunity to involve more and more scientists into the field,
and thus to boost the chance we have to make a concrete im-
pact onto drug design and discovery, we believe that this
ease-of-use in terms of descriptors may present a risk as well.

In fact, it is tempting, given the availability of so many dif-
ferent molecular descriptors, to leverage as many of them as
possible: for instance, the DRAGON software'? can calculate
more than 4800 descriptors."® As such, this approach is not
only incredibly simple these days, but it may also enhance
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the flexibility of the ML algorithm of choice, in that the more
descriptors we add into the mix, the higher the chances to in-
clude those features that are actually of relevance to improve
the predictive capabilities of the framework."* However, this
strategy suffers from at least two major issues: (1.) redun-
dancy/correlation: the more descriptors we choose to use, the
higher the chance they will feed similar if not identical infor-
mation to the ML algorithm,"” with the risk of introducing
artificial noise that can be detrimental to both the accuracy
and the reliability of the predictive framework; (2.) lack of
transparency:'®'” it becomes quite challenging to pinpoint
the structural features that have the largest impact on the
functional properties of interest. While from a purely practi-
cal perspective one may not care about this pitfall, under-
standing the structure—function relation is key to achieve the
truly rational design of the novel generation of drugs.'®

Both redundancy and lack of transparency can be miti-
gated by using feature selection'® and/or by optimising the
parameters that often enter the formulation of advanced mo-
lecular descriptors. As many options to perform feature selec-
tion are presently easily accessible, we see no immediate rea-
son not to leverage them anytime we choose to employ a
whole array of different descriptors. An additional issue with
the many molecular descriptors currently available is that the
overwhelming majority of ML frameworks aim to predict the
properties of actual drug formulations - typically, but not ex-
clusively, in the form of crystalline solids - utilising as
starting point the structure of a single molecule in
vacuum.’*>* As a result, most of the molecular descriptors
we have available at the moment cannot be used to tackle the
complexity of actual three-dimensional molecular models of
e.g. crystalline or amorphous drugs. We believe that taking
into account these models, generated by means of e.g. molec-
ular dynamics simulations, and developing descriptors spe-
cifically tailored to extract insight about important features
such as inter-molecular interactions is a step the community
needs to take in order to improve the accuracy and reliability
of ML for drug design. Descriptors borrowed from materials
science, and particularly from ML for the development of
inter-atomic potentials such as the smooth overlap of atomic
positions (SOAP)** or the atom-centred symmetry functions>
descriptors may be of great help in this context.

In this work, we show that, in some cases, utilising just a
handful (10-20) of carefully designed molecular descriptors
may yield results comparable — or even better — than those
obtained by using a large number (~100) of what we are go-
ing to label as “standard” (STD) descriptors hereafter, ie.
those descriptors immediately available via packages such as
RDKit. We find that this is especially true when dealing with
small datasets containing 100-500 molecular structures,
where the number of STD descriptors that we may want to
use can get dangerously close to the number of data points
we intend to feed into our ML framework - an obviously
over-determined problem.

We wanted in particular to probe the predictive power of
two different classes of descriptors: molecular -cliques
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(cliques hereafter) and histograms of weighted atom-centred
symmetry functions (H-wACSFs hereafter), which we have
built starting from the work of Jin et al?® and Gastegger
et al.,”” respectively. Cliques exclusively probe the “chemis-
try” of the molecular species of interest, in that they offer in-
sight into the molecular fragments present, with no informa-
tion about the structure of the molecule as a whole.
Conversely, H-wACSFs probe the molecular structure from
multiple angles, and can be straightforwardly employed to
deal with three-dimensional molecular models of drug for-
mulations. The nature of cliques and H-wACSFs makes them
perfectly suitable to exploit feature selection and optimisa-
tion, respectively. We find that a surprisingly small set of tai-
lored descriptors, as obtained upon either feature selection
(cliques) and optimisation (H-wACSFS), can provide results
comparable, if not of better quality, than those we have
obtained by employing large numbers of STD descriptors.
While an analysis of the most relevant cliques obtained upon
feature selection allows us to draw interesting conclusions
about the influence of specific functional groups on biomedi-
cal activities of pharmaceutical interest such as human hepa-
tocytes intrinsic clearance,*® the H-wACSFS offer a very conve-
nient opportunity to bridge the ML gap from a single
molecule in vacuum to 3D models of e.g. amorphous drugs.
While an ongoing effort within our research group is probing
the benefits of bringing together “chemistry and structure”
by combining these two classes of descriptors, we have made
available via a public GitHub repository® the entirety of our
ML framework, in an effort to promote transparency and
cross-fertilisation between different groups.

The paper is organised as follows: in the Methods section
we provide the details of the computational framework we
have wused, with particular emphasis on cliques and
H-wACSFS descriptors. In the Results section we offer a com-
parative analysis of the results obtained via cliques and
H-wACSFS against STD and discuss the impact of feature se-
lection and optimisation. We conclude with an opinionated
perspective on the future of molecular descriptors, in particu-
lar with respect to the prediction of the functional properties
of solid-state drug formulations.

2 Methods

In this section, we describe the main features of the compu-
tational framework we have employed. We start by providing
essential information about the molecular datasets we have
used. We then discuss the details of the descriptors we have
used, with special emphasis on cliques and H-wACSFS. The
methods we have employed for feature selection (cliques)
and optimisation (H-wACSFS) will also be discussed, together
with a brief description of the specific ML algorithms we
have chosen.

