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Molecular simulations of analyte partitioning and
diffusion in liquid crystal sensors†

Jonathan K. Sheavly, Jake I. Gold, Manos Mavrikakis and Reid C. Van Lehn *

Chemoresponsive liquid crystal (LC) sensors are promising platforms for the detection of vapor-phase

analytes. Understanding the transport of analyte molecules within LC films could guide the design of LC

sensors with improved selectivity. In this work, we use molecular dynamics simulations to quantify the

partitioning and diffusion of nine small-molecule analytes, including four common atmospheric pollutants,

in model systems representative of LC sensors. We first parameterize all-atom models for 4-cyano-4′-

pentylbiphenyl (5CB), a mesogen typically used for LC sensors, and all analytes. We validate these models

by reproducing experimentally determined 5CB structural parameters, 5CB diffusivity, and analyte Henry's

law constants in 5CB. Using the all-atom models, we calculate analyte solvation free energies and

diffusivities in bulk 5CB. These simulation-derived quantities are then used to parameterize an analytical

mass-transport model to predict sensor activation times. These results demonstrate that differences in

analyte–LC interactions can translate into distinct activation times to distinguish activation by different

analytes. Finally, we quantify the effect of LC composition by calculating analyte solvation free energies in

TL205, a proprietary LC mixture. These calculations indicate that varying the LC composition can modulate

activation times to further improve sensor selectivity. These results thus provide a computational

framework for guiding LC sensor design by using molecular simulations to predict analyte transport as a

function of LC composition.

Introduction

Human exposure to high concentrations of air contaminants
is a significant problem associated with adverse health
effects.1–3 For example, the U.S. Environmental Protection
Agency and Occupational Safety and Health Administration
recommend limiting personal exposure to common
atmospheric pollutants such as ozone, sulfur dioxide, and
nitrogen dioxide.4–6 Minimizing the risk of contaminant

exposure requires the development of mobile chemical
sensing platforms capable of monitoring the local
concentration of environmental contaminants in real time.3

Such sensors must be sufficiently simple and small to
facilitate mobile monitoring and must differentiate between
pollutants and ambient species that do not pose a risk to
human health (e.g., water and carbon dioxide).

Recently, chemoresponsive liquid crystal (LC) sensors have
been used to sense toxic analytes, such as hydrogen sulfide,
chemical warfare agents, Cl2, and NO2 at concentrations in
the low ppm range.7–14 These examples of chemoresponsive
LC sensors are composed of a nematic LC film that is
deposited on a substrate and undergoes a detectable change
in its adsorption, orientation, and optical properties when
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Design, System, Application

Chemoresponsive liquid crystal (LC) sensors can detect the presence of atmospheric pollutants, chemical warfare agents, and other vapor-phase toxins at
concentrations in the low ppm range. For LC sensors to be useful, they must rapidly, selectively activate in the presence of target analytes. LC sensors are
composed of a thin LC film that is deposited on a reactive substrate, and thus sensor design requires the selection of both the LC and substrate material.
Previous studies have primarily focused on tuning the substrate properties as a means of changing the sensor activation time and selectivity. However,
analyte transport through the LC film, which depends on molecular-scale analyte–LC interactions, can also influence the activation time. In this work, we
use molecular simulations to quantify the influence of LC sensor material properties on sensor activation times for common atmospheric pollutants. Based
on calculations of analyte permeances and corresponding transport timescales, we suggest that tuning the composition of the LC film can modulate
activation times to distinguish activation by different analytes. These findings indicate that molecular simulations can be used to select LC materials for
improved sensor selectivity by predicting the effect of LC composition on analyte transport.
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exposed to a vapor stream containing the analyte.7,8 For
example, previously developed sensors that detect the
chemical warfare agent simulant dimethyl
methylphosphonate (DMMP) consist of an 18 μm thick film
of 4-cyano-4′-pentylbiphenyl (5CB) deposited on a substrate
containing metal salts.13,16,17 In the initial state of the sensor,
5CB molecules bind to the substrate due to interactions
between their nitrile groups and the metal salts. Binding
causes the LC director vector to align perpendicular to the
substrate. Non-covalent interactions between 5CB molecules
also cause the LC director vector to align perpendicular to
the vapor–LC interface,18 leading to a mostly uniform
director vector throughout the film. The sensor is then
exposed to vapor-phase DMMP molecules that partition into
the LC film and diffuse to the substrate. Interactions between
the substrate and DMMP molecules outcompete interactions
between the substrate and 5CB molecules, causing the
displacement and reorientation of previously bound 5CB
molecules.8,17 Displacing a sufficient number of surface-
bound 5CB molecules leads to spatial variations in the LC
director vector throughout the film that can be observed
optically.19 This transition, driven by the presence of an
analyte, is the response of the sensor that can be easily
transduced optically. Similar chemoresponsive LC sensors
that rely on the competition between mesogen–substrate and
analyte–substrate interactions have also been developed to
detect different analytes.12,20

