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Frontiers in nonviral delivery of small molecule
and genetic drugs, driven by polymer chemistry
and machine learning for materials informatics

Jeffrey M. Ting, * Teresa Tamayo-Mendoza, Shannon R. Petersen,
Jared Van Reet, Usman Ali Ahmed, Nathaniel J. Snell, John D. Fisher,
Mitchell Stern and Felipe Oviedo

Materials informatics (MI) has immense potential to accelerate the pace of innovation and new product

development in biotechnology. Close collaborations between skilled physical and life scientists with data

scientists are being established in pursuit of leveraging MI tools in automation and artificial intelligence

(AI) to predict material properties in vitro and in vivo. However, the scarcity of large, standardized, and

labeled materials data for connecting structure–function relationships represents one of the largest hur-

dles to overcome. In this Highlight, focus is brought to emerging developments in polymer-based

therapeutic delivery platforms, where teams generate large experimental datasets around specific

therapeutics and successfully establish a design-to-deployment cycle of specialized nanocarriers. Three

select collaborations demonstrate how custom-built polymers protect and deliver small molecules,

nucleic acids, and proteins, representing ideal use-cases for machine learning to understand how

molecular-level interactions impact drug stabilization and release. We conclude with our perspectives

on how MI innovations in automation efficiencies and digitalization of data—coupled with fundamental

insight and creativity from the polymer science community—can accelerate translation of more gene

therapies into lifesaving medicines.

1. Introduction

Polymers have entered every aspect of society, from familiar
consumer products to high-value technological applications in
electronics, energy, and healthcare.1,2 In medicine, polymers
have found particular utility in the development of early con-
trolled drug delivery systems for oral and dermal medications—
prototypical of such systems are acrylics and methacrylics,
carbohydrates and, more recently, resorbable systems such as
polyglycolides.3 The rapid embrace of macromolecular thera-
peutic entities (including antibodies, proteins, and gene thera-
pies) now offers both great challenges and great opportunities
to polymer chemistry. Genetic drugs in particular appear espe-
cially poised to be transformative, driven by the growing under-
standing of the biological underpinnings of genetic disease and
immunocology. In tandem with this growth there is a recog-
nized need to develop more robust nonviral nanocarriers that
achieve delivery with high specificity, reliability, and safety.
However, there are as of yet, few polymer-based vectors approved
for genetic therapeutics delivery.

Unlike their small molecule counterparts, therapeutic bio-
logics present distinct challenges. DNA, RNA, and genomic
editing ribonucleoproteins4 are larger, hydrophilic, ionic, and
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prone to degradation. Prospective polymer delivery systems
need to balance opposing attributes for these payloads by
providing (i) colloidal stabilization across multiple biological
barriers,5 and (ii) efficient payload release at the site of action.6

This dichotomy complicates the (mostly) well-understood mole-
cular engineering approaches used for small molecule drugs
that rely on conventional controlled drug delivery principles
and computational foundations.

Because of the vast design space of chemistries and archi-
tectures, it remains difficult to intuitively devise an ideal
polymer vector that can fulfill every desired function in macro-
molecular biologics delivery. Nevertheless, polymer chemistry
has advanced to the point where unlimited structures can be
created, as described in recent perspectives on controlled
reversible-deactivation radical polymerization,7 chemical
functionalization,8 site-specific bioconjugation,9 and electro-
static self-assembly.10 High-throughput synthesis and screen-
ing campaigns have taken advantage of this versatility to tailor
specialized polymers around a single drug of interest.11–13

Challenges remain, however, in the efficient deployment of
the vast toolbox of potential polymeric delivery systems across
an enormously divergent set of therapeutic modalities.

One potential solution to navigate this immense design
space is the marriage of experimental and synthetic data with
materials informatics (MI) to develop a deeper understanding
of structure–function relationships between polymer-mediated
binding and delivery of various drugs. MI depends on collect-
ing, cleaning, and organizing machine actionable data into a
framework to leverage machine learning (ML) algorithms and
artificial intelligence (AI) applications.14,15 Unfortunately,
materials data curation is often a formidable challenge because
information sources are dispersed, inhomogeneous, and inac-
cessible. This challenge is particularly true for polymer science,
where progress has lagged on laying the groundwork for
reconciling large polymer datasets with digitalization.16–19

In this short Highlight article, we feature three examples
that apply these principles and demonstrate polymer synthesis/
screening campaigns for three distinct cargos: (1) small mole-
cule drugs, (2) nucleic acids, and (3) proteins. These vignettes
show how rapid data generation can facilitate ML models to
produce multifunctional nanoparticle candidates for the ther-
apeutic of interest (Fig. 1). High-throughput polymer chemistry,
nonviral drug delivery, and MI are connected through close
collaborations across multiple teams with distinct skillsets in
each use case. A glossary of MI terms and methodologies is
provided at the end of this Highlight for readers’ reference.
Finally, we provide an outlook for expanding these themes to
pharmaceutical applications in nonviral gene therapy. The
breadth and diversity of genetic drugs span physiochemical
attributes that must be accounted for in data-driven polymer
design from a near infinite chemical space. To this end,
laboratory workflow automation and data management best
practices are discussed that can prioritize therapeutic formula-
tions with higher likelihood of successful delivery. In our view,
assembling these physical and digital pieces together can usher
in the next era of potent, affordable genetic drugs to market.