2.1 Molecular datasets

We have taken into account three different molecular
datasets:
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View Article Online

Paper

e Lipophilicity [Lipo]: this dataset is publicly available via
the moleculenet.ai project.®® It contains ~4000 molecular
structures as SMILES strings®" and their corresponding lipo-
philicity,®*> measured experimentally as octanol/water distri-
bution coefficients (logD at pH 7.4). In the context of phar-
maceuticals, the lipophilicity of a certain drug provides a
measure of its affinity for a lipid environment - thus includ-
ing the cellular membrane. It is a majorly important biophys-
ical target, as it affects the pharmacokinetic and the absorp-
tion of many drugs formulations.

¢ Hepatocytes [Hepa]: this dataset has been provided to us
by AstraZeneca - it is not included in the MSDE_Sosso_alpha
GitHub repository.> It contains ~400 molecular structures as
SMILES strings and their corresponding human hepatocytes
intrinsic clearance (clint),>® measured experimentally as
log(volume/time). Clint values quantify the ability of the hu-
man liver (particularly of the hepatocytes cells that constitute
more than half of it) to remove a given drug: as the liver plays
a very important role in dictating drug metabolism in our
bodies, clint values are considered as crucial biological tar-
gets for drug design. We note that this is a very “challenging”
dataset, in that it combines a small number of data points
with an exceptionally complex biomedical activity.

¢ Amorphous [Amo]: this is a dataset we have recently put
together from literature data (ref. 19, 33 and 34) about the
functional properties of amorphous drugs. It contains the
structures of ~150 molecules as SMILES strings and the glass
transition temperature T, of their corresponding amorphous
phases. T, is a key property in the context of amorphous for-
mulations®™***® in that (i.) it affects the propensity of the
system to form a disordered solid as opposed to a crystal in
the first place and; (ii.) it correlates to a good extent with the
physical stability of the amorphous phase, which needs to
not re-crystallize over the typical timescales involved with the
shelf-life of a marketed pharmaceutical. In here, we move our
first steps toward the prediction of such an important feature
by focusing on single molecular species only - though it
would be desirable to consider the actual three-dimensional
models of the amorphous phases. Much as the Hepa dataset,
the Amo dataset is quite a challenging one, combining a very
small number of data points with a solid-state property.

2.2 Descriptors

Standard descriptors. We have selected ~100 descriptors
immediately available via the RDKit package. The full list can
be found in the MSDE_Sosso_alpha GitHub repository,> and
includes 2D as well as 3D descriptors. In order to leverage
the latter, we needed to generate 3D conformers of the mo-
lecular species of interest: to this end, we have deliberately
used a basic procedure (harnessing the ETKDG conformation
generation methodology®” followed by an optimization via
the UFF forcefield®®) for all the three datasets described in
the previous section. While some of these STD descriptors
are quite simple/transparent (e.g. the number of n-membered
rings within the molecular structure), some others (such as
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the WHIM descriptors®®) contains a number of parameters
that can be in principle optimised to improve accuracy. To
mimic a minimal-effort approach, we have not optimised any
of said parameters, limiting ourselves to the default values
provided by RDKit.

Molecular cliques. These descriptors are inspired by the
work of Jin et al.,*® where the authors have decomposed a
given molecular structure into sub-graphs (“cliques” in graph
theory), thus providing a coarse-grained representation such
as the one illustrated in Fig. 1 for the case of caffeine. In-

@)
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Molecule —— A | )
0 rr N

~ /
Cliqgues — Y N
LG
N

[ alIl unique cliques
in the whole dataset ]
Cliques
vocabulary —,

v Caffeine

One hot encoding —— =
[0,0,1,0,..,2,0]

Fig. 1 Constructing the molecular cliques descriptor. In line with the
work of Jin et al,?® a given molecular structure (we started from
SMILES strings) is decomposed in molecular fragments known in graph
theory as “cliques”. All the N.q unique cliques across the entire
molecular dataset are then indexed and collected into a single cliques
vocabulary. Each molecule in the dataset can thus be represented by
means of one hot encoding as a N¢q-long vector with each i-th ele-
ment equal to the number of occurrences the i-th clique appears in
the molecule. Following an analogy with natural language processing,
we are treating molecular fragments as words that we can combine
together into sentences, i.e. molecules. Note the transparency of this
descriptor, which requires as a starting point the molecular graph only
and it does not include any information about the connectivity of the
molecular fragments.
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stead of connecting these components into a tree (as it was
done ref. 26), we have created a vocabulary of the unique
cliques across the entire dataset of interest. Thus, different
sets are typically characterised by cliques vocabularies of dif-
ferent length. Then, we index each of the cliques in the vo-
cabulary via an integer i = 0, 1, ..., Ngq — 1, where N4 is the
total number of unique cliques in the vocabulary. Through
one-hot encoding (see Fig. 1), each molecule in the dataset is
converted into a vector of length Nq: the value of the i-th ele-
ment of said vector is equal to the number of occurrences of
the i-th clique within that particular molecule.