Recent sensor development has focused on improving
sensor selectivity to different analytes.12,21 One mechanism
for increasing selectivity is by modulating analyte binding to
the substrate. In particular, density functional theory (DFT)
calculations have shown that the difference between the
binding energy of DMMP and the binding energy of 5CB,
which quantifies competitive binding at the substrate,
correlates with the sensor activation time (i.e., the time

required for an optical response to be measured).16,17 In
addition, DFT calculations have been used to guide the
development of water tolerant DMMP LC sensors by the use
of a stronger binding mesogen, a pyrimidine containing
mesogen, which can be displaced by DMMP but not water.
However, these stronger binding mesogens still have the
drawback of increasing response time.22 Alternatively, the
time required for analyte transport through the LC film could
also be used to distinguish sensor activation by specific
analytes, particularly if the timescale for analyte transport is
slower than the timescale for changes to mesogen
reorientation at the substrate. For example, one study showed
that the sensor activation time for DMMP depends on the
timescale for analyte transport across the vapor–LC
interface.23 Since analyte transport through the LC film does
not depend on interactions with the substrate, it may be
possible to tune the timescale for analyte transport
independently from substrate properties to improve sensor
selectivity.

Characterizing analyte transport across the LC film
requires knowledge of both the thermodynamics of analyte
partitioning into the film and the dynamics of analyte
diffusion. Previous experimental measurements of analyte
partitioning have used vapor pressure measurements to
determine the Henry's law constant for high pressures of
carbon dioxide (CO2) and methane (CH4) in 5CB.24,25 Another
study determined the partition coefficient of glutaraldehyde
(GLU) in 5CB using chemically specific absorbance
measurements.26 However, in general quantifying analyte
partitioning in LCs is challenging, particularly for toxic
species with the associated experimental hazards. Measuring
analyte diffusivity is also challenging and has been limited to
the study of larger species using fluorescent recovery after
photo bleaching.27

Alternatively, molecular dynamics (MD) simulations can
model the molecular-scale interactions needed to quantify
analyte partitioning and diffusion. Significant work has
characterized the structural and elastic properties of LCs
using MD simulations that accurately reproduce experimental
measurements, such as the 5CB nematic–isotropic transition
temperature (TNI) and the structure near a vapor–LC
interface.28–33 Fewer studies have considered the transport of
small molecules through LC films. One recent example
investigated the transport of water through LC films to
determine the influence of water flux on the LC director
vector.34 However, studies of interactions between alternative
small-molecule analytes and bulk LC are largely lacking.
Moreover, simulation models have largely focused on 5CB
due to the availability of an accurate united-atom (UA) force
field for this material,30–32,35 but extending this model to
other possible mesogens is challenging. Utilizing MD
simulations to guide the design of new LC sensors for
selective analyte detection thus requires new simulation
models and techniques.

Herein, we use atomistic MD simulations to quantify
analyte partitioning and diffusion in LC films. We model nine
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analytes: GLU, DMMP, CH4, CO2, chlorine (Cl2), nitrogen
dioxide (NO2), water (H2O), ozone (O3), and sulfur dioxide
(SO2). GLU, DMMP, and CH4 are selected to validate the
computational models against experiments, H2O and CO2 are
ambient species in the atmosphere, and Cl2, NO2, O3, and SO2

are atmospheric pollutants. These latter six analytes are thus of
particular interest for pollutant sensing applications. We
assume that analyte–substrate interactions can be tuned to
obtain chemoresponsive LC sensors that can detect these
analytes and focus on the impact of analyte transport through
the LC film on sensor activation times. We first develop
atomistic models for 5CB–analyte interactions and show that
the models reproduce 5CB diffusivity measurements and
Henry's law constants in good agreement with experiments.
We then calculate analyte solvation free energies and
diffusivities and use this information to parameterize a mass
transport model to predict sensor activation times. Finally, we
show that changing the composition of the LC film to contain
TL205, another commonly studied mesogen, leads to changes
in analyte transport properties that can be used to tailor sensor
selectivity. These results demonstrate the potential of MD
simulations to guide the design of chemoresponsive LC
sensors with improved selectivity by tuning analyte partitioning
and diffusion.

Methods

Classical MD simulations were performed to quantify the
partitioning and transport of analytes in simulation systems
designed to model a chemoresponsive LC sensor. The
mesogen 5CB was simulated using both a united atom (UA)
model and all-atom (AA) model with explicit hydrogen atoms
(Fig. 1a). The UA model used the force field developed
by Tiberio et al.32 The AA model was based on a
reparameterization of the generalized AMBER force field
(GAFF)36 based on prior literature recommendations.37 We
developed the 5CB model using GAFF LJ parameters and
followed the parameterization strategy used by Cheung et al.

to fit partial charges and dihedral potentials to DFT
calculations.37–39 These DFT calculations were performed in
Gaussian16 using the B3LYP40 functional with a 6-31g* basis
set. Atomic partial charges were fit using CHELPG (charges
from electrostatic potentials using a grid-based method)41

with a constraint on the dipole. This approach ensures that
the point charges used in the MD simulation reproduce the
electrostatic potential calculated by DFT beyond the
molecular surface.41 To determine dihedral potentials for the
biphenyl dihedral and the first alkyl tail dihedral in 5CB, we
performed a relaxed scan and fit the classical potentials to
reproduce the DFT calculations (ESI† Fig. S1). Additional
details on this parameterization strategy and corresponding
results are shown in the ESI.†

