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Learning molecular dynamics: predicting the
dynamics of glasses by a machine learning
simulator†
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Many-body dynamics of atoms such as glass dynamics is generally

governed by complex (and sometimes unknown) physics laws. This

challenges the construction of atom dynamics simulations that

both (i) capture the physics laws and (ii) run with little computation

cost. Here, based on graph neural network (GNN), we introduce an

observation-based graph network (OGN) framework to ‘‘bypass all

physics laws’’ to simulate complex glass dynamics solely from their

static structure. By taking the example of molecular dynamics (MD)

simulations, we successfully apply the OGN to predict atom trajec-

tories evolving up to a few hundred timesteps and ranging over

different families of complex atomistic systems, which implies that

the atom dynamics is largely encoded in their static structure in

disordered phases and, furthermore, allows us to explore the

capacity of OGN simulations that is potentially generic to many-

body dynamics. Importantly, unlike traditional numerical simula-

tions, the OGN simulations bypass the numerical constraint of small

integration timestep by a multiplier of Z5 to conserve energy and

momentum until hundreds of timesteps, thus leapfrogging the

execution speed of MD simulations for a modest timescale.

1. Introduction

Simulating many-body dynamics of atoms (e.g., glass dynamics)
is key to predict the dynamical and transport behaviors of

complex atomistic systems and to access their microscopic
origins thereof.1,2 However, the physics laws (i.e., the force-
fields herein) that govern atom dynamics are essentially
complex and sometimes unknown,3,4 which challenges the
construction of physics-driven simulations that both (i) capture
the physics laws and (ii) run with little computation cost.5

In that regard, machine learning (ML) offers an attractive
opportunity to revisit these challenges facing physics-driven
simulations.6,7 Indeed, ML excels at end-to-end learning from
observed data to capture complex physics and, once trained,
yields accurate-yet-fast predictions.8,9 However, unlike studying
a static system, predicting dynamics of interacting systems pre-
sents a grand challenge facing traditional ML models10–12—which
generally fail to (i) explore the vast configuration space of an
interacting system,13,14 (ii) describe the relational geometry of a
configuration,14,15 (iii) infer the complex interaction modes,15,16

and (iv) conserve energy and momentum.17–19

To mitigate the issues, graph neural network (GNN) has
been recently proposed as an attractive ML model for dynamics
prediction.11,15 Unlike traditional ML models requiring human-
defined structural descriptors,13,14 the GNN model directly
takes as inputs the static structure and passes messages
between atoms, so as to (i) keep the structural information
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New concepts
Modeling atom dynamics is key to facilitate the discovery of new glasses
with tailored dynamical and transport properties. However, the physics
complexity often renders it challenges to simulate complex dynamics of
realistic glasses by traditional molecular dynamics (MD) simulations.
Here, we introduce an observation-based graph network (OGN)
framework to address the issue, by watching to simulate glass
dynamics solely from their static structure, namely, ‘‘bypassing all

physics laws’’. As a major outcome of this work, our results establish
the OGN simulation as an efficient paradigm to emulate many-body
simulations featuring complex dynamics (and complex physics) for a
modest timescale, which, in turn, unveils the predictive power of static
structure in dynamical evolution of disordered phases.
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inherently relational during prorogation15,20 and (ii) automati-
cally identify key structural features (if any) relevant to the
dynamics.11,21 Despite its predictive power in structural dyna-
mics—as recently revealed in a few toy models,20–26 the poten-
tiality of GNN remains largely untapped in simulating materials
or complex interacting systems (e.g., glass dynamics),11,21,27

which echoes a long-standing debate about whether particle
dynamics is in some way encoded in their static structure in
disordered phases.10,11,28 As such, it remains elusive whether
GNN could watch to simulate complex atom dynamics solely
from their static structure. This question is a manifestation of a
more general, grand challenge of ML in ‘‘learning complex
physics from pure observations’’.6,29,30 Indeed, the underlying
physics laws, no matter how complex they are, are encoded into
the phenomenal observations6,31—from which ML may decode
the laws into a surrogate ML model,6,7 which, in turn, may
reduce the computational expense of physics laws32–34 (i.e., the
entire formula set of atomic force-fields and Newton’s laws
of motion herein35). However, little is known about GNN’s
capacity to ‘‘bypass all physics laws’’ to simulate complex atom
dynamics,15,20 let alone its capacity to accelerate the
simulations.4,23

Here, based on an archetypal category of GNN termed
message-passing neural network (MPNN),36,37 we introduce
an observation-based graph network (OGN) framework to
‘‘bypass all physics laws’’ to simulate complex dynamics of
realistic glasses for a modest timescale, as exemplified by
molecular dynamics (MD) simulations ranging over different
families of complex atomistic systems that exhibit distinct
types of bonds,38 including (i) binary Lennard-Jones (LJ) liquid
and its melt-quenched glass,39 (ii) ionocovalent silica liquid,40

(iii) covalent silicon liquid,41 and (iv) metallic Cu64.5Zr35.5

liquid,42 which unveils the predictive power of static structure
in microscopic-timescale atom trajectories (e.g., Z5 timesteps
per prediction for LJ liquid or potentially much longer time-
scale using giant OGN architecture) and, iteratively, in the
short-term dynamical evolution of disordered phases up to a
few hundred timesteps (e.g., Z100 timesteps for LJ liquid) and,
furthermore, allows us to explore the capacity of OGN simula-
tions that is potentially generic to complex many-body
dynamics. Importantly, by predicting Z5 times longer timestep
per prediction, we demonstrate that the OGN engine is com-
putationally efficient to simulate for a short timescale of a few
hundred MD steps the complex systems that are otherwise
computationally expensive (or forbidden), ready to accelerate
and enrich traditional simulation toolkit built upon physics
laws within the scope of a modest timescale.