2. Polymer design propelled by MI
2.1. Small molecule drugs

Polymer-based long-acting injectables (LAIs) are drug formula-
tions designed to prolong the stability and bioavailability of a
therapeutic by controlling and sustaining its release. Clinical
translation of LAIs has long been limited by the relatively few
polymeric families approved for parenteral administration.
Poly(lactide-co-glycolide) (PLGA) is a biodegradable polymer
and the key excipient for the majority of the B30 clinically
approved LAI products.20 Thus, PLGA-based systems remain a
widely studied platform for satisfying the downstream regula-
tory process. While this has limited exploration in chemical
diversity for polymeric LAIs, there is abundant formulation
data within the PLGA literature on drug stability, loading
capacity, and in vitro release profiles that can be extracted from
experimental and simulation literature21 and can, in theory, be
used to design novel polymers for parenteral administration.
While these reports provide insight to develop LAI systems, they
require a considerable amount of experimental time or are
computationally intensive.

Banningan et al.22 recently explored a ML approach to
predict fractional drug release and proposed a universal frame-
work for designing LAI systems. They curated a data set of
43 drug–polymer combinations that consist of commercially
available polymers with 31 783 partial and 181 complete drug
release properties from previous publications. As a starting
point, 17 descriptors from experimental conditions and physico-
chemical properties of the drug and polymers were examined.
After training different models and assessing the performance of
release predictions, the authors selected a tree-based regression
model called light gradient-boosting machine (LGBM) for further
refinement. Two models were trained: the first excluded any

Fig. 1 Illustration of an emerging paradigm for nonviral drug delivery
development, integrating elements of polymer chemistry, molecular biol-
ogy, and materials informatics. This platform requires knowledge and
skillsets from polymer synthesis/screening and materials characterization,
high-throughput biological testing of therapeutic efficacy/safety, and data
science and engineering using machine actionable data.
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points of the drug release curves in the training data features,
while the second used three initial measurements included as the
features. The team selected the second model for further analysis.

Agglomerative hierarchical clustering based on Spearman’s
rank correlation was performed to remove redundant variables
from the final predictive model (Fig. 2(A)). This statistical test
determines the presence of the monotonic relationship
between two variables. By arranging variables into hierarchy
of clusters from this test, they found that removing two features
from clusters with strong correlations (i.e., the fractional drug

release at 0.5 day or T = 0.5 and the number of heteroatoms or
NHA) resulted in a model with similar accuracy. Meanwhile,
despite a strong correlation between drug molecular weight
(MW) and topological polar surface area (TPSA), the removal of
these features reduced model accuracy. This example shows
how descriptors like T = 0.5 and NHA were removed while others
like MW and TPSA were retained, resulting in 15 finalized
features. To further determine which features are important in
the model, a SHapley Additive exPlanations (SHAP) analysis was
performed (Fig. 2(B)). SHAP is a method to explain predictive

Fig. 2 (A) Heatmap of the absolute Spearman’s rank correlation of the initial 17 input features for LAI development. The dendrogram displays
agglomerative hierarchical clustering analysis, e.g., T = 0.25, T = 1.0, and T = 0.5. Pink and blue represent 0.0 and 1.0 correlation values, respectively.
(B) Swarm plot of SHAP values of the 15-feature LGBM model. The colors pink and blue represent relatively low and high values, respectively. (C) Table
with the proposed design criteria to select ‘‘fast’’ and ‘‘slow’’ drug-release profiles based on the 15-feature LGBM model, SHAP analysis, and observed
trends in PCA and tSNE plots. For instance, low molecular weights of drug cargo and polymer system are associated with a ‘‘fast’’ drug release profile.
Adapted with permission from ref. 22. Copyright 2023 Nature Publishing Group.
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outputs of ML models by computing the relative contribution of
each input feature. It was found that the model’s most influential
features were time, and specifically T = 1.0, the drug’s one day
measurement of release. Other significant drivers were the MWs of
the polymers and drugs, respectively. The results did not display the
potential synergy of other features, as suggested by the analysis of
feature removal by agglomerative hierarchical clustering analysis.

Finally, the authors proposed and experimentally tested two
LAI formulations focused on microparticles that are easy to
produce based on commercially available PLGAs. They used the
experimental measurement T = 1.0 as a proxy, one of the most
influential features in the SHAP analysis. They suggested that
the low-values of the fractional drug release might correspond
to ‘‘fast’’ sustained release profiles compared to LAI systems
with a relatively high value (‘‘slow’’ release). Moreover, by
analyzing low-dimensional clustered plots (principal compo-
nent analysis; PCA) and an unsupervised clustering algorithm
(T-distributed Stochastic Neighbor Embedding; t-SNE), it was
observed that some features were generally related to the values
of fractional drug released at T = 1.0 and, therefore, to a ‘‘slow’’
or ‘‘fast’’ release. Furthermore, they proposed a LAI design
criterion (Fig. 2(C)) and selected two drug-PLGA pairs to func-
tion as ‘‘fast’’ and ‘‘slow’’ release systems. For the first LAI,
a 10 kDa PLGA and salicylic acid (SA) were chosen for their
relatively low MWs, relatively low log P of SA, and relatively low
TPSA value of SA. By comparison, a ‘‘slow’’ release LAI system
consisted of a 50 kDa PLGA and olaparib (OLA), where both
components have relatively high MWs, relatively high log P of
OLA, and high TPSA value of OLA. They prepared and characterized
samples using an oil-in-water emulsion method23 and observed
excellent agreement between predicted and experimental release
profiles. The authors speculate that further improvements could be
effected by incorporating factors that were excluded from the
model, such as polymer degradation in the PLGA formulation.
Nevertheless, this benchmarks a powerful method to establish
design rules for other LAI pairings, assuming that such prospective
systems have access to sufficient training data.