AA models were developed for the nine analytes shown in
Fig. 1b: GLU, DMMP, CH4, CO2, Cl2, NO2, H2O, O3, and SO2.
All analytes, other than water, were parameterized using the
same GAFF parameter assignment scheme and charge-fitting
procedure that was used for 5CB. The SPC/E (simple point
charge/extended)42 model was used for water, although
parameterizing water using the same methods as the other
analytes yielded similar results (ESI† Fig. S2c). Complete
details on all AA parameters are included in the ESI.†

The bulk of the LC sensor and the vapor–LC interface were
separately modeled to determine contributions of both regions
of the system to analyte transport (Fig. 1c). The bulk system
consisted of 1020 molecules that were initially arranged in an
evenly spaced grid using gmx genconf, a tool implemented in
GROMACS 2016.43 The system was equilibrated using a
simulated annealing protocol in which the temperature was
initially set to 400 K and then reduced to the temperature of
interest at a rate of 1 K ns−1 while maintaining a pressure of 1
bar. After annealing, the system was simulated at constant
temperature and pressure for 50 ns. The first 25 ns were
disregarded as further equilibration and the final 25 ns were
used to measure the equilibrium bulk properties of the system.
The final box size after equilibration at 1 bar and 300 K was
6.400 × 8.597 × 7.488 nm3.

Fig. 1 Overview of simulation systems. a) Chemical structure of 5CB and snapshots of UA and AA simulation representations. b) Chemical
structures of all analytes considered. c) Schematic of a chemoresponsive liquid crystal (LC) sensor prior to sensor activation. Blue ellipsoids
indicate the mesogens in a nematic phase. Red circles illustrate the partitioning and diffusion of analytes toward the substrate. Snapshots of
simulation systems representative of the vapor–LC interface and bulk nematic LC are shown at right.
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Using the bulk system, we performed alchemical free
energy calculations to calculate the solvation free energy of
each analyte. A single analyte molecule was inserted into the
system using gmx insert-molecule, a tool implemented in
GROMACS 2016.43 The coupling parameters λLJ and λelec were
used to modify the magnitude of the Lennard-Jones (LJ) and
electrostatic interactions, respectively, between the analyte
and mesogen molecules. Coupling parameters were varied
between 1, corresponding to normal interactions between the
analyte and mesogens, to 0, corresponding to no interactions
between the analyte and mesogens, in 16 independent
simulation windows: 6 in which λLJ = 1.0 and λelec = 0.000,
0.167, 0.333, 0.500, 0.667, or 0.833, and 10 in which λelec = 0
and λLJ = 0.000, 0.100, 0.200, 0.300, 0.400, 0.500, 0.600, 0.700,
0.800, or 0.900. The multistate Bennett acceptance ratio
(MBAR) method44 was used to compute the solvation free
energy as the free energy difference between the solvated
analyte state (λLJ = λelec = 1.0) and an ideal gas reference state
(λLJ = λelec = 0). Each window consisted of 3 ns of equilibration
at 300 K and 1 bar followed by 7 ns of production at 300 K
and constant volume. This simulation time was sufficient to
obtain convergence (ESI† Fig. S5). The solvation free energy
was calculated 3 times for each analyte using different initial
insertion positions. All solvation free energy results report the
average and standard error between these trials.

The interfacial system consisted of a slab of 2500
molecules initially arranged within a 7.5 × 7.5 × 24.0 nm3

volume using the PACKMOL program.45 The simulation box
was then extended in the z-direction by 16.615 nm to create a
vacuum layer between the two interfaces. This z-dimension is
large enough to allow the formation of smectic layers near
the vapor–LC interface while achieving bulk nematic
properties near the center of the LC slab.33 The system was
equilibrated using a simulated annealing protocol in which
the temperature was set to 420 K and decreased at a rate of 1
K ns−1 for 120 ns. The system was then equilibrated for a
further 100 ns at 300 K. All simulations of the interfacial
system were performed at constant volume to maintain the
vacuum layer. The thickness of the LC slab after equilibration
was 19.495 nm.

Using the interfacial system, we performed umbrella
sampling to measure the potential of mean force (PMF) for
the transport of an analyte molecule across the vapor–LC
interface. We used the z-component of the distance between
the center-of-mass (COM) of the analyte and the COM of the
LC slab as the reaction coordinate. Umbrella sampling was
performed using 70 windows spaced by 0.1 nm along the
reaction coordinate. The analyte was restrained to the desired
value of the reaction coordinate using a harmonic potential
with a spring constant of 500 kJ mol−1 nm−2. Each window
consisted of 10 ns of equilibration followed by 45 ns of
production at 300 K. This simulation time was sufficient to
obtain convergence (ESI† Fig. S5). The weighted histogram
analysis method (WHAM) was used to compute the PMF.46

All simulations used a 2 fs timestep. Verlet lists were
generated every 20 timesteps using a 1.2 nm cutoff.

Electrostatic interactions were computed using the smooth
particle mesh Ewald (PME) method with a 1.2 nm short-
range cutoff, Fourier spacing of 0.14 nm, and PME order of
4. LJ interactions were smoothly shifted to zero between 1.0
nm and 1.2 nm with no dispersion correction. Temperature
coupling was performed using a Nóse–Hoover thermostat
with a time constant of 2 ps and isotropic Parrinello–Rahman
barostat with a compressibility of 3 × 10−5 bar−1. All
simulations were performed using Gromacs 2016.43

Finally, we also calculated the binding of water to
benzonitrile (a surrogate molecule for 5CB) with DFT in the
gas phase. For these calculations, we used Gaussian 09
version D.01 (ref. 47) with M06-2X-D3/def2-TZVP48–50 level of
theory. The value reported is corrected for calculated zero-
point energies of the respective terms.