In the context of natural language processing, we are
thus treating the clique vocabulary as a “bag of words” to
form sentences — i.e. molecules, in a similar fashion to the
“bag of bonds” descriptor explored in e.g. ref. 40. As the
meaning of a given sentence may usually be determined to
a good extent from its word content alone (i.e. without con-
sidering syntax), we are assuming that the presence of the
cliques alone, without any information about the order by
which they appear in a given molecular structure, would be
enough to allow us to establish a structure-function relation
between SMILES strings and the functional property of inter-
est. It is thus reasonable to treat the cliques as a descriptor
that is looking exclusively at the “chemistry” of the mole-
cules, in that it highlights the presence or absence of spe-
cific molecular fragments and/or functional groups as op-
posed to the overall structure, albeit information about the
size of the molecule is indirectly contained into the cliques
vector. As we shall see in the Results section, this incredibly
simple descriptor possesses a surprising predictive power,
and it lends itself to feature selection in a very straightfor-
ward manner.

Histograms of (weighted) atom-centred symmetry func-
tions. Atom-centred symmetry functions are popular three-
dimensional descriptors in the context of ML-based inter-
atomic potentials for molecular simulations (see e.g. ref.
42-44). While different flavours exist, they usually comprise
sets of both radial and angular symmetry functions (SFs). In
a nutshell, one sits on each atom i (see Fig. 2) and com-
putes the value of (typically Gaussian) functions which de-
pend on either r; = |f; - 7| distances (radial SFs) or 6 an-
gles (angular SFs) between pairs or triplets of atoms - up to
a certain cutoff radius R.. The interested reader can find a
thorough introduction to SFs in ref. 25. Here, we have used
as radial SFs:

G;’ad — i e*ﬂ(rij ’ﬂ)zfij (1)

J#i

and as angular SFs:

N N
G;mg _ ZZ (1 + cos@ijk)

i k=i
(2)

% e—ﬂ(rg,- *ﬂ)zx ek = 1) x e*ﬂ(fjk - 14)2

X fi*Fie> i
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Fig. 2 Constructing the H-wACSFs descriptor. A three-dimensional
conformer (ideally, an ensemble of them) has to be generated for each
molecule. Then, in line with the work of Behler,*! radial and angular
symmetry functions are computed by sitting on each atom within the
molecule and calculating the value of (usually Gaussian) functions that
depends on either r; = |F; - ;| distances (radial SFs) or 6 angles (angu-
lar SFs) between pairs or triplets of atoms - up to a certain cutoff ra-
dius R.. In principle, different sets of symmetry functions are needed
for each combination of elements in a given molecule. Gastegger et al.
have recently?” introduced a weighting scheme that substantially re-
duces the number of functions needed to encode the structure of
multi component systems such as drug-like molecules. As molecules
with different numbers of atoms and or elements are characterised by
different number of symmetry functions, we regularise these features
by building histograms of weighted atomic symmetry functions. Each
molecule can then be represented by a vector with as many elements
as the bins chosen to build said histogram: low and higher number of
bins thus provide more or less coarse-grained representations of the
molecular structure. Note that this descriptor can be straightforwardly
applied to three-dimensional models of crystalline or amorphous drugs -
a major challenge laying ahead.

where g and 7 represent the mean and width of the Gauss-
ian respectively. The function fj; is given by:

1{cos <nr,-j) + 1} if ri; <R
Sfi=1q2 Re o ®3)

0, otherwise

Two sets of angular symmetry functions were calculated,
one set with 1 = 1, the other with 1 = -1. Values for ¢ and #
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are determined by the number of SFs N used and the cutoff
radius. For N SFs, the value of x for function n is given by:

H=05+(n-1)vr (4)
where
Vr = ’;;_‘11 (5)
and 7 is given by:
" Z(Vlr)2 ©)

Crucially, the original formulation of SFs*' required a dis-
tinct set of SFs for each combination of the different ele-
ments in a given molecule. While this is a perfectly sensible
option in most materials science applications, where the
number of elements involved is usually well below five (in
fact, it is incredibly challenging to build ML-based inter-
atomic potential for multi-component systems*>*>4°), in the
context of drug design and discovery a molecular dataset may
very well contain more than ten elements, which leads to a
huge number of SFs. Gastegger et al. have recently devised®’
a clever workaround to this issue by introducing so-called
weighted SFs such as:

N 2
er'ad _ Zzie’ﬂ(rij - ﬂ) flJ (7)
J#i
N N
W — Zzzfzk(l + 2 cosOjk )
T kr iy
(8)

w e 1(ri 1) s g nlr=—n? s o (1)

X fi* Fie S

where element-dependent weighting functions depending on
Z; (the atomic weight of atom i) are used to eliminate the
need for separate sets of SFs for each combination of differ-
ent elements, thus massively reducing the number of SFs
needed as a whole.

Even weighted SFs, however, suffer from an issue of con-
sistency, in that molecules with different elements and/or
number of atoms are characterised by different numbers of
SFs. As a result, the SFs vectors we would like to use as in-
puts for our ML algorithms are not of the same length. This
problem may be circumvented in several ways. As a start, if
one seeks to predict a functional property that can be written
as the sum of atomic contributions, the original approach of
Behler and Parrinello*" can be straightforwardly used. How-
ever, while one can think of some thermodynamic quantities
such as energy or enthalpy as additive, functional properties
or biomedical activities can often not be treated as such.