2. Results and discussion
2.1 Graph analogy to MD simulation solely informed by the
static structure

To establish our conclusions, we first build a ground-truth MD
simulator and its analogous OGN counterpart. Fig. 1A and B
shows a schematic of the MD simulator and its OGN analogy,

respectively. The MD simulator adopts a routine algorithm
modelling atom dynamics according to Newton’s laws of
motion.5,35,43 In detail, starting from an initial configuration
that regulates the atom positions {ri} and velocities {vi}, the MD
algorithm consists of a loop of 4 successive steps,5,35 namely,
(i) computing the system’s potential energy U({ri}) by summing
up all interatomic interactions for the current atom positions
{ri}, (ii) calculating the resultant force {Fi} experienced by each
atom i via energy differentiation (i.e., Fi = –qU/qri), (iii) obtain-
ing each atom’s acceleration {ai} from {Fi} as per the Newton’s
law of motion, that is, ai = Fi/mi, where mi is the mass of atom i,
and finally, (iv) updating the atom positions and velocities after
a small, fixed timestep via numerical integration (e.g., Verlet or
leapfrog algorithm43,44). Eventually, this four-step loop yields
the position of the atom at a function of time, that is, the atom
trajectory. Note that, when computing U({ri}), we typically adopt
a neighbor-list algorithm to reduce computation cost.35,45

Specifically, by adopting a cutoff distance rc to prescribe the
neighbor atoms of each atom i, viz., the ‘‘neighbor-list’’ of atom
i45 (see Fig. 1A), the neighbor-list algorithm reduces the num-
ber of times the distance between a pair of atoms is calculated,
where the interaction energy between a pair of atoms is zero if
their distance is larger than rc. Overall, the MD simulator is
strictly driven by this four-step loop algorithm obeying New-
ton’s laws of motion,35 wherein the motion of each atom is
essentially governed by its complex (or unknown) interactions
with its neighbor-list atoms.

In analogy to the MD simulator, we build herein a surrogate
graph network simulation engine solely driven by the observed
structural evolution (i.e., the time-dependent atom positions
and velocities) to replace the entire four-step loop of MD
algorithm, as illustrated in Fig. 1B, so termed observation-
based graph network (OGN). Similar to the MD simulator, the
OGN is comparably driven by a four-step computation loop to
predict atom dynamics, including (i) converting the neighbor-
list of each atom i into an atomic graph Gi with nodes {ni} and
edges {eij} representing the atoms and their interactions,
respectively (see Fig. 1B), (ii) updating the edges {eij},
(iii) subsequently updating the nodes {ni}, and, finally, (iv) decod-
ing the nodes {ni} to update the atom positions and velocities.
Fig. 2A shows the architecture of OGN built to watch atom dances
and to simulate glass dynamics, where the OGN simulation engine
yields the next-step configuration through 4 consecutive compo-
nent layers.11,27 Details about the four-component OGN architec-
ture are provided in the Methods section. Notably, the OGN
entirely bypasses the MD algorithm that follows Newton’s law of
motion5,35 and, consequently, offers a physics-blind, closed-loop
simulation engine between the present input configuration
and the next-step output configuration, allowing iteratively naive
prediction of atom positions and velocities as a function of time
(i.e., atom dynamics).

Unlike the MD simulator that computes particle-based
dynamics, the OGN predictions purely rely on graph trans-
formation that embeds the information of atom motions. This
graph-based dynamics presents a key advantage of message-
passing neural network36,37 (MPNN) architecture adopted by
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the OGN (see Fig. 2A), which excels at updating graph geometry
relationally through message-passing between each intercon-
nected edge and node and, in an automatic manner, identifying
the pivotal, hidden structural patterns relevant to graph
dynamics11,27—making the OGN potentially a graph analogy
to MD simulation but solely informed by the static structure,
namely, bypassing all physics laws to simulate atom dynamics.

2.2 Watching to simulate Lennard-Jones system by OGN

Based on the four-component OGN framework, we now con-
duct an OGN simulation to predict atom dynamics from pure
structural observations, by taking the example of a Kob–
Andersen-type binary Lennard-Jones (LJ) A80B20 liquid, which
is an archetypal model well established to investigate the
generic relaxation behaviors of glassy systems governed by
pairwise interactions.11,39 Details about the MD simulation
and the training process can be found in the Methods Section.
In brief, we train the OGN by minimizing a loss function L that
is defined as the mean square error (MSE) per atom between
true versus predicted next-step output configuration, namely,

L ¼
P
i

Oi;true �Oi;pred

� �2.
N; wherein N is the number of atoms

in the configuration, and Oi is the output next-step change of
atom position dri and velocity dvi for each atom i, i.e., Oi = [dri,
dvi]. Indeed, we find that the loss function L quickly reduces to
a miniscule level (10�4) and reaches a plateau in 1000 training
epochs (see Section S1 in ESI†), which suggests that the OGN
exhibits a powerful learning capacity of the observed atom
dynamics and is able to offer an accurate prediction of
next-step atomic motions.

We then use the well-trained OGN to simulate atomic
motions over time (or steps) in a test configuration, as com-
pared to the ground-truth MD simulation (see Movie S1 in
ESI†). Fig. 2B shows the predicted versus true 100-steps atomic
trajectories of randomly selected atoms in the test configu-
ration. Notably, the predicted trajectories exhibit an excellent
agreement with that computed by the ground-truth simulation.
Further, Fig. 2C shows the density scatter plot of the predicted
versus true atom positions and velocities (along x-, y-, and
z-axis) in the test configuration at the last step. We find that
both the position and velocity data points are well located in

Fig. 1 Graph analogy to molecular dynamics (MD) simulation. (A) Schematic illustrating a molecular dynamics (MD) simulation that computes atomic
motions by a numerical algorithm obeying Newton’s law of motion5,35 (see text for details), wherein the trajectory of each atom is governed by its
interaction with its neighbor atoms within a cutoff distance (i.e., neighbor-list35,45). (B) Illustration of constructing a surrogate graph network simulation
engine to predict atomic motions, wherein the neighbor-list of each atom is converted into an atomic graph built with nodes and edges representing the
atoms and the interactions, respectively. Relying on message-passing neural network (MPNN)36,37—i.e., a graph network that takes as inputs the atomic
graphs and is trained by observed atomic motions (see text for details), the model learns to update the input graphs (i.e., edge update followed by node
update) to predict the graph dynamics and the atomic motions thereof.
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the vicinity of y = x identity line. The root mean square error
(RMSE) of position per atom is computed as 0.03, significantly
smaller than the length scale of cage effect47 in the LJ system
(B0.4, see Section S2 in ESI†), which suggests that OGN
simulations offer accurate predictions of not only the long-
range atom migrations between vacancies48 but also the short-
range atom vibrations within a vacancy known as cage
effect.47,48 Similarly, the RMSE of velocity per atom is calculated
as 0.32, an order of magnitude smaller than the velocity scale of
the LJ system (i.e., O3.0 herein).39 Note that the velocity scale of
an atomistic system is defined herein as the standard deviation
of atom velocities, considering the fact that the distribution of
atom velocities is approximately a Gaussian distribution with a
zero mean and a standard deviation of O(kBT/m) along x-, y-,
and z-axis,49 where kB is the Boltzmann constant, T is the
system temperature, and m is the average atom mass. Note
that, since the error will accumulate over prediction steps and
lead to spurious effect in long-term dynamics21,26,43 (up to a few
hundred timesteps herein, see Section S3 in ESI†), we restrict
herein the scope of OGN to predict the near-future atomic
trajectories. Although the error accumulation surges at particle
level in hundreds of timesteps, we nevertheless find that the
OGN model exhibits some extent of error tolerance up to
thousands of timesteps for certain system-level quantities, such
as mean square displacement (MSD) and system energy

(see Section S4 in ESI†). Overall, these results demonstrate
that, without any prior physics knowledges, OGN can learn
complex atom dynamics from pure observations of structural
evolution and enables accurate predictions of near-future
atomic trajectories in the LJ system.