2.2. Nucleic acid and ribonucleoprotein delivery

In the B40 years history of gene therapy, the field has been
dominated by viral vectors and, more recently, by lipid nano-
particles, with both modalities achieving significant successes
and limitations. A relatively unexplored avenue for nucleic acid
delivery has been the use of polymers that are capable of
forming complexes (polyplexes) with nucleic acid cargos. Gen-
erally speaking, polyplexes are positively charged polymeric
vectors that bind to cargos and form nanoparticles with sizes
in order of approximately 100 nm. In order to effectively trans-
fect cells, polyplexes rely on a delicate balance of chemical and
physical features. It is important to recognize that polyplexes
are dynamic nanoparticles—that is, because they self-assemble
at the molecular level from non-covalent interactions with ener-
gies of multiples of kT,24 these nanoscale assemblies can rear-
range under different environmental conditions. While numerous
studies have investigated the optimization of commercially avail-
able polyethylenimine (PEI) and its variants, a one-size-fits-all

approach for different exogenous nucleic acid cargo often cannot
be utilized. What has been lacking is an appreciation of a design
rule approach for polymers that can be readily tailored to deliver
specific biological cargos to desired extracellular and intracellular
destinations.

Recently, Kumar et al. addressed this issue by revisiting an
established polymer library and determining if the same design
constraints apply for delivery of a different cargo.25 These 43
polymers spanned commonly investigated cationic and hydro-
philic monomers and were originally investigated as vectors for
ribonucleoprotein (RNP) delivery. This study demonstrated that
successful delivery of RNP cargo was most dependent on
the polyplex surface charge and the degree of cooperativity
during polymer deprotonation (nHill). In the new study, the
same library was re-examined with the following objectives:
(1) identify polymers that efficiently facilitate intracellular
delivery of plasmid DNA (pDNA), (2) determine if design con-
straints applied for RNP payloads are relevant to pDNA pay-
loads, (3) co-deliver RNP and pDNA payloads for homology-
directed repair, and (4) translate the results to specific targets.
Eight candidates showed substantial increase in transgene
expression, with the polymer P38 (comprising 2-(diisopropyla-
mino)ethyl methacrylate and 2-hydroxyethyl methacrylate
monomers, poly(DIPAEMA52-st-HEMA50)) as the lead candidate
from the library screen. It was determined by quantitative
confocal microscopy that P38 was able to effectively deliver
pDNA to two distinct cell types, HEK293T and ARPE-19, show-
ing relatively high levels of nuclear import and the ability to
escape endosomal compartments.

P38 was also determined to be the lead candidate for RNP
delivery, and it was initially suspected that the polymeric design
criteria might be identical for both RNP and pDNA delivery. Thus,
to further elucidate any structure–function relationships between
polymer attributes and payload type, SHAP analysis was used. The
SHAP analysis revealed that the design parameters affecting
cellular uptake, delivery efficiency, and toxicity are all cargo
dependent (Fig. 3). Notably, RNP delivery is dependent on hydro-
phobic interactions in addition to electrostatic interactions, and
that these are both necessary for cytosolic release. On the other
hand, hydrophobic interactions are negligible for successful
pDNA delivery, which relies on the optimization of polycation
protonation equilibria and pDNA binding affinity. Despite the
payload dependent divergence in vector design, it is important to
note that polymer compositions such as P38 can simultaneously
satisfy the requirements of both payloads. This was demonstrated
by using P38 to successfully co-deliver RNP and pDNA payloads
for homology driven repair at a higher rate than JetPEI, a
commercial polymer routinely used as a gold standard in gene
delivery. In addition to identifying a promising polymer for
delivery of two distinct payloads, this important work introduces
a robust framework for deconvoluting payload-specific structure–
function relationships.

2.3. Polymer–protein hybrids

One of the most advantageous characteristics of polymer
nanoparticles over alternatives is the potential for intracellular
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delivery of biomacromolecules, such as large RNP or antibody
payloads. Indeed, direct cytosolic delivery of proteins has
recently been demonstrated for a handful of engineered poly-
mer systems.26–28 However, there is far less understanding of
how to modify polymers to bind to functional proteins. Cells
themselves consist of B20–35% cytosol-stabilized protein by
mass, depending on cell type.29 In this crowded environment, it
remains unclear how polymeric components of nanoparticles
engage with proteins after endosomal escape. A better under-
standing of how proteins are compartmentalized by polymers
into phase-separated domains could result in safer nanocar-
riers for protein based therapeutic drugs.

Tamasi et al. recently showed a unique approach to screen
such polymer–protein hybrids (PPHs) using a learn-design-
build-test paradigm for three model enzymes.30 In this report,
the authors prepared a series of heteropolymers that varied the
(1) number of methacrylate monomer combinations (Fig. 4(A)),
(2) balance of ionic, hydrophilic, and hydrophobic moieties
(composition limited to r70 mol% hydrophobic and r50
mol% ionic monomer), and (3) targeted degree of polymeriza-
tion (DP; from 50 to 200). PPHs were formed with horseradish
peroxidase (HRP), glucose oxidase (GOx), and lipase (Lip) by
thermal stress. The output objective was to evaluate retained
enzyme activity (REA), defined as the ratio of activity level
following thermal stress to its initial activity level. 500+

unique heteropolymers were prepared for enzymatic activity
screening.