Results and discussion
Validation of force field parameters

Investigating analyte partitioning and transport through a
nematic LC film using MD simulations requires analyte
and mesogen force field parameters that can capture
experimentally relevant structural and dynamic parameters.
Extensive previous simulations have studied the behavior
of 5CB, a mesogen utilized experimentally in sensor
operation,30,31,51,52 using a UA force field that has been
parameterized to reproduce the temperature at which the
nematic–isotropic phase transition occurs (TNI).

32 These past
simulations have largely focused on LC phase behavior and
structural properties.30–32 However, the removal of explicit
hydrogen atoms in UA models can lead to unphysically large
diffusivities,53,54 and moreover the UA model for 5CB cannot
be easily generalized to other mesogens. Due to these
considerations, we instead parameterized 5CB using the AA
GAFF force field (as described in the Methods) to facilitate
the modeling of new mesogens and analytes without
extensive parameterization.

The 5CB model was validated by comparing the
temperature variation in structural and dynamical properties
calculated using the AA and UA models to experimental
measurements (Fig. 2). Each property was computed from a
50 ns simulation performed at the indicated temperature
after annealing as described in the Methods. Fig. 2a shows
the P2 order parameter, which is related to the average angle
between a mesogen molecular axis and the LC director
vector, θ, by eqn (1):

P2 ¼ 3
2
cos2 θ − 1

2
(1)

The P2 order parameter varies from a value near 1 in the
nematic phase and a value near 0 in the isotropic phase at the
TNI.

55 Details on the calculation of this parameter are
presented in the ESI.† The experimental data indicate that TNI
is near 308.2 K,56–58 which is reasonably reproduced by the UA
model as expected. The AA model instead produces a nematic
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phase at temperatures higher than the experimentally
determined TNI. However, the value of the P2 order parameter
calculated in the nematic phase using the AA model is in good
agreement with the UA model and only slightly exceeds the
experimental value, suggesting that structural properties of the
nematic phase are reasonable even if the thermodynamics of
the phase transition are inaccurate. Fig. 2b shows the LC
density as a function of temperature. The AA model is in much
better agreement with the experimental data than the UA
model, again indicating that the model reproduces LC
structure accurately. Finally, Fig. 2c shows the average mesogen
diffusion coefficient and components of the diffusion
coefficient parallel and perpendicular to the LC director vector.
These data show that the AA model is in excellent agreement
with experimental measurements while the UA model
overestimates mesogen diffusivity by nearly two orders of
magnitude. We attribute the increased diffusivity in the UA
model to the absence of explicit hydrogen atoms as previously
noted for other UA models.53,54 Together, these data indicate

that the structural and dynamic properties of nematic-phase
5CB predicted by the AA model are in good agreement with
experimental values, permitting further evaluation of LC–
analyte interactions.

Analyte partitioning into bulk 5CB

Sensor activation requires the partitioning of analytes from the
vapor phase into the LC followed by analyte diffusion to the
substrate. We thus sought to quantify the thermodynamics of
analyte partitioning into the LC as a first step toward
characterizing analyte transport. Analyte partitioning was
quantified by computing the solvation free energy, ΔGsolv,
which is the free energy change for transferring the analyte
from an ideal gas vapor phase to bulk LC (schematically
illustrated in Fig. 3a). ΔGsolv can be related to the Henry's law
constant, KH, the LC molar density, ρLC, the pressure, p, the
temperature, T, and the ideal gas constant, R, by eqn (2):59

ΔGsolv ¼ − kBT ln
ρLCRT
KHp

� �
(2)

Negative values of ΔGsolv correspond to smaller values of
KH, indicating more favorable partitioning into the LC film.
To validate the computational approach, we calculated ΔGsolv

for analytes with experimentally reported Henry's law
constants in 5CB. Fig. 3b shows the solvation free energies
using both the UA and AA 5CB models for methane (CH4),
carbon dioxide (CO2), glutaraldehyde (GLU), and DMMP.
Simulation values are compared to solvation free energies

Fig. 3 Validation of solvation free energy calculations. a) Simulation
snapshots illustrating the two states used to calculate the solvation
free energy (ΔGsolv). The analyte is shown in red. b) ΔGsolv calculated
using the UA and AA 5CB models. Values are compared to
experimental estimates based on Henry's law constants using eqn (2).