Here, we have decided to build histograms of weighted-
SFs (H-wACSFs): by binning the values of all the weighted SFs
for each molecule, we obtained a representation which is
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independent from the number of atoms in a given molecule.
While the number of bins is one of the parameters we seek
to optimise (see the following section), broadly speaking low
and high numbers of bins provide more or less coarse-
grained representations of the molecular structure. This
interesting feature can be easily leveraged in the context of
three-dimensional models of crystalline or amorphous drugs
- where we believe that materials science-inspired descriptors
such as H-wACSFs could deliver important contributions.

As the starting point for our H-wACSFs sets we have cho-
sen the following parameter values: N®* = NA"8 = g RRad
RA"% = 20 and Nypins = 10, where NR34, NAn8 pRad’ pAng o539
Nubins Stand for the number of radial SFs, the number of an-
gular SFs, the cutoff radius for the radial SFs, the cutoff ra-
dius for the angular SFs and the number of bins we have
used to build the histograms, respectively.

2.3 Machine learning algorithms

In terms of the specific ML algorithm, we have been
experimenting with multiple options, including neural net-
works, Gaussian processes and random forests. We have
found that the choice of the ML algorithm has very little im-
pact on our results. The numbers reported in the Results sec-
tion have been obtained by using feed-forward neural net-
works, built using the Keras API*” with Tensorflow*® as a
backend. The descriptors and the target properties for each
dataset (Lipo, Hepa and Amo, see above) have been pre-
processed by scaling them between zero and one and by re-
moving the mean and scaling to unit variance, respectively.
In terms of the neural networks optimisation, a simple pa-
rameter space grid search optimisation has been employed,
taking into consideration different neural networks architec-
tures (in terms of number of layers and nodes), different acti-
vation functions, and different solvers for the optimisation of
the weights. Further details are included in the
MSDE_Sosso_alpha GitHub repository.*’

As many as 300 epochs have been accumulated for each
combinations of these parameters. The “optimal” number of
epochs was determined according to an early stopping crite-
rion based on the mean square error relative to the test set.
80% and 20% of the datasets have been randomly selected as
training and test data, respectively, according to a k-fold
cross validation*® procedure with k = 5 which allowed us to
reliably assess the average performance of each neural net-
work architecture. The “best” model was then selected and
used to compute the results reported in section 3. We note
that we have intentionally avoided to remove zero and near-
zero variance features from our sets of descriptors: this is a
practice commonly encountered in the recent literature®
which is based on the assumption that said features are sim-
ply non-informative - if anything, they present a risk for nu-
merical errors within the machine learning algorithm of
choice. However, we found that this is not always the case: as
discussed in the ESILj the removal of e.g. zero and near-zero
features can even result in a loss of accuracy in some cases.
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In fact, a similar argument holds for the removal of highly
correlated features, as discussed in detail in the ESI.f We also
note that while it is certainly possible to leverage more ad-
vanced techniques (e.g. some form of ensemble learning®") to
improve the accuracy of these algorithms, we have focused in
here to provide a rather unbiased picture of the performance
of the different descriptors under consideration. As a result,
the numerical quality of our results is on average not very im-
pressive, albeit we envisage that both the Hepa and Amo
datasets will probably provide a tough challenge in terms of
accuracy for more advanced ML frameworks as well.

2.4 Feature selection and optimisation

Molecular cliques. Cliques descriptors are by construction
quite suitable to be investigated by means of feature selec-
tion. In particular, we seek to determine whether there exists
a hopefully small number of cliques that can capture a good
fraction of the structure-function relation we are looking to
understand. To this end, we have originally resorted to auto-
matic relevance determination (ARD) kernels, a fairly common
tool in the context of Gaussian processes. ARD kernels can be
used to assign to each dimension d of the input space (with
overall dimension D) its own one-dimensional kernel. For in-
stance, one can create an additive kernel function by multiply-
ing all the one-dimensional kernels together as follows:

D
kp(x,x') = op® [ [ ka(xa,x;), (9)
d=1

where x is a cliques vector with x,; representing the d-th input
dimension, k, is a one-dimensional base kernel and ¢, is the
variance designated for all D-th order interactions.>>

If, for sake of simplicity, one chooses the ubiquitous ra-
dial basis function (RBF) kernel, one obtains:

o) — [ vp [ -5
X,X') =0, €ex s
D D 1 P 207
D 2
= ()'D2 exp<_z(xd21dx2d) )7

d=1

(10)

where [; is the length-scale corresponding to the d-th input
dimension.>?

The expression in eqn (10) is known as the squared expo-
nential kernel with automatic relevance determination (SE-
ARD) or simply the ARD kernel. As each dimension of the in-
put - ie. each clique - is characterised by its own length-
scale I;, upon e.g. regression, the magnitude of ; for the i-th
kernel provides a measure of the importance of the clique in
predicting the target property of interest. Specifically, small
and large values of [; indicate high and low relevance of the
corresponding clique, respectively. We have used the GPy>®
package to implement this approach.

Though it has been shown that SE-ARD kernels can suc-
cessfully remove irrelevant input dimensions,” we have
found that their usage led to rather inconsistent outcomes,
with the value of the length-scale characteristic of a given
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clique fluctuating substantially depending on a particular
training-test split (see the MSDE_Sosso_alpha GitHub reposi-
tory®®). To an extent, this is expected, particularly in the case
of the Hepa and Amo datasets, where the small number of
data points implies that different cliques may play different
roles in specific training-test splits. Nevertheless, it would be
obviously desirable to extract solid trends across different
splits. We have found that achieving consistency is possible,
but it does require extensive testing in terms of setting the
initial values as well as the low/high boundaries for the dif-
ferent length-scales, and substantial statistics has to be accu-
mulated with respect to different training-test splits.