Closed-loop optimization was carried out by first training
Gaussian process regression (GPR) models with a dataset of 504
initial polymers, followed by Bayesian optimization of the GPR
model to down-select and identify lead polymer candidates
for further synthesis campaigns. Evaluation of enzyme stability
assays expanded the polymer-enzyme activity database for
further model training and materials design (Fig. 4(B)). This
workflow allowed the authors to better understand how
chemical features influenced PPH performance of each protein
of lead PPIs. While calculated SHAP values of REA showed
expected trends, some unexpected relationships were revealed.
For instance, smaller chain lengths and the hydrophobic
monomer MMA were favorable for HRP, but the introduction
of different hydrophobic monomers such as BMA was not
beneficial (Fig. 4(C)). The authors proposed a possible mecha-
nism of HRP stabilization as a chaperone-like assistance from
shorter copolymer sequences that prevented structural refold-
ing. SHAP analysis of GOx and Lip show distinct differences in
heteropolymer design that were further improved by round-by-
round Bayesian optimization coupled with experiments.
This platform illustrated how ML workflows coupled with
high-throughput materials experimentation can result in
greater insight and speed to construct designer PPHs.

3. Outlook for pharmaceutical
applications

In the sections above, we highlighted three use-case examples
of how new small molecule and genetic drugs can be combined
with customized polymers with guidance from MI tools.
New datasets were collected from chemical and biological
experiments to train ML models. In these instances, two central
motifs emerged: (1) polymer chemistry techniques have
advanced to enable exquisite control of virtually any excipient
design, and (2) data-driven investigations can reveal non-
intuitive attributes for polymer/payload stabilization and
release.

However, translation of promising polymers/drug leads
from the bench requires significant capital investment and
resources on the path towards commercialization. In the
remainder of this Highlight, we focus on nonviral gene therapy
in particular, where there are numerous opportunities to pro-
duce more affordable and safer genetic medicines.31 Some
grand challenges stem from open-ended questions in molecu-
lar biology and nanomedicine, while others are more practical
in terms of lab automation and establishing digital ecosystems
for enabling material discovery. We discuss these topics and
what may be needed for future pharmaceutical applications.
More focused reviews on AI and nanomedicine,32 nucleic acid
therapeutics with polymer complexes,33 and automation and data-
driven design of polymer therapeutics34 are available elsewhere.
Furthermore, other biotherapeutics, such as ribonucleoproteins35

or therapeutic peptides,5 are outside the scope of this article.

Fig. 3 (A) SHAP illustrates the importance and contributions of polyplex
features to delivery efficiency, cellular toxicity, and uptake for pDNA (pink)
and RNP (blue) payloads. (B) Average treatment effect (ATE) analysis
estimates causal structure–function trends of pDNA polyplexes from the
top features from SHAP analysis. Positive and negative effects (error bars
denote 95% CI) denote protagonistic and antagonistic relationships,
respectively. Adapted with permission from ref. 26. Copyright 2022 Amer-
ican Chemical Society.
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3.1. Diversity in cargo for nucleic acid therapies

There are several types of nucleic acid therapies, which vary in
both therapeutic potential and delivery requirements. Table 1

summarizes the most prevalent classes based on technology
advancement and usage in polymeric nanoparticle delivery.
We emphasize notable chemical and biophysical considerations

Fig. 4 Active learning enables rational design of polymer–protein hybrids (PPHs), comprising random copolymers with compositions that compatibilize
protein surfaces. (A) Rendered surface chemistries of horseradish peroxidase (HRP), glucose oxidase (GOx), and lipase (Lip) whose amino acid attributes
(ionic = blue, hydrophilic = green, hydrophobic = magenta) correspond to selected methacrylate chemistries. (B) Schematic of a ‘‘Learn–Design–Build–
Test’’ PPH discovery paradigm, which includes Gaussian process regression surrogate models, Bayesian optimization, automated synthesis by a robotic
platform, and high-throughput characterization assays. (C) Representative analysis reveals distinct priorities in copolymer features for each protein by
normalized mean absolute SHAP explanations. Adapted with permission from ref. 30. Copyright 2022 Wiley John & Sons.
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for featurization in ML models. Structural differences across
nucleic acids are diverse and often overlooked when biological
modifications are made for therapeutic function, but these changes
may demand substantially different nanoparticles with features
that are difficult to anticipate without large empirical datasets.
Consequentially, one size does not fit all from a polymer design
perspective, and re-examination of the structure and chemistry of
DNA and RNA payloads may benefit the framework of molecular
design and prediction capabilities with MI.

3.1.1 DNA payloads. DNA payloads are commonly used in
gene therapy and offer the advantages of being relatively stable
and capable of generating sizable quantities. DNA gene therapy
cargoes are typically formulated as plasmids (pDNA), circular
double-stranded DNA molecules. pDNA are easy and cheap to
generate and can encode relatively large payloads. However, the
large size (i.e., molecular weight) of these pDNA payloads –
often several kilobases long – can be incompatible with the
limited packaging capacity (B4.5 kb) of viral delivery vehicles.
With the addition of polycations in water, pDNA polyplexes can
assemble into a variety of morphologies from doughnut-shaped
to rod-like solids, depending on base pair (bp) length and
associative interactions.36 Furthermore, for pDNA to be tran-
scribed, it must enter the nucleus; thus, a delivery vehicle needs
to be capable of achieving nuclear import.