2.3 Watching to simulate realistic glass dynamics by OGN

In analogy to OGN simulations of LJ systems, we now investi-
gate whether the learning capacity of OGN can be generalized to
atom dynamics governed by more complex interatomic inter-
actions. In that regard, we conduct MD simulations ranging
over different families of realistic atomistic systems that exhibit
distinct types of bonds, as illustrated in Fig. 3A, including
(i) ionocovalent silica (SiO2) liquid governed by radial 2-body
interactions comprising both the short-range pairwise interac-
tions and the long-range Coulombic interactions,40 (ii) covalent
silicon (Si) liquid governed by not only radial 2-body interac-
tions but also angular 3-body interactions,41 and (iii) metallic
Cu64.5Zr35.5 liquid governed by many-body interactions that are
decomposed into the pairwise nuclei interactions and the
embedded nuclei–electron cloud interactions.42 Details about
the MD simulations and the training procedures can be found
in the Methods Section. Note that we train the OGN for each of
these systems in the same way as that for the LJ system, which

Fig. 2 Observation-based graph network (OGN). (A) Schematic illustrating the architecture of observation-based graph network (OGN), which predicts
the next-step change of atom positions and velocities in an input atomistic configuration, by taking the example of a binary Lennard-Jones (LJ) A80B20

liquid.39 The OGN model consists of 4 consecutive component layers,11,27 namely, (i) the input graph layer that takes the input configuration to build
atomic graphs, (ii) the encoder layer that encodes graphs, (iii) the message-passing neural network (MPNN) layers that update graphs (10 successive
MPNN layers herein), and finally, (iv) the decoder layer that decodes graphs to obtain the next-step configuration (see text for details). (B) True (left panel)
versus predicted (right panel) 100-steps atomic trajectories for randomly selected atoms in a test 265-atoms A80B20 configuration under NVE ensemble.
LJ unit is applied. The box side length is 6.038, the neighbor-list cutoff is set as 3.0, and the timestep is set as 0.005.39,46 The configuration has been
relaxed to an equilibrium liquid temperature T E 3.0. (C) Density scatter plot of the predicted versus true atom positions (left panel) and velocities (right
panel) (along x-, y-, and z-axis) in the test configuration at the last step. The y = x line (grey dash) is added as a reference.
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allows us to explore the capacity of OGN simulations that is
potentially generic to complex many-body dynamics.

Using the observations of these complex atom dynamics, we
now examine the learning capacity of OGN to simulate these
systems. Similar to LJ system, the loss function L quickly
reduces to a miniscule level during training (see Section S1 in
ESI†), so that the OGN offers an accurate prediction of next-step
atomic motions for each of these complex systems. We then use
the well-trained OGN to predict atomic motions in these
complex systems as a function of time (see Movies S2–S4 in
ESI,† for SiO2, Si, and Cu64.5Zr35.5, respectively). Fig. 2B pro-
vides the true versus predicted 100-step atomic trajectories for
randomly selected atoms in a test configuration for SiO2, Si,
and Cu64.5Zr35.5, respectively, wherein the settings of MD
simulations and OGN architectures remains the same as that
for the LJ system (see Methods section). Notably, we find that,
regardless of the nature of the interatomic interactions, OGN is
able to offer an accurate prediction of near-future atomic
trajectories in excellent agreement with that computed by the
ground-truth simulations. Moreover, Fig. 3C shows the density
scatter plot of the predicted versus true atom positions and
velocities (along x-, y-, and z-axis) in the test configuration at
the last step for SiO2, Si, and Cu64.5Zr35.5, respectively, wherein
all the datapoints are well located in the vicinity of y = x identity

line to illustrate the high accuracy of OGN predictions. Further,
we compute the RMSE of position and velocity for each of these
systems (see Fig. 3C), which turn out to be a very miniscule
error that is 1-to-2 orders of magnitude smaller than, respec-
tively, the length scale associated with their cage effect47,48 (see
Section S2 in ESI†) and the velocity scale associated with their
system temperature (i.e., O(kBT/m), see Section 2.2),49 suggest-
ing that OGN simulation is able to capture the fine details of
complex atom vibration modes.48 Overall, these results estab-
lish the conclusion that OGN is a powerful framework to
simulate different systems exhibiting distinct types of bonds
and is potentially generic to complex many-body dynamics.
Besides that, we have also demonstrated that the OGN is a
versatile tool to train efficiently by small configurations but
easily generalize to simulate very large, complex systems, such
as systems at different size (see Section S5 in ESI†), temperature
(see Section S6 in ESI†), and density (see Section S7 in ESI†).

2.4 Accelerating MD simulations by OGN

Finally, in addition to its predictive power, we investigate
whether the OGN can lighten the computational burden of
physics laws to accelerate MD simulations. To this end, relying
on a novel automatic differentiable (auto-diff) programming
platform ‘‘JAX’’,50 we conduct a fair runtime comparison

Fig. 3 Simulating complex atom dynamics by OGN. (A) Snapshots of three complex atomistic systems exhibiting distinct types of bonds, including
(i) ionocovalent silica (SiO2) liquid governed by radial 2-body interactions,40 (ii) covalent silicon (Si) liquid governed by both angular and radial
interactions,41 and (iii) metallic Cu64.5Zr35.5 liquid governed by many-body interactions42 (see text for details). The configuration built for SiO2, Si, and
Cu64.5Zr35.5 contains 363, 128, and 245 atoms, respectively, and the box side length is set to match their experimental density. (B) True (left panel) versus
predicted (right panel) 100-steps atomic trajectories for randomly selected atoms in a test configuration under NVE ensemble for SiO2, Si, and
Cu64.5Zr35.5, respectively. The liquids of SiO2, Si, and Cu64.5Zr35.5 have been relaxed to an equilibrium temperature around 3600 K, 2000 K, and 1500 K,
respectively, and the timestep is set as 1 fs. Note that, due to its low atom diffusivity, we extend the trajectory of Cu64.5Zr35.5 to 400 steps for visibility.
(C) Density scatter plot of the predicted versus true atom positions (left panel) and velocities (right panel) (along x-, y-, and z-axis) in the test configuration
at the last step for SiO2, Si, and Cu64.5Zr35.5, respectively. The y = x line (grey dash) is added as a reference.
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between OGN and the ground-truth MD simulation, both built
utilizing the recently developed JAX-MD package,51 wherein the
novel JAX platform enables computationally efficient auto-diff
MD simulations.50,51 Despite its fast execution speed,51 MD
simulation shows an intrinsic computation bottleneck arising
from the small integration timestep dt,43 which is a strict
numerical constraint rooted in numerical integration-based
MD algorithms to conserve energy and momentum,43,44 as
illustrated in Fig. 4A. This bottleneck presents a very general
challenge facing physics-driven simulations, which are gene-
rally built upon temporospatial numerical integration.35

In contrast, OGN is purely driven by observed data and, thus,
allows us to explore the capacity of OGN simulation to bypass
the small timestep dt, so that one OGN prediction step can
span over k MD steps (k 4 1) to enable the speedup of MD
simulations (see Fig. 4A).