Fig. 2 Comparison of 5CB model predictions to experimental
measurements. All plots compare the temperature dependence of a
bulk 5CB property calculated using either the UA (blue) or AA (yellow)
model to experimental measurements (red). Squares indicate the
temperatures at which simulations/experiments were performed. A
dashed line is drawn at 300 K as a guide to the eye. Properties include:
(a) the P2 order parameter, with experimental data from ref. 56; (b) the
bulk density, with experimental data from ref. 57; and (c) 5CB diffusion
coefficients, with experimental data from ref. 58. The component of
the diffusion coefficient parallel to the director vector (D∥), the
component perpendicular to the director vector (D⊥), and the average
diffusion coefficient (<D>) are separately reported.
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calculated using eqn (2) with experimentally determined
Henry's law constants. The CH4 and CO2 Henry's law
constants were computed by de Groen et al. by measuring
the bubble point of the gas in a closed system with the
LC.24,25 The GLU Henry's law constant was measured using
the Purpald method60 in which aldehydes react with a dye to
allow their concentration to be inferred from absorbance
measurements.26 The DMMP Henry's law constant is an
order-of-magnitude estimate based on experimental
measurements using a mass-transfer model of
chemoresponsive LC sensor activation.15,23 Values of ΔGsolv

calculated using both the AA and UA 5CB models reproduce
the experimental values within ∼1–2 kBT for each analyte.
The agreement between these values indicates that the AA
5CB and analyte models can reproduce experimental
measurements of analyte partitioning and that the AA and
UA models are of comparable accuracy.

In addition, we compared the values calculated with the
AA model to polarizable continuum (PC) model using
benzonitrile as a solvent (details of the DFT calculations and
comparisons are presented in Fig. S8†), which has been used
previously as a DFT alternative for calculating solvation
energies for benzonitrile-containing LCs.61 We found that
errors between the AA and PC models are within the DFT
mean squared error of 0.2 eV.62 We note that while this
justifies the use of the PC model for comparison with DFT-
calculated values for small molecules in 5CB, the AA model
error is smaller than DFT errors compared to experiments as
shown in Fig. 3b. Because the results in Fig. 2c indicate that
the AA 5CB model provides more accurate calculations of
5CB diffusion than the UA model and diffusivities cannot be
obtained from the PC model, we will only present results
using the AA model for the remainder of this study.

We next computed ΔGsolv for the six atmospheric analytes
of interest (Fig. 4a). ΔGsolv is negative for each analyte,
indicating that partitioning into the LC from the vapor phase
is thermodynamically favorable. The magnitude of ΔGsolv

varies between −1.44 kBT for Cl2, which partitions least
favorably into the LC, and −5.05 kBT for SO2, which partitions
most favorably. These differences indicate that corresponding
Henry's law constants and thus dissolved analyte
concentrations should vary by an order of magnitude
according to eqn (2). We note that the free energies predicted
by these simulations neglect any possible analyte dissociation
or reactions between analytes such as O3 or Cl2 and 5CB that
could affect partitioning.63,64

Fig. 4a further decomposes ΔGsolv into contributions
related to electrostatic interactions and LJ interactions. The
electrostatic contribution accounts for hydrogen bonding and
dipole–dipole interactions and is largest for the analytes with
the largest dipole moments (H2O, SO2, and O3; see ESI†
Fig. S2). The significant contribution of the electrostatic
interactions to ΔGsolv for these analytes suggests that their
partitioning would be sensitive to the dielectric constant of
the bulk LC. The largest electrostatic contribution is obtained
for H2O, which we attribute to hydrogen bond formation as

further discussed below. The LJ contribution accounts for
van der Waals interactions between the analyte and
surrounding LC as well as the perturbation to LC structure
due to excluded volume interactions. Because multiple
energetic interactions contribute to the LJ contribution,
trends are more difficult to discern. However, we do note that
the magnitude of the LJ contribution to ΔGsolv is similar for
NO2, CO2, and SO2 due to the similar chemical structures
and molecular geometries of these analytes. H2O is the only
analyte with a significant positive LJ contribution.

To investigate interactions with the polar nitrile group on
5CB, Fig. 4b shows radial distribution functions (RDFs) that
report the density of analyte molecules at a distance r from
the COM of the nitrile group with values normalized by the
bulk density of analyte. RDFs are computed for H2O, O3, and
NO2 because these analytes span a range of electrostatic
contributions to ΔGsolv (Fig. 4a). The RDF for H2O shows a
significantly larger peak than the other two analytes,

Fig. 4 Analyte partitioning into bulk 5CB. a) Comparison of the
solvation free energy (ΔGsolv) and contributions to the solvation free
energy due to Lennard-Jones and electrostatic interactions. b) Radial
distribution functions (RDFs) computed between the center-of-mass
(COM) of each analyte and the COM of the 5CB nitrile group. c) The
maximum value of the RDF between each analyte and the nitrile group.
The color scheme matches that of part b).
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indicating the preferential coordination of water molecules
with the nitrile group. This result is consistent with the
formation of hydrogen bonds. We also calculated a
significant hydrogen bond strength of −0.27 eV between the
water molecule and the benzonitrile in gas phase with DFT.
Fig. 4c compares the maximum value of the RDF for all six
analytes. H2O exhibits the strongest coordination to the
nitrile group, followed by SO2 which also has a large dipole
moment. These results suggest that in addition to tuning the
bulk electrostatic properties of the LC to mediate
partitioning, tuning the specific chemistry of polar groups
can affect analyte interactions with the mesogen.