Instead, we have explored the possibility of using the in-
trinsic ability of random forests (RFs) to provide a measure
of importance for each clique via a measure called the mean
decrease in impurity (MDI).”> An RF uses an impurity
function #(7) as a criterion for how to best split the dataset at
each node 7 such that similar target values will be in the
same set.”® In general, the impurity function for RF regres-
sion is the variance;>® however, for illustrative purposes, we
consider the simplest regression problem, one of binary clas-
sification, which utilises the Gini impurity function:

i(7)=1-p;* - po’, (11)

where p; = "* is the fraction of the n; samples of class k = {0,
1} out of n samples at node 7, to measure how well a poten-
tial split at each node 7 within the binary trees T will separate
the data.”” A decrease in i(r) or Ai resulting from a split that
sends a sample point to two sub-nodes, 7; and 7, by a thresh-
old ¢, on feature 6 is defined as:

Ai(‘[) = l(T) - pli(rl) _pri(rr)! (12)

whereby the RF classifier considers a random subset of the
features 0 available at the node and all possible thresholds ¢,
to determine the pair {f,¢y} giving the maximal Ai, ie.
Aiy(z,T).>” This procedure is performed for all nodes 7 in all
trees T, to obtain the Gini importance for each 6:

16(0) = > > " Aig(r, T), (13)

when averaged by the total number of trees in the forest gives
the MDI for feature 6, ie. how relevant was its overall
value.””*® This framework may be generalized to more com-
plex regression problems through using the total variance at
each node 7 in place of the Gini importance (see ref. 56 and
59). Accordingly, the MDI is a direct by-product of training
an RF model.

This strategy is easily implemented through the use of
standard random forests algorithms. We have used the
RandomForestRegressor model from the scikit-learn” pack-
age. Contrary to the Gaussian processes approach described
above, we have found that the MDI values corresponding to
the different cliques are very consistent throughout different
training-test splits — as discussed further in the Results sec-
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tion. Once the MDI for each clique has been reliably
assessed, we sort all the cliques in our vocabulary according
to their importance; at this point, one has to choose a thresh-
old above which a certain clique is considered to be “impor-
tant enough”. While in principle this is a parameter that can
be optimised by means of a simple grid search, we have
found for all the datasets under consideration that rather
natural thresholds can be easily found - see the
MSDE_Sosso_alpha GitHub repository*® for further details.
The selected subset of cliques is then used to re-train a neu-
ral network following the same basic optimisation procedure
detailed above.

Histograms of (weighted) atom-centred symmetry func-
tions. The initial SF parameters described in section 2.3 were
chosen somewhat arbitrarily. The number of SFs used, the
R., and even the number of histogram bins, can have a huge
impact on the resulting prediction values. In order to opti-
mise these values we decided to implement a genetic algo-
rithm (GA).

GAs are a metaheuristic based around the principles of
natural selection and evolution.®® An initial population is
randomly generated where each individual in the population
represents a solution to the problem. At each generation of
the algorithm the “fittest” individuals “breed” with a subset
of the remaining population, the offspring from this process
then goes on to form the population for the next generation.
There is also a chance for each individual to mutate, theoreti-
cally preventing the optimisation from converging on a local
maxima.

In the case of our SFs, an initial population of 12 was used
where each individual was comprised of 5 genes representing
NRad nAng  pRad - pAng and B. The fitness of each individual
was calculated by generating the SFs with the appropriate pa-
rameters and training a NN using these, the negative MSE
was used as the fitness score. Each of the three fittest individ-
uals were then selected to breed with one of the remaining
nine individuals with whom they would produce four off-
spring. Each of the offspring’'s genes had a 50% chance of be-
ing from each parent and there was a 50% chance that one
of the genes (randomly selected) would mutate to a random
value. This process was repeated for 20 generations and the
individual with the best fitness in the entire history was se-
lected as the parameters to the optimised SFs - see the
MSDE_Sosso_alpha GitHub repository*® for further details.
The results from this process are given in Table 3. Note that
is perfectly possible to apply feature selection strategies to de-
scriptors such as H-wACSFs as well: possible options include
CUR decomposition and farthest point sampling, as recently
demonstrated by Imbalzano et al.®*

3 Results

The overall performance of the three classes of descriptors
discussed in the previous section is summarised in Table 1:
STD, cliques and H-wACSFs refers to the ~100 “standard”
RDKit descriptors, the vocabularies of molecular cliques and
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Table 1 Comparing the performance of three classes of descriptors: ~100 “standard” RDKit descriptors (STD), molecular cliques (cliques) and histograms of weighted atom-centred symmetry func-

tions (H-wACSFs). For each dataset: lipophilicty (Lipo), hepatocytes (Hepa) and amorphous (Amo) we report the mean square error (MSE) and the Pearson correlation coefficient (PCC) for both the train-
ing and, in brackets, the test sets. All the numbers have been averaged according to the cross validation procedure discussed in section 2.3. Uncertainties are included as +$. Cliques [FS] and H-wACSFs