Fig. 4B provides an example of the evolution of system
energy and momentum with regard to MD steps for a test LJ
configuration using a ‘‘Fast-OGN’’ by setting k = 5 MD steps,
where (i) the kinetic, potential, and total energy and (ii) the
momentum along x-, y-, and z-axis are computed separately to
compare with their MD counterparts. Notably, despite its long
timestep, the Fast-OGN remains energy and momentum con-
servation during a rollout of 100 MD steps, while, in contrast,
MD simulation using the same long timestep (i.e., k = 5 MD

steps) destabilizes energy and momentum and faces some
spurious effect after only a few MD steps (see Fig. 4B). Note
that we restrict herein the scope of prediction to near-future
atomic trajectories to avoid the spurious effect of error accu-
mulation over iterations (see Section S3 in ESI†). It is worth to
mention that, for each type of atomistic systems, we finely tune
the Fast-OGN to best balance its prediction accuracy and
execution speed (see Section S1 in ESI†), by (i) minimizing
the number of MPNN layers until the model accuracy deterio-
rates severely (herein we select 2 MPNN layers, see Section S8 in
ESI†), and, concurrently, (ii) maximizing the k MD steps per
prediction before the input configuration loses its predictivity
(herein we select k = 5 for LJ and 10 for other systems, see
Section S9 in ESI†).

We now apply the Fast-OGN to make a runtime comparison
with MD simulation. Fig. 4C provides the runtime comparison
between MD simulation and Fast-OGN after a rollout of 100 MD
steps, as a function of system size N for the LJ, Si, SiO2, and
Cu64.5Zr35.5 system, respectively. As expected, the runtime cost
tc is linearly proportional to N (i.e., tc p N),45,51 where the slope
represents the intrinsic runtime cost of computing all pairwise
distances within a neighbor-list, and the positive intercept may
arise from the inevitable computation cost of code execution in
the programming platform.52,53 We find that, except for LJ
system, Fast-OGN yields a smaller slope than MD simulation

Fig. 4 Accelerating MD simulations by OGN. (A) Schematic illustrating the runtime acceleration of molecular dynamics (MD) simulation by observation-
based graph network (OGN), wherein one OGN prediction step can span over k MD steps to enable the speedup of MD execution. (B) The evolution of
kinetic, potential, and total energy (upper panel) and momentum along x-, y-, and z-axis (lower panel) with respect to MD steps for a test 265-atoms LJ
configuration using a ‘‘Fast-OGN’’ by setting k = 5 MD steps per prediction (red). The MD simulation results by setting k = 1 (black) and k = 5 (orange) are
added for comparison. (C) Runtime comparison between MD simulation (black square) and Fast-OGN (red circle) after a rollout of 100 MD steps, as a
function of system size N for LJ, SiO2, Si, and Cu64.5Zr35.5, respectively. All computations are performed on Nvidia GPU P100 using float32 data format in
Google Colab environment.53 The lines are guides for the eyes. Note that, due to the absence of certain neighbor-list packages in the state-of-the-art
version of JAX-MD,51 the computation cost of MD simulation for Si and Cu64.5Zr35.5 shows a quadratic scaling with respect to N51,55 (rather than a linear
scaling45). (D) The rollout runtime of MD simulation (square) and Fast-OGN (circle) at N = 10 000 atoms, as a function of the interaction complexity
index—which is defined herein as the ratio of the computational expense between the empirical force-field and the LJ force-field (see text for details).
The grey area denotes where the MD rollout runtimes are distributed. The horizonal red line is a guide of OGN rollout runtime for the eyes.
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so as to enable simulation acceleration when extrapolated to
large systems. Notably, when the system size increases up to
N = 10 000 atoms, it becomes evident that Fast-OGN can out-
perform MD simulation with 2–10 times faster runtime for the
different systems (except for the LJ system39—a too simple
model).

Moreover, Fig. 4D shows the rollout runtime of MD simula-
tion and Fast-OGN at N = 10 000 atoms, as a function of the
interaction complexity index—which is defined herein as the
ratio of the time used to compute the empirical potential
energy for a 100-atoms configuration, with respect to the time
used for a reference 100-atoms LJ configuration. Obviously,
since Fast-OGN is purely driven by observed atomic motions, its
runtime cost is independent of the underlying complexity of
interatomic interactions. In contrast, the execution speed of
MD simulation greatly relies on the computational complexity
of empirical potential interactions, and from the simple LJ
interaction to more complex many-body interaction (see Methods
section), finer interaction descriptions are added empirically to
augment the computation burden of MD simulation.54,55 Overall,
these results highlight the ultrafast execution speed of OGN
simulations, which bypass all physics laws—including (i) the com-
plexity of interatomic interactions and (ii) the numerical constraint
of small integration timestep, readily accelerating interaction-
complex and large-scale simulations that are otherwise computa-
tionally expensive (or forbidden).

Overall, by leveraging auto-diff programming,56 we pioneer
to build, integrate, and compare physics simulator and its
surrogate ML counterpart (i.e., MD simulation51 versus OGN)
on the same platform ‘‘JAX’’,50 which benefits us in several
aspects. First, compared to traditional programming platforms
that rely on handwritten derivatives,57 auto-diff platforms excel
at computing on-the-fly the backward gradient of any quantities
(e.g., force calculation in MD algorithm) with no additional
computation burden associated with differentiation50—an
operation that widely exists in ML and simulations,35,58 so as
to accelerate the execution speed of ML and simulations.51

Second, the same programming language removes communi-
cation barriers between ML and simulations, facilitating their
seamless integration.5 Third, the auto-diff JAX platform enables
naive ‘‘just-in-time (JIT)’’ compilation of ML and simulations
on high-performance hardware accelerators,50,51 and moreover,
by following the same JIT rules of compilation mode and
parallelization scheme,52,55 ML and simulations accelerate their
code execution in the same fashion. Finally, this allows us to
make a ‘‘fair’’ runtime comparison between OGN and MD simu-
lation—which is essentially a computationally-efficient reference.
As such, it is remarkable that the OGN exhibits the ‘‘genuine’’
power to leapfrog the execution speed of MD simulations.