Interfacial partitioning and dynamics

Values of ΔGsolv report the thermodynamics of analyte
partitioning between the vapor phase and bulk LC. However,
the structure of a LC can differ from its bulk structure near
the vapor–LC interface. Fig. 5a shows the normalized density
of the LC as a function of the z-component of the distance
from the vapor–LC interface (dz). The interface was defined
as the position at which the 5CB density was half that of the
bulk density. We note that the density approaches zero on
the vapor side of the interface because mesogens do not
enter the vapor phase within the simulation timescale. The
oscillations in the density near the interface (−3 < dz < 0
nm) indicate smectic-like ordering, whereas the density
plateaus to a bulk value far from the interface (dz < −3 nm).
This result, which is consistent with prior simulation and
experimental findings,18 suggests that the smectic-like region
near the interface could lead to interfacial barriers to analyte
partitioning that are not captured by ΔGsolv.

To investigate this possibility, we performed umbrella
sampling to compute the potential of mean force (PMF) for
transferring an analyte across the vapor–LC interface. The
PMF reports the free energy change associated with moving
an analyte from a reference position in the vapor phase as a
function of dz. Umbrella sampling was performed for H2O,
Cl2, and SO2 because they span the range of ΔGsolv values
according to Fig. 4a. Fig. 5b shows PMFs for each analyte. For
reference, the corresponding value of ΔGsolv computed for
partitioning between the vapor phase and bulk LC is shown
as a dashed line. The PMFs exhibit similar features, including
a plateau at a value similar to ΔGsolv for dz < −3 nm,
oscillations for −3 < dz < 0 nm, and a local minimum near dz
= 0 nm (i.e., at the vapor–liquid interface), although the local
minimum is not observed for H2O. The agreement between
values of ΔGsolv and the PMF values far from the interface
confirms that the system size is sufficient to model interfacial
behavior without finite size effects. The oscillations in the
PMFs correspond to oscillations in the LC density, indicating
that PMF features mirror the smectic layering of the LC. The
local minima at the interface for Cl2, and SO2 suggest that
these analytes could potentially accumulate at the interface,
affecting transport into the bulk LC film. However, the
magnitude of the PMF variations are small (<3 kBT).

To determine if variations in the PMF are significant
enough to affect analyte transport across the LC film, we
computed analyte permeabilities in the bulk LC and at the
vapor–LC interface. The permeability, P, relates the analyte
flux across an interface, J, to the concentration difference,
ΔC, as shown in eqn (3):

J = PΔC (3)

The permeability can be calculated using the
inhomogeneous solubility-diffusion model (eqn (4)) which
accounts for spatial variations in analyte diffusivity and
solubility. DĲdz) is the analyte diffusion coefficient as a
function of dz and the PMF accounts for spatial variations in
solubility:65

1
P
¼

ð dð2Þ
z

dð1Þ
z

exp PMF
kBT

� �
D dzð Þ ddz (4)

Fig. 5 Comparison of bulk and interfacial partitioning. a) 5CB density as a
function of the z-component of the distance from the vapor–LC interface
(dz). The density is normalized by the density of bulk 5CB in the nematic
phase. b) Potentials of mean force (PMFs) as a function of dz for Cl2, H2O,
and SO2. PMF values are set to zero at dz = 1 nm. c) Permeabilities
computed for the bulk LC and the interfacial region using eqn (4).
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We applied eqn (4) to compute analyte permeability at the
vapor–LC interface using the PMFs shown in Fig. 5a and by
calculating DĲdz) from the umbrella sampling trajectories as
described in the ESI† (ESI Fig. S4). We defined the limits of
integration as d(1)z = − 6 nm and d(2)z = 1 nm to capture only
interfacial behavior. We similarly applied eqn (4) to compute
the permeability of the bulk LC by equating the PMF to ΔGsolv

and DĲdz) to the component of the bulk analyte diffusion
coefficient parallel to the LC director vector. Since these
values are constant in bulk LC, the integrand can be factored
out of the integral in eqn (4) and the remaining integral
evaluates to the LC film thickness, δ, which we set to 18 μm
based on experimental systems.8,15–17 Fig. 5c compares the
interfacial and bulk permeabilities for O3, H2O, and Cl2. For
all three analytes, the bulk permeability is four orders of
magnitude lower than the interfacial permeability. This
suggests that transport across the LC region near the vapor–
LC interface is fast in comparison to the transport through
the bulk LC film and the oscillations in the PMFs do not
significantly influence analyte transport.

Estimated times for sensor activation using transport model

We next sought to predict the sensor activation time using the
simulation results to determine if this timescale could be used
to distinguish between activation by different analytes. Since
Fig. 5c indicates that analyte transport is dominated by the
bulk properties of the LC, we modified a mass-transport model
originally derived by Hunter and Abbott to relate the analyte
solvation free energies and diffusivities in bulk LC to the
sensor activation time, tact.

15,23 We assume that analyte
transport to the substrate is slow compared to the timescale for
the displacement of substrate-bound mesogens (i.e., sensor
activation is transport-limited). This assumption is justified by
prior experimental measurements for the activation of LC
sensors by DMMP that showed that the sensor activation time
is limited by mass transfer across the vapor–LC interface.23

Prior computational and experimental studies have also shown
that mesogen displacement timescales can be varied by
modifying the chemical composition of the substrate
independently of the bulk LC composition.16,17 Therefore, we
assume that the transport-limited regime is achievable
experimentally and investigate the ability of tact to distinguish
activation by different analytes.