[GAs] refer to the results obtained for cliques upon feature selection (the numbers in square brackets specify the number of selected cliques) and H-wACSFs upon optimisation, respectively. See text

for further details about both datasets and descriptors
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0.746 + 0.019 (0.920 + 0.031)
0.314 + 0.010 (0.350 + 0.037)
0.124 + 0.019 (0.838 + 0.084)

H-wACSFs [GAs]

0.889 + 0.020 (0.939 + 0.022)
0.590 + 0.055 (1.238 + 0.171)
0.362 * 0.041 (1.348 + 0.465)

H-wACSFs

0.690 + 0.005 (1.032 + 0.040) [15]
0.125 + 0.005 (0.304 + 0.028) [18]
0.497 + 0.029 (0.994 + 0.167) [13]

Cliques [FS]

0.412 + 0.016 (0.950 + 0.019)
0.176 + 0.007 (0.317 + 0.029)
0.130 + 0.009 (0.950 + 0.360)

Cliques

0.198 + 0.098 (0.682 + 0.023)
0.253 + 0.063 (0.413 + 0.059)
0.460 + 0.127 (0.806 + 0.171)

STD

mo

MSE
Lipo
Hepa

Eng., 2020, 5, 317-329

PCC

Cliques Cliques [FS] H-wACSFs H-wACSFs [GAs]

STD

0.503 + 0.020 (0.0327 + 0.013)
0.417 + 0.037 (0.136 + 0.077)
0.936 + 0.009 (0.497 + 0.134)

0.336 £ 0.011 (0.273 + 0.020)
0.641 + 0.035 (0.148 + 0.033)
0.802 + 0.028 (0.261 + 0.101)

0.727 + 0.003 (0.554 + 0.020) [15]
0.826 * 0.007 (0.450 + 0.041) [18]
0.733 £ 0.015 (0.349 + 0.111) [13]

0.859 + 0.003 (0.623 + 0.010)
0.731 + 0.012 (0.359 + 0.054)
0.935 + 0.007 (0.400 + 0.218)

0.933 £ 0.003 (0.737 + 0.019)
0.687 + 0.043 (0.295 + 0.031)
0.873 + 0.008 (0.637 + 0.058)

Lipo

Hepa
Amo
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Table 2 Feature selection for the cliques descriptor in the case of the
hepatocytes dataset. The full cliques vocabulary contains in this case 132
cliques. For the 18 most important cliques (bold font) as well as for the 5
least important cliques we report the corresponding MDI (mean and stan-
dard deviation ), computed as discussed in section 2.4. Note that the
most and least important cliques are characterised by values of the MDI
that differ roughly by an order of magnitude

Feature selection - cliques

Hepatocytes dataset

Smiles MDI (mean) MDI (o)

CC 0.082263 0.002642
co 0.069692 0.002545
CN 0.069352 0.001979
C 0.054925 0.002775
C1—CC=CC=C1 0.052196 0.002532
C=0 0.032964 0.001487
CF 0.031491 0.002122
C1—CN—CCC1 0.030531 0.005510
C1—COC=CC1 0.028628 0.003882
C1COCCN1 0.027860 0.002575
C1CCNCC1 0.025989 0.002891
CCl 0.025489 0.001000
C1=CSC=C1 0.024680 0.003132
Cc1Cccccc1 0.021090 0.002438
Cs 0.017693 0.001977
C1CNCCN1 0.017380 0.002165
C1=—=CSCN1 0.017038 0.002653
C1=NCCS1 0.013932 0.001524
C1CNSC1 0.015341 0.003452
CHN 0.013333 0.001248
C1=CCOcCC1 0.005135 0.000685
C1CNC1 0.005111 0.001257
C1CNCN1 0.004771 0.000744
C1—CCNC=—C1 0.004578 0.000439
C1=CCcCcCC1 0.004489 0.000649

the histograms of weighted atom-centred symmetry functions,
respectively. We report the mean squared error (MSE) and the
Pearson correlation coefficient (PCC)** for both the training
and the test sets; averages and uncertainties (included as +9)
have been obtained according to the cross-validation proce-
dure detailed in section 2.3. Detailed predictions for selected
molecular structures can be found in the ESL}

Concerning the Lipo dataset, STD outperform both cliques
and H-wACSFs. The latter are clearly not very suitable to deal
with this particular dataset. As discussed in further detail be-
low, this was expected, given the nature of the target property
to be predicted. On the other hand, by using the full set of
cliques (i.e. without feature selection) one can achieve results
of similar quality to those obtained via the STD - quite im-
pressive, considering how basic the cliques descriptors are.
Upon feature selection, specifically utilising only 15 cliques
(out of 246), the performance of the cliques degrades further;
however, being able to retain some predictive capabilities
using 15 molecular fragments is indicative of the potential of
this descriptor.