2.5 Unveiling the predictive power of liquid-versus
glassy-state static structure by OGN

Finally, in addition to glass melt simulations, we apply Fast-
OGN to predict atom dynamics in melt-quenched glasses
featuring significantly more confined motions. Fig. 5A shows
the root mean square displacement as a function of time in LJ
liquid and its melt-quenched glass, respectively. As expected,
the glassy-state atom displacements become orders of magni-
tude lower than that under liquid state, which suggests that,
unlike the fast relaxation of liquid, glassy-state static structure
exhibits greatly delayed memory loss so that the present
configuration is likely to have a stronger correlation to the
next-step prediction. To this end, we train and compare two
Fast-OGN models that predict liquid- and glassy-state
dynamics, respectively, by taking the example of LJ liquid and
its melt-quenched glass. Fig. 5B provides the two models’
training curves by setting the Fast-OGN timestep k = 20 MD
steps per prediction. Indeed, we find that the Fast-OGN for
glassy-state dynamics exhibits 1 order of magnitude lower
prediction loss L than that for liquid-state dynamics for both
the training and test sets. This confirms that, ascribed to its
delayed memory loss, the glassy-state static structure exhibits
more predictive power in atom dynamics for a fixed timestep
than its liquid-state counterpart.

Fig. 5 One-step predictivity of Fast-OGN using liquid- versus glassy-state static structure. (A) Comparison of root mean square displacement between
liquid- and glassy-state dynamics as a function of MD time, by taking the example of binary Lennard-Jones (LJ) A80B20 liquid and its melt-quenched
glass.39 (B) Test set loss L as a function of the number of training epochs for liquid- and glassy-state dynamics, respectively. The Fast-OGN timestep
(denoted as k (dt) herein) is set as k = 20 MD steps per prediction. (C) Final loss L with respect to the Fast-OGN timestep k (dt) for liquid- and glassy-state
dynamics, respectively. The lines are guides for the eyes.
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Moreover, we evaluate the one-step predictivity limit of static
structure for both the LJ liquid and glass, by training Fast-OGN
models over a wide range of timestep (see Section S9 and S10 in
ESI†). Fig. 5C shows the prediction loss L of, respectively,
liquid- and glassy-state static structure in the test set as a
function of Fast-OGN timestep. Compared to liquid-state
dynamics model, we find that the glassy-state model can
predict roughly 2� longer timestep per prediction, that is, from
k = 5–10 MD steps (under liquid state) to k = 10–20 MD steps
(under glassy state) per prediction, well before their prediction
error increases exponentially with longer timestep and becomes
evidently unsatisfactory. Note that, as the one-step prediction
error would accumulate over iterations (see Section S3 in ESI†),
the Fast-OGN is restricted to predict short-term atom trajec-
tories, that is, up to B100 MD steps for LJ liquid and B200 MD
steps for LJ glass. It is worth pointing out that the timescale
reached by the iterative OGN prediction fully depends on the
magnitude of one-step prediction error—which can be reduced
by (i) increasing the model complexity such as the number of
message-passing layers and (ii) simplifying the functional
mapping such as incorporating larger neighbor list relevant
to the central atom’s motion during the prediction step. These
model settings have been optimized to minimize the one-step
prediction error (see Methods section), and we expect more
endeavor in that direction to extend the prediction timescale.
Overall, these results demonstrate the enhanced predictive
power of static structure in glassy-state atom trajectories up
to tens of MD steps per prediction and iteratively up to
hundreds of MD steps, roughly 2 times longer timestep and
timescale of the liquid-state atom trajectories.

It is worth mentioning that, since OGN is essentially a math
operation to transform graph pattern, the theoretical implica-
tion of OGN is not simply to replace Newton’s equations, but to
infer the pivotal structural patterns that govern atom dynamics.11,59

Those hidden patterns synthesized in OGN a posterior validate
that the atom dynamics is largely encoded in their static
structure, which echoes the recent finding that the topography
of local energy landscape is largely encoded in the static
structure.10,28 Then the next question is: What timescale of atom
dynamics can be reached by the predictive power of their
static structure? Ideally, this reachable timescale refers to all
timescales associated with atom reorganization in this local
energy landscape of the static structure, that is, a wide spectrum
of relaxation time between liquid- and glassy-state atom
dynamics.11 However, without using a giant model architecture
(e.g., hundreds of deep and wide MPNN layers), the present OGN
is still far from fully harnessing the predictive power of static
structure. If the computational resource is unlimited, a giant-
OGN architecture with considerably deep and wide MPNN layers
would transform the initial graph in a very flexible and serialized
manner, theoretically able to emulate much longer dynamics in
one prediction step. We expect more endeavor in that direction
to extend the prediction timescale. Overall, it is remarkable that,
regardless of physics laws, the OGN simulation can predict near-
(and potentially far-) future dynamics in one prediction step
using solely the information of initial static structure—which

makes OGN fundamentally different from physics-driven toolkits
using infinitesimal timestep and presents a new paradigm of
dynamics modeling.

Note, however, that the present shallow OGN architecture is
designed to balance model accuracy and execution speed, so
that the one-step predictivity become limited to restrict OGN to
short-term dynamics applications. In that regard, by sacrificing
execution speed, a giant-OGN architecture with deep layers of
graph transformation theoretically holds the promise to predict
much longer timestep per prediction step and extend to longer-
term dynamics. Taking the present OGN as a basis, it remains a
largely unexplored opportunity that more advanced, sophisti-
cated OGN architecture can be developed to build a machine
learning simulation engine that can extend to the targeted
longer-term dynamics with a reasonable computational cost,
such as the coupling of the shallow OGN module with a deep
OGN module aiming to denoise the particle-level error accu-
mulation. Although it seems unlikely to fully eliminate the
propagation of errors, a delicate design of OGN architecture
and machine learning strategy (e.g., reinforcement learning to
train multiple particle-level agents that can denoise particle-
level errors) is likely to extend OGN to the targeted longer-term
dynamics. We expect that the present work would modestly
stimulate new development in that direction. Moreover, despite
the requirements of long timescale in most dynamics studies,
the practical applications of OGN in short-term dynamics
can still intrigue some impactful outcomes. For instance, when
integrating with some interpretable machine learning tech-
niques,60,61 the OGN model is likely to offer some insights into
the physics laws that governs atom dynamics—which is gen-
erally independent of timescale, such as developing an empiri-
cal forcefield from the numerous atomic trajectories in short
timescale.