Oligonucleotides (typically defined as less than 100 bases)
are short, single-stranded linear nucleic acids. In comparison
to pDNA, they exhibit different complexation behavior that has
been linked to differences in charge density, chain flexibility,

hydrophilicity, and helicity.37 Antisense oligonucleotides (ASO)
are a particular type of payload that is functional for gene
silencing. ASO are short (B20 bases) and designed to bind to
an endogenously expressed messenger RNA (mRNA) molecule.
The ASO-mRNA duplex is then recognized and degraded by
RNase H, resulting in reduced expression of the gene encoded
by that mRNA.38 Unlike pDNA, ASO do not need to enter the
nucleus to have an effect: they silence gene expression through
mRNA binding in the cytoplasm. However, delivery vehicles are
still important for ASO, as they can facilitate uptake and protect
against degradation.38

3.1.2 RNA payloads. RNA payloads come in several forms:
mRNA can introduce genes into cells, while small interfering
RNA (siRNA) can inhibit the expression of native genes. mRNA
payloads have several advantages over pDNA cargo. They are
typically smaller in size, which enables generally smaller poly-
plexes to be prepared. Additionally, because they are translated
in the cytoplasm, they do not require nuclear entry to be
effective therapeutically. However, mRNA suffers from disad-
vantages compared to DNA, such as low in vivo stability and
high immunogenicity. These drawbacks can be mitigated
through chemical modifications to the ribonucleotides, includ-
ing modifications to nucleobases, ribose groups and phosphate
backbones.39,40 For mRNA, stability can be further improved
through modifications to the 50 cap, as well as by optimizing
secondary structure via changes to 50 and 30 untranslated
regions and coding sequences.41–43 It is unclear how such
mRNA modifications impact polyplex assembly and delivery.

Table 1 Therapeutic nucleic acids considerations for polymer-driven nanoparticle delivery

Cargo
Delivery
destination Notable attributes Select therapeutic product example(s)44

Plasmid DNA
(pDNA)

Nucleus � Long (1000s bpa) double-stranded, circular molecule � N/A; some DNA vaccines have been FDA
approved for veterinary use such treating canine
melanoma in 2010

� Versatile, robust with low production cost from bacteria
culture
� Requires entry to restrictive nuclear barrier

Antisense
oligonucleotide
(ASO)

Cytoplasm
(RNA)

� Short (B20 bases) single-stranded, linear molecule � Kynamro (FDA approved 2013)
� Forms duplexes with RNA targets for promoting RNase
degradation or for sterically blocking translation

� Waylivra, Volanesoren (FDA approved 2019)

� Limited often by efficient internalization and endosomal
escape
� Chemical modifications are commonly used in ASO design

Messenger RNA
(mRNA)

Cytoplasm � Long (100–1000s bases) single-stranded, linear molecule � Comirnaty, tozinameran (lipid nanoparticle-
RNA FDA approved 2020)

� High expression, versatility, and therapeutic efficacy � mRNA-1273 (lipid nanoparticle-RNA FDA
approved 2020)

� Susceptible to RNase degradation, endosomal entrapment,
and immune stimulation/response
� Delivery vehicles are multicomponent, as general examples:
lipid nanoparticles (PEGylated lipids, ionizable lipids, helper
lipids, cholesterol), lipid/polymer hybrid nanoparticles
(PEGylated lipids, cationic lipids, helper polymers), polyplexes
(cationic polymers)

Small interfer-
ing RNA (siRNA)

Cytoplasm
(RNA)

� Short (15–30 bp) double-stranded, linear molecule � Onpattro, patisiran (lipid nanoparticle-RNA
FDA approved 2018)

� Forms complexes to bind and cut mRNA for blocking
translation

� Givlaari, Givosiran (GalNAc–siRNA conjugate
FDA approved 2019)

� Complementary and regulates the expression of a single
target RNA to down-regulate protein expression levels

� Oxlumo, lumasiran (GalNAc–siRNA conjugate
FDA approved 2020)

� Many siRNA approaches motivated by cancer therapy

a bp = base pairs, complementary repeat units in a nucleic acid molecule.
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Gene silencing can be achieved through the delivery of short
RNA molecules such as siRNA. siRNAs are short, double-
stranded RNA molecules that can suppress gene expression
through the action of a cytosolic protein complex known as an
RNA-induced silencing complex (RISC). The siRNA sequence is
designed to be complementary to part of an endogenous
mRNA. The antisense strand of the siRNA guides the RISC to
cleave the endogenous mRNA, thereby inhibiting protein pro-
duction of the encoded gene. Like mRNA, siRNA nucleotides
can be modified to protect against degradation. Delivery vehi-
cles for siRNA can improve the cargo’s stability and cellular
uptake.38 Hu et al. provide an extensive historic overview of
therapeutic siRNA and a roadmap of their opportunities based
on pre-clinical and clinical delivery platforms.45

3.2. Prospects for automation and cost reductions in gene
therapy discovery and development

An emerging challenge and opportunity in MI is the ‘‘curse of
dimensionality’’:46 the exponential increase in the size of a
design space accompanied by the increase in the dimension-
ality of a problem.47 As described earlier, gene therapy discov-
ery and development with polymers is highly susceptible to this
problem. Still, the rapid advances in lab automation hold
immense potential for generating large and diverse datasets,
rendering viable solutions and therefore reducing screening
costs. There are numerous examples of the automation of
polymer synthesis and combinatorial chemistry.48,49 However,
while this is certainly useful in reducing tedious, repetitive
tasks, automation itself often requires significant effort to
implement due to highly specialized tasks involving multi-step
procedures.50 Hence, we define ‘‘automation friendly’’ as being
readily scalable processes with mechanically practical unit
operations. We elaborate below on how one might address
the immense chemical and biological parameter space and
implement practical automated workflows.