In fact, the cliques consistently outperform the STD in the
case of both the Hepa and the Amo dataset: we remind the
reader that while the Lipo dataset is relatively large (~4000
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Table 3 Parameters of the H-wACSFs before and after optimisation via
the genetic algorithms-based procedure described in section 2.4. NR*,
NA9, RRad RANS and B stand for the number of radial symmetry functions
(SFs), the number of angular SFs, the cutoff radius for the radial SFs, the
cutoff radius for the angular SFs and the number of bins we have used to
build the histograms, respectively. Results for the three datasets:
lipophilicty (Lipo), hepatocytes (Hepa) and amorphous (Amo) are shown.
Note the absence of any solid trend for any of the SFs parameters across
the different datasets

Optimisation - H-wACSFs

Non-optimised Lipo Hepa Amo
NRad 8 3 14 22
NA"E 16 14 8 10
RE2 (R) 20 2 21 7
RA™8 (A) 20 21 12 2
B 10 16 19 12

molecules), the Hepa and particularly the Amo dataset are
quite small (~400 and ~150 molecules, respectively). Inter-
estingly, in the case of the Hepa dataset, using just the most
relevant (according to the MDI-based feature selection proce-
dure discussed in sec. 2) 18 cliques (out of the 132 contained
in the full set) results in even better outcomes compared to
what we have obtained for the full set of cliques, as illus-
trated in Fig. 3. This is an impressive result: just 18 molecu-
lar components appear to capture some of the structure-
function relation at the heart of a complex biomedical activity
such as human hepatocytes intrinsic clearance. As detailed in
Table 2, these 18 cliques are characterised by an MDI about
one order of magnitude larger compared to that of the least
important cliques. We also note that the RF-based feature se-
lection procedure we have used is capable to assign MDIs
characterised by very small uncertainties, thus making the se-
lection process quite reliable indeed. Amongst these 18
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cliques we find molecular components such as (in SMILES
notation) CC, C=0O, C1CCCCC1 (cyclohexane) and
C1=CC=CC=C1 (benzene) which are ubiquitous in small
drug-like molecules: in fact, they possess quite high MDI scores
for the Lipo and Amo datasets as well. On the contrary, we also
find cliques whose role in the context of human hepatocytes in-
trinsic clearance is perhaps not immediately obvious: CF, CS
and C1=—CSCN1/C1=NCCS1 (2,3/4,5-dihydrothiazole).

The situation is slightly different in the case of the Amo
dataset: while using the full set of cliques results in a sub-
stantial improvement with respect to the STD outcomes,
using 13 out of 87 cliques (according to the results of feature
selection) worsens the numerical accuracy of our prediction.
Nonetheless, this small set of cliques provides predictive ca-
pabilities of the same quality of STD - i.e. using 13 molecular
components gives similar results to those obtained by using
~100 different descriptors. Appropriately, our findings sug-
gest that molecular cliques may represent, despite their sim-
plicity, an interesting way forward to identify structural pat-
terns of interest in the context of drug design and discovery.

As opposed to cliques, which captures the main elements
of the chemistry of the system, H-wACSFs provide informa-
tion about the whole molecular structure. Thus, it is reason-
able to expect them to perform their best when deployed to
predict target properties largely determined by structure as
opposed to chemistry. Indeed, we find that H-wACSFs score
best when applied on the Amo dataset, where the property
we seek to predict is the T, of amorphous drugs. Using the
non-optimised values of the H-wACSFs parameters N®¢,
NA"8 RRad RANS and B (see Table 3), we obtain a marginal im-
provement in the MSE when compared to the STD results
(see Table 1), but also a significantly worse value for the PCC,
as evident from Fig. 4. However, upon the optimisation of
the above mentioned parameters via the genetic algorithms

3 T
Train 3
Test :
2 - " oé T K T . AT
2 s RERATPTL o So. T8 By ALY H
s TN A A, g | maelis
o1k, SR My - i e, |0 % v, |
B ‘o Gy 2 2 RE %00 i 2R
= B e W % 05t (4 %S oy
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Experiments

Fig. 3 Scatter plots of the predicted vs. experimental values (scaled according to the pre-processing strategy detailed in section 2.3) of human he-
patocytes intrinsic clearance for the hepatocytes dataset, using ~100 “standard” RDKit descriptors (STD), the full vocabulary of molecular cliques
(Cliques), and just 18 out of 132 cliques (Cliques [18]) according to the outcomes of the feature selection procedure discussed in section 2.4. The
results obtained for five different training-test splits are plotted on the same graph, which thus contains 406 x 5 = 2030 points. Note the improve-

ment of the predictions upon the cliques feature selection.
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Fig. 4 Scatter plots of the predicted vs. experimental values (scaled according to the pre-processing strategy detailed in section 2.3) of the glass
transition temperature T, for the amorphous dataset, using ~100 “standard” RDKit descriptors (STD), H-wACSFs (SF), and H-wACSFs optimised
according to the genetic algorithms-based procedure describe in section 2.4 (SF [GAs]). The results obtained for five different training-test splits
are plotted on the same graph, which thus contain 132 x 5 = 660 points. Note the improvement of the predictions upon the H-wACSFs

optimisation.

discussed in section 2.4, we obtain a significant improvement
of our predictions across all metrics, as illustrated in Fig. 4.
It is interesting to note that the optimised parameters
obtained for the three different datasets (see Table 3) vary
significantly, with no robust trends emerging - the potential
benefits of introducing constraints within our genetic algo-
rithms would be addressed in future work.