3. Conclusion

Together, this work establishes the OGN simulation as an
efficient paradigm to simulate in short timescale the many-
body systems featuring complex dynamics (and complex
physics) by solely relying on the phenomenal observations,
which, in turn, unveils the predictive power of static structure
in dynamical evolution of disordered phases. Importantly, the
‘‘bypassed’’ computational burden allows OGN simulation to
readily accelerate and enrich the traditional simulation toolkit
built upon physics laws within the scope of a modest timescale,
that is, hundreds of MD timesteps. Future directions of OGN
simulation will be placed on extending its applicability to the
long-term glass dynamics, distilling the underlying interpreta-
ble physics, and enhancing the model transferability across
fields of many-body dynamics. Despite its limited applicability
to short-term dynamics, the OGN simulation intrigues com-
monalities in modeling the structural relaxation of disordered
phases over different material families, microscopic interactions,
and scales. This new approach holds the promise to stimulate
new developments in these directions of dynamics modeling and,
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ultimately, facilitates the design of novel noncrystalline phases
with tailored dynamical and transport properties.

4. Methods
4.1 MD simulations of four atomistic systems

(i) Binary Lennard-Jones liquid and its melt-quenched glass.
Here, we simulate the Kob–Andersen-type binary Lennard-Jones
(LJ) A80B20 liquid system (see Sections 2.2 and 2.4) and its melt-
quenched glass (see Section 2.5),39 that is, an archetypal model
well established to investigate the generic relaxation behaviors of
glassy systems governed by pairwise interactions,11,39 where the
pairwise energy Uij between atom i and j is described by the
general LJ potential:39

Uij ¼ 4eij
sij
rij

� �12

� sij
rij

� �6
" #

(4)

where rij is the interatomic distance between atom i and j, eij is the
minimum energy between atom i and j at their equilibrium
distance rm (eAA = 1.0, eAB = 1.5, and eBB = 0.5), and sij is a
constant proportional to rm (sAA = 1.0, sAB = 0.8, and sBB =
0.88).39 LJ unit is applied. The potential cutoff is 2.5, and the
interactions of atom pairs with a distance larger than this cutoff
are negligible and are set to zero.39

The initial configuration adopts a cubic box with periodic
boundary condition, and the side length is set as 2 � rc so as to
build small-size configurations to accelerate the training of
graph networks,26 where rc is the neighbor-list cutoff and is
defined as the sum of the empirical potential cutoff and the
neighbor-list bin size,35,45 i.e., rc = 2.5 + 0.5 (bin). The number
of atoms in the configuration is set to match a preset number
density of atoms r0 = 1.2 with a deduced glass transition
temperature Tg E 0.3,39,46 i.e., system size N = 265 atoms.
The atoms are randomly placed into the cubic box without any
overlap. The atom velocities along x-, y-, and z-axis in the initial
configuration are initialized as a normal distribution with a
zero mean and a standard deviation of O(kBT/m) = O3.0 to set
the system temperature as T = 3.0,49 where kB is the Boltzmann
constant, and m is the average atom mass. All simulations are
conducted under NVE ensemble. The timestep is set as 0.005 to
satisfy the numerical constraint of small integration timestep
for energy conservation.39,43 The initial configuration is relaxed
to an equilibrium liquid temperature around 3.0 by iteratively
rescaling the distribution of atom velocities to T = 3.0 at each
timestep until convergence, that is, multiplying each velocity by
O(EK/EK0) at each timestep until EK E EK0,49 where EK and EK0

are the system’s current and initial average kinetic energy per
atom, respectively. This equilibrium liquid is then relaxed at
T E 3.0 under NVE ensemble for 10 000 steps to obtain the
atomic trajectories. Finally, the melt-quenched glass is pre-
pared by quenching the equilibrium liquid to a low tempera-
ture T = 0.5 in 10 000 steps under NVT ensemble with a fictive
temperature Tf 4 0.5 (see Section S11 in ESI†). The glass is then
relaxed at T E 0.5 under NVE ensemble for 1 million steps to

obtain the atomic trajectories. All simulations are conducted
using the JAX-MD package.51

(ii) Ionocovalent silica liquid. The interatomic interactions
in ionocovalent systems consist of both the long-range pairwise
Coulombic interactions and the short-range pairwise interactions,40

which can be well described by the Buckingham-form empirical
potential,62,63 and the interatomic energy Uij between atoms i and j
is expressed as:40,62,64

Uij ¼
qiqj

4pe0rij
þ Aij exp �

rij

rij

 !
� Cij

rij6
þ Dij

rij24
(5)

where rij is the distance between each pair of atoms, qi is the
partial charge of each atom (qO = �1.047 and qSi = +2.094 for O
and Si atoms, respectively62), e0 is the dielectric constant, and Aij,
rij, Cij, and Dij are some parameters describing the short-range
interactions. The value of Aij, rij, Cij, and Dij are fixed based on
ref. 62 (viz., Aij = 1386.9, 17471.7 and 0.0 eV, Bij = 0.362 319,
0.205 205 and 1.0 Å, Cij = 174.8, 133.4 and 0.0 eV�Å,6 Dij = 113, 29,
and 3 423 200 eV Å24 for O–O, Si–O, and Si–Si interactions,
respectively). A cutoff of 8 Å is consistently used for the short-
range interactions.62 The long-range coulombic interactions are
calculated by damped shifted force (dsf) model65 with a damping
parameter of 0.25 and a cutoff of 8 Å.62 Note that, the last term in
this equation is artificially added to ensure a strong repulsion at
short distance, thereby preventing any atomic overlap known as
‘‘Buckingham catastrophe’’.62 The initial configuration adopts a
cubic box with periodic boundary condition and the side length
is set as 2 � rc, where rc = 8.0 Å + 0.8 Å (bin) and N = 363 atoms
(i.e., 121 Si atoms and 242 O atoms) so as to match the
experimental density of 2.2 g cm�3.66 The timestep is set as
1 fs, and the equilibrium liquid temperature is set as 3600 K.62

We then conduct simulations under NVE ensemble in the same
way as that for the LJ system.