3.2.1 Chemical and biological parameter space. In the case
of polymer-driven gene delivery, optimization of chemistry and
biology necessitates screening large number of samples with
high degree of diversity. Exploring this variable design space
requires synthesis and screening strategies to excel with a
generalized approach. Experimental variability dealing with
distinct classes of polymers, cargos, and biological targets
create a high dimensional landscape for workflow pathways.
The governing protocol needs to receive highly specific require-
ments for material synthesis and execute them in repeatable
and technically sound way. Data quality and timeliness must be
consistent so that structured chemical and biological data can
be aggregated for training ML models. Increased performance
over time is dependent on the metrics that are chosen by the
trained predictive model.

Robotic systems can handle rote work and enable more
complex operations to be completed in parallel. As an example,
consider the use of liquid handling to prepare polyplexes. Input
variables associated with mixing (i.e., polymer concentration,
cargo concentration, and solution salinity or pH) lead to
enormous self-assembly outcomes that impact size, stability,

and nanoparticle dynamics. Fig. 5 highlights the challenges
that occur with just three input parameters alone: polymer
molecular weight, N/P (ratio of polymer/nucleic acid), and
solution pH. A systematic screen of 10 molecular-weight poly-
mer samples combined with a single cargo at 10 N/P ratios at 10
different pH levels translates to 1000 unique polyplexes that
could in turn be conceivably plated in hours with automation
(Fig. 5(A)). However, subdomains in the total dimensional
parameter space can be more efficiently probed with prioritiza-
tion assistance from MI techniques (Fig. 5(B)), identifying local
optima (hot spots) of activity. Fig. 5(C) illustrates how these hot
spots can be deconstructed further to allow the examination of
additional dimensional factors. In this manner, nucleic acid
stabilization and release can be better understood as a function
of input parameters for subsequent workflows in polyplex
characterization.

In the biological parameter space, automation and high-
throughput screening has progressed significantly from its
origins in small molecule drug discovery. Comprehensive
reviews4,34,51 present high-throughput evaluation of bioperfor-
mance in cellular and animal models. We direct readers to
these works for more detailed perspectives. A common thread
for these emerging techniques is establishing more autono-
mous workflows in the lab infrastructure (e.g., plate prepara-
tion from libraries, assay standardization, or incorporation of
non-invasive analytical techniques) and acceleration of deci-
sion making from the large quantity of collected data. We
discuss these points further below.

3.2.2 Automated workflow development. Building a fully
automated system of machines to tackle every step of a work-
flow remains a daunting task. A piecewise approach may be
more realistic for smaller scale production. The determination
of which procedures can best be automated and in what order
is essential to streamline inefficiencies and bottlenecks. From
the authors’ experience, a design pyramid hierarchy for auto-
mated workflows can be useful in identifying specific pitfalls

Fig. 5 Visualization of how to discretize high dimensional spaces of
forming polyplexes based polymer molecular weight (MW), N/P ratio,
and solution pH as representative dimensional parameters. (A) Manually
tested samples often only reveal behavior within narrow regions of sample
space, so researchers may be left to interrogate overwhelming combina-
tions of parameters. (B) To better probe system optima, a more tractable
approach is to use robotic workflows to iteratively segment and parse hot
spot regions as a basis for data collection. (C) The dimensionality is then
deconstructed into more manageable spaces to enable further ML inves-
tigation, such as exploration (studying spaces where less is known but
more can be learned) versus exploitation (studying spaces where more is
known but can be highly improved in performance).
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that may occur in scale up. Fig. 6 shows a hierarchy that
illustrates areas of focus for building an automation system,
with increasing levels of practical and technical details from
top-to-bottom of the pyramid.

Following a top-down approach to meet a defined system’s
requirements, a map of equipment tasks should first be devel-
oped in a hierarchical manner. Each instrument should be
chosen to perform in an automation friendly manner using
(ideally) commercially available labware and consumables.
Screening materials can be visualized at several levels, each of
which have defined input and output (I/O) values. Building
level 1 involves enumerating a list of lab-wide equipment.
These I/O nodes should have a clearly defined purpose. Level
2 of the automation hierarchy necessitates organization of the
nodes in a logical sequential manner. Process modularity,
defined as inserting either redundant or alternative equipment
at a process node, is crucial for engineering the pipeline to be
adaptable and efficient. Creating a map of a work cell that
depicts each step in the process with the I/O of each machine
sub-system can be helpful.

Level 3 of the automation hierarchy focuses on optimizing
resource utilization and the time course of each process. Delays
or sample storage backlogs in the protocol are evidence of
inefficiencies in the pipeline that can be resolved with redun-
dancy removal or alternatives. Gantt charts may be useful
in identifying timeline inefficiencies. From this, modifications
to workflows can be gauged for their impact on sample produc-
tion. Finally, at level 4, technical issues in the function of each
process node are considered. Individual performance of each
step is evaluated at the system level, whereas each device is
detailed separately as its own finite system.

High-throughput synthesis and screening from automated
system workflows must rely on an equally organized data
management plan. Predictive ML models can find patterns in
high dimensional data only if the data, and also its metadata
can be connected. Metadata is data that contextualizes data by
providing machine-readable descriptions and explainability.

We conclude below with our perspective on creating a digital
infrastructure that can accommodate enormous chemical and
biological datasets in polymer-based gene therapy.

3.3. Building digital infrastructure for machine actionable
data

Although this article has emphasized various ML algorithms to
predict small molecule and genetic drug delivery performance,
MI workflows hinge on data that can be programmati-
cally curated, stored, and used. Data pipelines allow data and
metadata to be stored in a digital architecture. There are
different strategies to generate data, ranging from monomer
properties in silico51 to polymer properties in experimentally
prepared biomaterials.52 Each requires different considerations
for data acquisition, processing, and management to be
machine actionable.53 We discuss salient challenges for these
three subjects below.