To relate tact to simulation quantities, we assume that
analyte transport within the LC is at pseudo steady-state
and analyte accumulates within the LC film. tact is then the
time necessary for the average concentration of analyte in
the LC film to reach a threshold concentration, Cact, for
which there is a sufficient thermodynamic driving force to
displace the mesogens at the substrate's surface and trigger
sensor activation. Cact is a quantity that depends on the
elastic properties of the LC and the analyte–substrate
chemistry. Therefore, Cact will likely be different for each
analyte and may vary by orders of magnitude. However, we
can still identify trends relating analyte diffusivity and

partition coefficients to tact by assuming that Cact is
constant for all studied analytes. The ESI† includes further
discussion of these assumptions, a derivation of the mass-
transfer model presented below, and a derivation of an
alternate mass-transport model which assumes that Cact

approaches zero.
Using these assumptions, eqn (5) relates tact to the film

thickness, δ, the overall mass transfer coefficient, Kov, the
concentration of analyte in the vapor stream, Cvap, and Cact:

tact ¼ δ

2Kov
ln

Cvap

Cvap −Cact

� �
(5)

Eqn (5) indicates that the activation time will decrease as
a function of the overall mass transfer coefficient. Kov is
related to the diffusion coefficient, D, partition coefficient,
Kp, and the vapor–LC interface mass transfer coefficient, kc
via eqn (6):

1
Kov

¼ 1
kc

þ δKp

D
(6)

The overall mass transfer coefficient can exist in two
regimes: either mass transfer at the interface dominates or
analyte partitioning and diffusion dominates. Kp is related to
the Henry's law constant, and correspondingly, the solvation
free energy of an analyte via eqn (7):

Kp ¼ KHp
ρLCRT

¼ exp
ΔGsolv

kBT

� �
(7)

Since the diffusivities of vapor-phase small molecules
typically vary by less than a factor of two,66 we assume kc =
312.5 μm s−1 for all analytes based on the value obtained by
Hunter and Abbott.23 Kov then depends on two experimentally
determined, analyte independent quantities (kc and δ) and
two simulation-derived, analyte specific quantities (Kp and D).
For simplicity, eqn (8) defines the permeance, , in terms of
the two simulation-derived quantities:

 ¼ D
Kp

(8)

Calculating the permeance thus allows Kov to be compared
between different analytes. Computing tact, however, requires
knowledge of Cact, which is dependent on the thermodynamic
driving force. Eqn (9) eliminates Cact by normalizing the
sensor activation time by the sensor activation time previously
reported for DMMP transport across 5CB, tDMMP, which is
between 10–100 s depending on the substrate properties, and
assuming Cact is constant between different analytes and
detection schemes.23

tact
tDMMP

¼
1
kc
þ δ


1
kc
þ δ

DMMP

(9)
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The only unknown quantity in eqn (9) is the permeance,
which is computed from the simulations for each analyte.
We note that an alternative mass-transport model, which
instead assumes that analyte molecules rapidly, irreversibly
adsorb to the substrate without accumulating in the film,
also leads to the same dependence of tact on  as in eqn (9)
without assuming similar Cact. Further details on this model
are presented in the ESI.†

Fig. 6a shows the relative sensor activation times in 5CB
determined by eqn (9) for the six atmospheric analytes of
interest and for DMMP as a reference. Points are labeled based
on values of the permeance computed using ΔGsolv and the
bulk-phase analyte diffusivity while eqn (9) is plotted as a red
line. Different analytes exhibit different sensor activation times,
supporting the hypothesis that this timescale could be used to
distinguish sensor activation by different analytes. DMMP,
which has the highest permeance due to its highly favorable
partitioning into 5CB (Fig. 3b), lies in a regime where the
activation time plateaus because 1

kc
is significantly larger than δ



in eqn (9), indicating that overall mass transport is limited by
mass transfer across the vapor–LC interface. This result agrees
with previous experimental conclusions for DMMP transport.23

However, the other six analytes all have permeances lower than
that of DMMP, and as a result their sensor activation times are
limited by analyte transport through the LC film.

To facilitate experimental validation of the transport
model, eqn (10) quantifies the dependence of the activation
time on the film thickness as a function of :

d ln tactð Þ
d ln δð Þ ¼

1
kc
þ 2δ



� �
1
kc
þ δ



� � (10)

Fig. 6b shows the dependence of the activation time on
the film thickness for the same seven analytes as Fig. 6a.
Most of the analytes lie between the two regimes of linear
and quadratic dependence, with the extremes being Cl2,
which is closer to the quadratic regime, and DMMP, which is
closer to the linear regime. This model of the dependence on
film thickness allows for experimental verification of the
transport model and predicted permeance values by
determining the change in activation time associated with a
change in film thickness.

Comparison of transport in TL205 analog to 5CB

Fig. 6 shows how the sensor activation time in the
transport-limited regime depends on analyte permeance in
the bulk LC. This analysis suggests that the activation times
for NO2 and H2O are similar, as are the activation times for
CO2 and SO2, which suggests that sensor activation times
in 5CB may not distinguish these analytes due to their
similar permeances (within the assumptions of the mass-
transport model). Instead, alternative LC materials may lead
to distinct permeances for these pairs of analytes.
Differences in analyte permeance in 5CB are primarily
related to differences in analyte solvation free energies. For
example, the partition coefficients for the seven analytes
studied in Fig. 6 varies from 0.24 to 0.0064 whereas the
diffusivity varies from 243 μm2 s−1 to 637 μm2 s−1. This
comparison indicates that tuning the solvation free energy
is the more important factor when considering sensor
design. Fig. 3 further suggests that solvation free energies
depend on electrostatic interactions and hydrogen bonding
interactions with the LC to different degrees for different
analytes, suggesting that tuning mesogen chemical
properties can affect activation times to further improve
sensor selectivity.