(iii) Covalent silicon liquid. The interatomic interactions
in covalent systems consist of both the radial 2-body interac-
tions f2 and the angular 3-body interactions f3,41 and the total
potential energy U of covalent silicon system can be well
described by a 3-body Stillinger–Weber (SW) empirical potential:41

U rij; rik; yijk
� �

¼
X
i

X
j4 i

f2 rij
� �
þ
X
i

X
jai

X
k4 j

f3 rij; rik; yijk
� �

(6)

where rij is the distance between each pair of atoms, and yijk is
the angle between rij and rik. The radial 2-body interactions f2

between atom i and j is expressed as:41

f2 rij
� �
¼ Aijeij Bij

sij
rij

� �pij

� sij
rij

� �qij
� �

exp
sij

rij � aijsij

� �
(7)

where A = 7.049 556 277, B = 0.6 022 245 584, p = 4, q = 0, and
a = 1.8 are some fitting parameters, sij = 2.0951 Å is a constant
proportional to the equilibrium bond length, and eij = 2.1683 eV
is the minimum potential energy between atom i and j at
equilibrium.41 The angular 3-body interactions f3 of atom i
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with respect to its two neighbors j and k is expressed as:41

f3 rij; rik; yijk
� �

¼ lijkeijk cos yijk � cos y0ijk
� �2

� exp
gijsij

rij � aijsij

� �
exp

giksik
rik � aiksik

� � (8)

where g = 1.2 is a fitting parameter, y0ijk = 1091 is the preferred
energy-stable angle between rij and rik, and eijk = 2.1683 eV
and lijk = 21 are the penalty energy and its coefficient,
respectively.41 The SW potential has an automatic cutoff at
as = 3.77 Å,41 and the neighbor-list cutoff rc is herein set as
3.77 Å + 1.05 Å (bin). The initial configuration contains
128 atoms in a cubic box with periodic boundary condition,
and the side length is set as 13.45 Å, in accordance with the
experimental density of 2.53 g cm�3.67 The timestep is set as
1 fs, and the equilibrium liquid temperature is set as 2000 K.41

We then conduct simulations under NVE ensemble in the same
way as that for the LJ system.

(iv) Metallic Cu64.5Zr35.5 liquid. The interatomic interac-
tions in metallic systems are many-body interactions consisting
of both the pairwise nuclei interactions and the embedded
nuclei–electron cloud interactions,42 which can be well
described by the Embedded Atom Method (EAM) potential,68

and the potential energy Ui of a central atom i is formulated
as:42

Ui ¼ Fa

X
jai

rbðrijÞ
 !

þ 1

2

X
jai

fabðrijÞ (9)

where F is the energy gained by embedding the cation i in the
‘‘ocean’’ of delocalized electrons described by the local atomic
electron density r, f is a pair potential interaction describing
the cation-cation interactions, rij is the interatomic distance
between atom i and j, a, b represent element type of atom i and
j, respectively, and j denotes the neighbors of atom i within a
radius cutoff (7.6 Å for Cu64.5Zr35.5).42 The function profile of F,
r, and f for Cu64.5Zr35.5 is provided by ref. 42. The initial
configuration adopts a cubic box with periodic boundary con-
dition and the side length is set as 2� rc, where rc = 7.6 Å + 0.4 Å
(bin) and N = 245 atoms (i.e., 158 Cu atoms and 87 Zr atoms) so
as to match the experimental density of 59.32 atom/nm3.42 The
timestep is set as 1 fs, and the equilibrium liquid temperature
is set as 1500 K.42 Finally, all simulations are conducted under
NVE ensemble in the same way as that for the LJ system using
the JAX-MD package.51

4.2 OGN model architecture

We now take a closer inspection into the OGN functionality.
Fig. 2a shows the architecture of OGN built to watch atom
dances and to simulate glass dynamics. Starting from an
N-atoms input configuration with the information of atom
positions rif g 2 RN�3; velocities vif g 2 RN�3; and one-hot
representation58 of atom types {Ai} (e.g., Ai = [1, 0] or [0, 1]
for, respectively, A- or B-type atom i in a binary system), the
OGN simulation engine yields the next-step configuration
through 4 consecutive component layers:11,27

(i) the input graph layer that builds atomic graphs {Gi} by
converting the neighbor-list of each atom i into a geometric
graph Gi comprising nodes {ni} and edges {eij}, where the node
representation of atom i is ni = [Ai, vi] (i.e., the atom type and
velocity) and the edge representation between atom i and j is
eij = [rj � ri] (i.e., a directional distance between the two atoms).

(ii) the encoder layer that encodes graphs, where the encoder
contains a node-MLP (i.e., multilayer perceptron58) function
fn,encoder and an edge-MLP function fe,encoder that compute,
respectively, the embedding n0

i of each node ni (i.e., n0
i =

fn,encoder(ni)) and the embedding e0
ij of each edge eij (i.e., e0

ij =
fe,encoder(eij)).

(iii) the successive MPNN layers that update graphs, where the
l-th MPNN layer (l = 0, 1, 2, . . .) updates the edges {el

ij} and
nodes {nl

i} from previous layer by a sequential operation of edge
update followed by node update,11,27 namely, first using an
edge-MLP function f l

e to compute the edge update el+1
ij , that is,

el+1
ij = f l

e(el
ij, nl

i, nl
j) (10)

where the information of the two end nodes nl
i and nl

j are
passed into the edge el

ij, and then using a node-MLP function
f l

n to compute the node update nl+1
i , that is,

nlþ1i ¼ f ln nli ;
X
i

elþ1ij ;
X
j

elþ1ij

 !
(11)

where the aggregation information of the updated edges
P
j

elþ1ij

(outgoing edges) and
P
j

elþ1ij (incoming edges) are passed into

the node nl
i. Note that, the message passing between nodes and

edges is key to keep the graph geometry inherently relational
during propagation and allows the OGN to automatically
identify the non-intuitive, pivotal structural patterns relevant
to graph dynamics.11,27,59

(iv) the decoder layer that decodes graphs, where the decoder
is a node-MLP function fn,decoder that transforms the updated
nodes {ni} into the next-step change of atom positions {dri} and
velocities {dvi}, i.e., [dri, dvi] = fn,decoder(ni), so as to yield the
next-step configuration. More details about the model settings
are described in the following section.