For the Hepa and Amo datasets, where the H-wACSFs have
outperformed STD, the genetic algorithms seem to have
emphasised the connectivity of the molecular network as op-
posed to geometry of the specific conformers, in that N¥*¢ ~
2NA"8, As discussed in section 2.3, the procedure we have
used to generate said conformers is very basic, and as such,
we expect the angular contributions to H-wACSFs to feature
more prominently for ensembles of thoroughly (e.g. from first
principles) optimised molecular conformers, and even more
so in the case of actual three-dimensional models of either
crystalline or amorphous drugs. Further support to this hy-
pothesis comes from the fact that H-wACSFs did not perform
especially well in the case of the Hepa dataset, where upon
optimisation, we obtained results of similar, but not better
quality when compared to the STD descriptors. In contrast to
the Amo dataset, the Hepa dataset - and in fact, the Lipo
dataset as well - seeks to predict a target property which may
very well be ruled chiefly by chemistry as opposed to struc-
ture. Further evidence supporting this claim is provided in
the ESL} where we have built a classification model for the
Tox21 dataset®® - a very well-known dataset including as
many as twelve different toxicity targets of biological rele-
vance for drug design. While the distinction between cliques
and H-wACSFs is not absolute in this respect (the cliques
hold some structural information, and the H-wACSFs indi-
rectly contains information about all cliques), we believe
there is scope to bring the two classes of descriptors together,
thus combining chemistry and structure - within a reason-
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ably small number of descriptors, as opposed to harnessing
the whole array of STD currently available.

Overall, our results are suggestive of the fact that while for
relatively large datasets there might be value in trying to take
advantage of the many descriptors readily available via open
source computational packages, for small datasets containing
hundreds of molecular structures, one might very well obtain
better results by using just a handful of carefully crafted de-
scriptors. In this work, we focused on cliques and H-wACSFs,
but countless other options are obviously available. Despite
the still limited scope of our investigation, we feel confident
in saying that feature selection and optimisation should be
treated as a necessary step of any ML algorithm for drug de-
sign and discovery, much as data pre-processing - as op-
posed to be considered as optional possibilities. We also note
that many datasets of interest to the pharmaceutical compa-
nies are very limited in size: the Hepa dataset considered in
here is just one example, but broadly speaking it is still chal-
lenging, despite the speed with which the field is
progressing, to collect large amounts of experimental mea-
surements of complex biomedical activities. While it should
be very clear at this point in time that no universal recipe ex-
ists that can provide a general-purpose framework to treat
any given dataset, we believe this is yet another reason to be
selective with respect to the choice of molecular descriptors.

4 Conclusions

The number of readily available molecular descriptors to be
employed in the context of machine learning for drug design
and discovery is growing at a spectacular rate. As such, one
may be tempted to leverage as many of these descriptors as
possible to increase the flexibility and the accuracy of the ma-
chine learning framework of choice. In this work, we have
provided evidence that while this “strength in numbers”
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strategy may be rewarding when dealing with relatively larger
datasets, in the case of small datasets containing only hun-
dreds of molecular structures one might - potentially - ob-
tain better numerical accuracy and - certainly - a deeper in-
sight into the structure-function relation.

In particular, we have explored the predictive potential of
two classes of descriptors derived from the work of Jin
et al’® and Gastegger:*” vocabularies of molecular cliques
(cliques) and histograms of weighted atomic-centred symme-
try functions (H-wACSFs). While the former capture the
“chemistry” of a given molecular species, the latter offer in-
formation about the whole structure of the molecule. When
deployed to predict the functional properties or biomedical
activities of two small molecular datasets, cliques and
H-wACSFs descriptors give results of similar quality to those
obtained by using ~100 “standard” descriptors (STD) avail-
able via the RDKit package.

Importantly, upon feature selection (cliques) and optimi-
sation (H-wACSFs) we were able to even outperform in some
cases the STD results: we find that using as few as ~15
cliques (i.e. molecular fragments) as descriptors one can re-
tain, in some cases even improve, the numerical accuracy of
the machine learning framework of choice, all the while
gaining valuable insight into those structural features that
play a key role in determining the target properties of inter-
est. Similarly, the optimisation of the some of the parameters
entering the formulation of H-wACSFs led to substantial im-
provement with respect to numerical accuracy, particularly
when trying to predict solid-state functional properties such
as the glass transition temperature.

While most would agree that designing a set of “universal”
molecular descriptors might not ever be possible, we believe
that an effort to limit the number of descriptors is a necessary
step toward making machine learning for drug design and dis-
covery more transparent. Even when dealing with large
datasets, feature selections and/or optimisation should be seen
as a mandatory step within the computational pipeline, much
as data pre-processing, as opposed to an optional possibility.
This is especially true given the multitude of easily accessible
computational tools presently at our disposal. The case of the
cliques descriptors offer a prime example, in that its intrinsic
simplicity has the potential to provide clear indication about
the relevance of specific molecular fragments.

Overall, we feel that while there is obvious practical value
in striving for numerical accuracy, the ultimate goal of ma-
chine learning in the context of drug design and discovery
should be to unravel the complexity of the structure-function
relation that rules the macroscopic properties of interest to
the pharmaceutical industry. In this respect, a major pitfall
of the current paradigm is that we often try to predict solid-
state properties (e.g. the solubility of a crystalline drug, or the
physical stability of an amorphous drug) by looking at the
structure of single molecules in vacuum.

We Dbelieve that taking into account actual three-
dimensional models of either crystalline or amorphous drugs
may very well be the next step the community has to take,
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and as such we need to devise molecular descriptors that will
be able to capture the complexity of e.g. inter-molecular inter-
actions. Materials science-inspired descriptors such as the
H-wACSFs probed in this work may provide valuable contri-
butions, and we are planning to bring together “chemistry
and structure” by combining cliques and H-wACSFs to deliver
a more general set of descriptors equally capable to tackle
single molecules as well as molecular solids.
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