3.3.1 Data acquisition. The first step in establishing a data
pipeline is data acquisition. This is the process of converting
physical measurements into digital forms that can be accessed
by computers or software. For polymer chemistry, recent exam-
ples include online size-exclusion chromatography,54 inline
NMR analysis,54–56 UV-visible spectroscopy,57 and real-time
fluorescence tracking.58 Here, we consider three data sources
for any general measurement: assays that can be run without
human intervention, assays that require human support, and
external sources.

Ideally, a fully automated set-up is preferred when the run
can be automatized with available hardware and an application
programming interface (API). From the digital infrastructure
point of view, data acquisition can often be integrated with
software packages such as ChemOS,59 HELAO,60 or for physical
simulations ChemOS 2.0.61 These experiments offer high-
throughput experimentation and high-throughput virtual
screening capabilities with ML training.62 This is a common
theme for close-loop-optimization with ML examples in auton-
omous laboratories for inorganic,63 organic64 and polymer
chemistry,19,65–67 or even in nonviral delivery with lipid
nanoparticles.68

In practice however, full automation often cannot be imple-
mented economically. Experiments may have long turnaround
times, reducing efficiencies in data acquisition. Hardware
may lack a suitable API for I/O designation for development
and optimization.69,70 Standardized electronic laboratory note-
books (ELNs) can play an essential role. ELNs offer a user-
friendly interface to record data through an API, so that data
entry is both rapid and captured in a digitally useful form for
MI applications.71 Additional researcher input can be provided
to improve experimental protocols, record quality control
notes, and constrain data ingestion as appropriate.15 Impor-
tantly, ELN adoption can allow access to negative results that
are crucial for building balanced datasets. Negative data is
usually not accessible or reported in public sources, a recog-
nized problem in the field.72,73 Commercially available software
now offer APIs in combination with in-house development
tools.74

Fig. 6 Hierarchy of automated systems, organized by levels of practical
and technical details for automation engineering. Levels 1 and 2 focus on
modifiability of equipment nodes and optimally linking them together.
Levels 3 and 4 involves interoperability and reusability to expand automa-
tion capabilities toward self-driving labs that can rapidly prototype materi-
als discovery with minimal user involvement.
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The third source of data is published information. There are
growing public datasets for polymers,75,76 but much remains to
be done compared to other materials genome or protein
databases. Most published information is still not immediately
machine actionable and requires substantial data extraction.
Although large datasets of small molecules are widely available,
these are often inadequate to extrapolate to polymers as they
do not consider polymer synthesizability or other chemical
constraints. Nevertheless, several polymer datasets exist. PoLy-
Info77 and Polymer Genome78 are proprietary databases of
existing polymers with focus in physical, mechanical, electrical,
and chemical properties of, mostly, homopolymers. Querying
these databases at scale is restricted and only a fraction of
polymers and measured parameters are relevant to delivery
applications. More varied datasets have been proposed by
constructing virtual polymer using generative deep learning
models, including PI1M,79 polyBERT,80 and the Open Macro-
molecular Genome (OMG).81 In our opinion, the most relevant
strategies to leverage these datasets are: (i) limited screening of
restricted databases such as PoLyInfo and Polymer Genome
based on known delivery vehicles, (ii) virtual screening of large
virtual databases such as PI1M, OMG, and polyBERT (or fine-
tuning their open-source generative models and representations),
and (iii) for a polymer system with drug delivery potential, construct
a dataset and/or ML model based on screening small molecule
databases with polymer synthesizability constraints with an
approach similar to the OMG.

With new AI technologies, datasets can be automatically
extracted from text and figures, even from complex structures
such as metal organics frameworks,82 catalysts,83 and chemical
reaction schemes.84–86 The rapid rise of generative models can
also be used to aggregate molecule data from public resources.87

Although not yet widely used in the field, deep learning has
significant potential to accelerate polymer design in drug delivery.
Beyond the discussed applications of generative models to define
an accessible space for chemical design and suggest promising
vehicle candidates, deep learning also has great potential for
powerful polymer representation and generalization. Natural lan-
guage architectures such as polyBERT learn useful representa-
tions for polymer property prediction80 and generate linear
random polymers. For more complex polymer architectures,
graph representations88 and extensions of BigSMILES89 have been
proposed which can be used as input to transformer or graph
neural network architectures.

3.3.2 Data processing. Experimental data are routinely
inhomogeneous. While much analytical data can be expressed
in tabular form, increasingly, data streams involve complex
images and image processing. In this regard, digitizing data is
critical to effectively analyze results. For instance, there are
reported data pipelines that incorporate image processing
algorithms for expediting experiments.90 From the software
infrastructure perspective, it is critical to integrate a user-
friendly interface that allows researchers to easily visualize
and display processed data. Another critical need of establish-
ing a digital infrastructure is computational power. At present,
there are two main data and computational limitations for

polymer design for drug delivery. First, as discussed, the
experimental data to build foundation models for polymer
design is limited, restricting both the potential and computa-
tional requirements of large models compared to fields such as
proteomics. Second, recent mechanistic modelling of polymers
by molecular dynamics (MD) simulations91–93 has progressed
significantly; however, the molecular size and complexity of
polymers and cargo limit the use of MD to a few polymers and
simplified settings. As larger datasets are created alongside
faster and more accurate MD proxies,92 we expect these limita-
tions to be mitigated. Future polymer design will have higher
compute requirements for both mechanistic modelling and
prediction of drug delivery properties.