To evaluate the effect of mesogen chemical properties
on transport, we computed ΔGsolv and determined
corresponding analyte permeances in TL205. TL205 is a
proprietary mixture of fluorinated, nonpolar mesogens that
is in the nematic phase at room temperature.20 We
approximated TL205 as a 1 : 1 mixture of the two components
shown in Fig. 7a. AA models for both components were
parameterized using the same strategy used for 5CB. The
mixture was similarly annealed to obtain a well-mixed
nematic phase that was then used to perform analyte
solvation free energy calculations. While both TL205
components lack the nitrile groups needed to bind to metal
salt substrates, mixtures of mesogens with additives
containing nitrile groups can act as chemoresponsive
sensors.8 We assume that bulk TL205 is thus a suitable
model for a chemoresponsive mixture of TL205 with a nitrile-
containing additive (e.g., 5CB).

Fig. 7b compares ΔGsolv for the six atmospheric analytes in
bulk 5CB and TL205. ΔGsolv is less favorable in TL205 than in
5CB for all analytes except NO2, with H2O, O3, and SO2

exhibiting the largest increases in ΔGsolv. These three analytes

Fig. 6 Mass-transport model of sensor activation. a) Relative response
time as a function of permeance for all six analytes. Response times
are calculated relative to the response time for DMMP, which was
experimentally measured to be between 10 and 100 s. b) The leading
order polynomial dependence of the response time on film thickness
as a function of permeance for all six analytes.
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had the largest contribution from electrostatic interactions
for partitioning in 5CB (Fig. 4a), and as expected the
electrostatic contribution to the solvation free energy in
TL205 also dictates the change in the total solvation free
energy (ESI† Fig. S7). The dielectric constant of TL205 is
approximately half of the dielectric constant of 5CB,67,68

explaining the less favorable partitioning of these three
analytes. H2O is the only analyte for which the value of ΔGsolv

is positive, indicating unfavorable partitioning. This result
can be explained by the importance of hydrogen bonds to the
nitrile group in 5CB (Fig. 4c), which are absent in TL205.

We next translated the results of Fig. 7b and analyte
diffusion coefficient measurements (ESI† Fig. S3) into
permeances using eqn (8). Fig. 7c compares analyte

permeances in both 5CB and TL205. In general, the less
favorable partitioning of more polar analytes into TL205
translates into lower permeances in TL205 than in 5CB. In
particular, the permeances of H2O and SO2 are significantly
reduced. Importantly, the permeances of NO2 and H2O differ
significantly in TL205, as do the permeances of CO2 and SO2.
Thus, while sensor activation times for these analytes were
indistinguishable in 5CB, constructing a sensor from TL205
instead would facilitate selectivity between these analytes,
potentially enabling the construction of sensor arrays
comprised of both 5CB- and TL205-based sensors to
distinguish between all six atmospheric analytes.

Conclusions

In this work, we performed classical molecular dynamics
simulations to study the partitioning and diffusion of small-
molecule analytes in chemoresponsive liquid crystal sensors.
We developed an all-atom model of a common mesogen,
5CB, and nine analytes, including four atmospheric
pollutants and two ambient atmospheric species. We
validated the simulation models by showing that the all-atom
5CB model reproduces experimental measurements of LC
structure and more closely matches experimental diffusivity
measurements than a widely used united-atom model.
Simulated solvation free energies for a subset of analytes also
compared favorably to solvation free energies obtained from
experimentally determined Henry's law constants. Using
these models, we calculated the solvation free energies of the
six atmospheric analytes in the bulk LC to quantify analyte
partitioning. These results showed that electrostatic
interactions, and particularly interactions between polar
analytes and the nitrile group on 5CB, significantly impact
partitioning. We also determined that variations in the LC
density near the vapor–LC interface have minimal impact on
analyte transport across LC films. Using the simulation-
derived estimates of analyte partitioning and diffusivity in
the bulk LC, we predicted sensor activation times by
modifying a previously developed mass-transfer model. Our
results indicate that differences in transport across the film
translate to order-of-magnitude differences in activation
times, suggesting that transport properties can be used to
identify what analyte causes sensor activation. We further
predict that replacing 5CB with TL205, another
experimentally accessible LC, can lead to variations in
relative sensor activation times to improve sensor selectivity.
These results suggest that the computational screening of
analyte interactions with mesogens or LC additives can be
used to increase sensor selectivity to different analytes by
tuning analyte transport and corresponding sensor activation
times.
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Fig. 7 Analyte partitioning and transport in TL205. a) Chemical
structures and simulation snapshots of two components used to
represent the mesogen mixture in TL205. b) Comparison of solvation
free energies for all analytes in 5CB and in TL205. c) Comparison of
permeances for all analytes in 5CB and TL205.
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