4.3 OGN model settings

Based on the four-component OGN framework, we describe
herein several settings key to the OGN’s learning capability
(i.e., the training performance), including:

(i) MLP functional. The node- and edge-MLP functions can
exhibit different complexity of neural network representations,21

which, herein, are all set as the MLP consisting of one hidden
layer (64 neurons, ReLU activation) followed by an output layer
(64 neurons, ReLU activation).21 Note that the decoder has a non-
activated output layer containing 6 neurons (i.e., outputting dri

and dvi along x-, y-, and z-axis).
(ii) LayerNorm layer. In accordance with the dataset stan-

dardization (see below), all MLP (except the decoder) are
followed by a LayerNorm layer69—which generally improves
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the training stability.21 Note that, unlike the dataset standardi-
zation that normalizes each element in a node (or edge) array ni

over all the nodes (or edges) {ni} in the dataset,58 the Layer-
Norm operation normalizes each element in the array repre-
sentation of a single node (or edge) ni over all elements in the
array ni,

69 which is generally found to stabilize the training of
hidden neural layers.69

(iii) Graph concatenation. Further, we stabilize the train-
ing of the successive MPNN layers by concatenating the input
graph features {nl

i} and {el
ij} at each MPNN layer with the

constant graph embeddings {n0
i } and {e0

ij} offered by the
encoder,11 namely, nl

i = [nl
i, n0

i ] and el
ij = [el

ij, e0
ij] at the l-th

MPNN layer (see Fig. 2A).
(iv) Number of MPNN layers. Finally, by fixing all these

settings above, the OGN’s learning performance mainly relies
on the number of MPNN layers, and more successive MPNN
layers can significantly improve the model complexity and,
therefore, enhance the prediction accuracy.21,26 Moreover,
more layer-by-layer message-passing allow each node to receive
the updated message from further distant nodes and edges
(beyond the neighbor-list cutoff rc) that may potentially affect
the dynamics of the central node.11,27 Despite the fact that
more MPNN layers yields more accurate prediction, we find
that the training performance remains satisfactory even if the
OGN is simplified to adopt only one MPNN layer (see Section S8
in ESI†), as the model has already imbibed the entire neighbor-
list atoms that account for even the weakest interactions (at the
distance r E rc) responsible to the atom dynamics. When the
layer number l 4 2, we find that the enhancement of OGN’s
learning capacity becomes inconsiderable for our dataset (see
Section S8 in ESI†), which is likely ascribed to the fact that the
configurations in our training set are built using a small box
size of 2 � rc to promote the training efficiency, so that the
update message of every node and edge (when passing from the
1st to 2nd MPNN layer) has been propagated throughout
the entire atomistic configuration.11,27 Here, the OGN adopts
10 MPNN layers to offer an unlimited learning capacity (see
Sections 2.2 and 2.3). However, 2 MPNN layers nevertheless
allows us to construct a Fast-OGN (see Sections 2.4 and 2.5) that
offers a satisfactory prediction accuracy (see Sections S1 and S8
in ESI†).

4.4 OGN training procedure

All machine learning procedures are performed on the JAX
programming platform,50 and we describe herein several key
steps of the training procedure:

(i) Training and test sets. The training set is built upon
100 00 pairs of the current and next-step configurations pro-
vided by 10 independent 1000-steps MD trajectories. In detail,
the current N-atoms configuration is converted into N input
atomic graphs {Gi}, and all N atomic graphs {Gi} together
constitute an N-atom graph batch, which consists of a com-
plete, deduplicated set of nodes {ni} and edges {eij} (bidirec-
tional) that represent the N atoms and their interactions in the
configuration (see Fig. 2A), respectively. We input this complete
set of {ni} and {eij} as one batch into the OGN model to calculate

the loss function L (see below), where the target output of OGN,
i.e., the next-step change of atom positions {dri} and velocities
{dvi} for the N atoms in the batch, is obtained from the next-
step configuration. In other words, the training set contains
10 000 batches, and each batch contains an N-atoms configu-
ration pair, that is, the current configuration (converted to a
complete set of {ni} and {eij}) as input and the next-step
configuration (converted to the N atoms’ {dri} and {dvi}) as
output. Similarly, the test set contains 100 batches provided by
100 independent pairs of input and output configurations.

(ii) Online standardization. Both the input (i.e., {ni} and
{eij}) and output (i.e., {dri} and {dvi}) in the training and test sets
have been online standardized with respect to the past detected
training set so as to accelerate the training.21,58 Namely, every
time before an input ni, for instance, is fed into the OGN model,
it is normalized by the mean and variance of all the past values
of ni seen by the model.21,58 Dataset standardization is gener-
ally found to reduce training time,58 and we adopt herein the
online standardization technique to account for the augment of
training set from rotating each input training configuration11,21

(see below).
(iii) Loss function. The loss function L is defined as the

mean square error (MSE) per atom between the true versus
predicted outputs {Oi,true} versus {Oi,pred} for an N-atoms

configuration, that is, L ¼
P
i

Oi;true �Oi;pred

� �2.
N; where {Oi}

is the next-step change of atom positions {dri} and velocities
{dvi}, i.e., Oi = [dri, dvi], and L is the average loss over each
elements in the output array Oi. Note that, since the outputs
{dri} and {dvi} have been standardized, the loss function L is a
standardized loss accordingly.21

(iv) Initialization. In accordance with the dataset
standardization58 and the use of LayerNorm layers69 that
regulate the unit magnitude of the loss function landscape,21,58

the weights and bias in each neuron are initialized from a
truncated normal distribution with a mean of zero and a standard
deviation of 1/n (herein, n is the number of weights),11,58 which
effectively tunes the magnitude of each neuron output to the unit
scale and offers a reasonable initialization in the loss function
landscape, so as to reduce the training time and improve the
training stability.11,21,58

(v) Learning rate. The learning rate (LR) is set as an
exponential decay from 10�4 to 10�6 in 20 million gradient
update steps,21 i.e., LR = 10�4 � (0.1 (K/107)), where K is the
number of gradient update steps. In practice, each gradient
update step corresponds to a batch (i.e., a pair of input and
output configurations) in the training set used to compute a
loss L.

(vi) Training epochs. Once all the settings above have been
fixed, we start to minimize the loss function L as a function of
the neuron network hyperparameters in the OGN model, by
using the training set that contains 10 000 batches (i.e., 10 000
pairs of input and out configurations). We perform the training
to 1000 epochs, where each epoch covers the 10 000 batches in
the training set, and each batch yields a loss L to adjust the
OGN hyperparameters by gradient backpropagation training.58
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During training, we record the model accuracy every 1000
training batches by scanning over the 100 batches in the test
set and computing the average loss L for the test set. Depending
on the number of MPNN layers and the size of atomic graphs,
the training typically takes a few days (B2–7 days) to finish on
the JAX programming platform that is naively complied on the
Nvidia GPU V100 hardware using float32 data format.50

(vii) Random symmetry per epoch. Finally, it should be
pointed out that, during training, the configurations in the
training set are randomly subjected to one of the symmetries of
a cubic box (i.e., reflection and rotation) at each training epoch
to augment the training set.11 Since the present OGN model
is invariant to geometric translation—by using relative atom
positions in the input atomic graphs—but not invariant to
geometric reflection and rotation,23 this dataset augment
allows the OGN to learn the symmetry of graph geometry.11,23
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