A vital piece of the data processing pipeline includes meta-
data collection. Metadata arises from different unit operations
and parameters needed to understand results. Standardized
formatting of data and metadata have been agreed upon by
some materials communities, such as crystallography schema.94

However, there is no consensus yet for nonviral drug delivery
materials, including polymers. Conversations are yet needed
to define and standardize metadata within the same lab group
or organization to ensure data quality, consistency, and
completeness.95

3.3.3 Data management. Data governance is a critical con-
sideration to ensure short- and long-term accessibility for
researchers and ML models alike.15,96 A useful set of design
directives is described by the FAIR (findable, accessible, inter-
operable, and reusable) data principles; FAIR goals establish
guidelines for data pipelines to ensure the validity and readi-
ness to use.97,98 Scientific research data from federally funded
grants increasingly need to adhere to FAIR data principles. The
International Union of Pure and Applied Chemistry (IUPAC)
has also begun to establish FAIR Chemistry guidelines for
helping chemists manage their data.99 Hardy and Heyse have
discussed how FAIR data policies can benefit biotech startups.100

In general, adoption of FAIR principles can over time lead to
efficient retrospective analysis of legacy data, avoiding expensive
manual interpretation of literature and archived data.

However, it remains unclear how to best address aspects of
these principles while protecting intellectual property (IP),
especially within companies where data is strategically valu-
able. In a thoughtful perspective,101 Delannoy describes this
problem between academic and industrial stakeholders: ‘‘the
productivity of a project is measured by its capacity to transpose
the research into products or services that will create business
opportunities for the company. Patents are protected and even
confidential for some time before being publicly published.
For the academic partner, research is mostly evaluated by
the scientific publications and communications that are pub-
lished during a project. Papers are clearly public. It is therefore
key to ensure a good balance between the protection of IP that
the company needs and the objective to publish that the
university seeks.’’ Biopharma groups have considered aspects
of this as part of their digital transformation process,102 but it
still remains unclear how to best handle this issue moving
forward.
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4. Conclusions

We have provided an outlook on nonviral delivery using
polymer-based therapeutic nanocarriers for small molecule
and genetic drugs. In the rapidly growing field of gene therapy,
the remarkable progress of integrating polymer chemistry with
ML offers a glimpse of the next evolution in design rules and
practice for chemists. Such data-driven approaches can lay the
groundwork for advancing more genetic treatments to market
at a rate that was inconceivable decades ago.

Many approved gene therapies to date can be traced to
academic laboratories or small companies.103 While important
advances have been made, scaling of these efforts has been
hampered by both the complexity of the data and the difficulty
of integrating and interpreting disparate data streams. MI
methods offer enormous potential because of the possibility
of scaling experimental and computational methods, including
polymer-cargo formulation. In our own experience, we believe
that MI can be leveraged for the efficient design of polymer
nanoparticles for nonviral gene therapy. Our SAYERt plat-
form104 connects high-throughput polymer chemistry, polyplex
nanoparticle characterization, screening/delivery in vitro and
in vivo, and predictive polymer design guided by ML and AI.
Fit-for-purpose delivery vehicles can be rapidly produced,
down-selected for cargo and tissue specificity, and assayed in
a time- and cost-effective manner.

Advances in the integration of experimental and MI methods
will continue to evolve over the coming decades. The existing R&D
landscape will likely develop in profound and unexpected ways.
The rise of generative AI is one such high-impact example. We
have attempted above to demonstrate how this integration of
experimental and MI methods can be used to discover unexpected
correlations and new insights into structure–property relation-
ships. For the field of gene therapy in particular, involving highly
complex interplay between physical, biological, and clinical
factors, such modalities can fuel more rapid innovation and
affordable solutions that benefit people worldwide.

Glossary of MI terms

� LGBM: Light gradient boosting machine, a tree-based
machine learning algorithm.
� SHAP: SHapley Additive exPlanations, a method used to

understand the role of the features in an ML method.
� PCA: Principal component analysis, a method to transform

high-dimensional data to low-dimensions.
� tSNE: T-distributed Stochastic Neighbor Embedding, a

clustering algorithm used to visualize high-dimensional data
in 2 or 3 dimensions.
� BO: Bayesian optimization, an algorithm typically used to

optimize properties expensive or difficult to evaluate.
� GPR: Gaussian process regression.
� API: Application programming interface, a protocol that

allows to read, write and/or manage different instances pro-
grammatically, such as software applications or a piece of
hardware.

� ELN: Electronic laboratory notebooks, a software applica-
tion that allows experimentalists to keep a digital logbook.
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33 U. Lächelt and E. Wagner, Chem. Rev., 2015, 115, 11043–11078.
34 R. Upadhya, S. Kosuri, M. Tamasi, T. A. Meyer, S. Atta, M. A. Webb

and A. J. Gormley, Adv. Drug Delivery Rev., 2021, 171, 1–28.
35 S. Zhang, J. Shen, D. Li and Y. Cheng, Theranostics, 2021, 11,

614–648.
36 U. K. Laemmli, Proc. Natl. Acad. Sci. U. S. A., 1975, 72, 4288–4292.
37 J. R. Vieregg, M. Lueckheide, A. B. Marciel, L. Leon, A. J. Bologna, J. R.

Rivera and M. V. Tirrell, J. Am. Chem. Soc., 2018, 140, 1632–1638.
38 J. C. Kaczmarek, P. S. Kowalski and D. G. Anderson, Genome Med.,

2017, 9, 60.
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