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Discovery of all-inorganic lead-free perovskites
with high photovoltaic performance via ensemble
machine learning†

Xia Cai, *a Yan Li,a Jianfei Liu,a Hao Zhang, *b Jianguo Pan*a and Yiqiang Zhanb

Growing evidence shows that all-inorganic lead-free perovskites hold

promise for solving stability and toxicity problems in perovskite solar

cells. However, the power conversion efficiency of all-inorganic

perovskites cannot match that of hybrid organic–inorganic perovs-

kites. To face the challenges of efficiency, stability and toxicity

simultaneously for application in perovskite solar cells, this study

conducts a high-throughput materials search via ensemble machine

learning for nearly 12 million AA0BB0X3X
0
3 all-inorganic perovskites to

obtain candidates with non-toxicity and excellent photovoltaic per-

formance. Based on experimental data, models for structure identica-

tion and band gap classification are established for AA0BB0X3X
0
3, and a

physics-inspired multi-component neural network is proposed as part

of the exploration of the model’s logical structure. It is found that

extracting key features for input into the model and treating non-key

features as supplements make model learning easier and are more

effective in reducing the model parameters. Then, based on estab-

lished ensemble models as well as the new criteria of ion radius

difference and the optimization rules of toxicity and cost, over

80 000 candidates are screened. Among the 34 lead-free

AA0BB0X3X
0
3 identified with suitable band gaps and negative for-

mation energies through first principles calculations, 17 candidates

have theoretical power conversion efficiencies over 20%. The Debye

temperature of 10 lead-free AA0BB0X3X
0
3, basically Bi-based com-

pounds, is greater than 350 K, which is advantageous for suppressing

nonradiative recombination and thermally induced degradation.

1 Introduction

Since the report on perovskite solar cells (PSCs) by Kojima et al.
in 2009,1 they have been investigated extensively and have

become a front runner in the race for power conversion
efficiency (PCE). Hybrid organic–inorganic perovskites (HOIP)
represented by CH3NH3PbX3 as promising next-generation
photovoltaic materials have attracted tremendous attention
with the PCE of HOIP-based photovoltaic systems being
boosted up to 26% in only 10 years.2 Despite the progress made
to date, there are still two key limitations, i.e., the intrinsic
toxicity attributed to the element of lead (Pb)3,4 and poor
stability due to the presence of organic groups.5,6 For avoiding
the toxicity of Pb, researchers have studied lead-free hybrid
perovskites by replacing Pb with other ions by experimental
and calculation simulations.7 The instability of PSCs during
device operation, hindering the development of solar cell
technology, mainly involves the thermal and chemical stability
of perovskite materials in the absorption layer and the degrada-
tion induced by chemical reactions between the materials in
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New concepts
All-inorganic lead-free perovskites have attracted significant attention as
potential solutions to the stability and toxicity issues faced in perovskite
solar cells, especially faced in hybrid organic–inorganic perovskites;
however, the power conversion efficiency of the prepared all-inorganic
perovskite devices is typically limited. The discovery of new lead-free all-
inorganic perovskites with high photovoltaic performance remains an
open challenge. In this work, a multi-step and multi-stage high-
throughput materials search via ensemble machine learning is reported
for the screening of nearly 12 million AA 0BB0X3X03 all-inorganic
perovskites. Following the construction of a series of machine learning
models based on experimental data and the proposal of a physics-
inspired multi-component neural network as part of the exploration of
the model’s logical structure, the practical structure–property relation-
ships mapping the properties of AA0BB0X3X03 are established for further
understanding. Under ensemble models as well as the new criteria of ion
radius difference and the optimization rules of toxicity and cost, 10 lead-
free AA 0BB0X3X03 candidates (CaBaZrHfS6, KLaPrBiO6, KLaHoBiO6,
CaSrLaBiO6, CaSrPrBiO6, CaBaLaBiO6, CaBaPrBiO6, RbLaPrBiO6,
RbLaHoBiO6 and YLaInBiO6) are successfully identified with a
theoretical power conversion efficiency over 20% and a Debye
temperature exceeding 350 K.
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the absorption layer and the organic transport layer under the
conditions of light and heat.6 Unlike HOIPs, all-inorganic
perovskites without organic components have outstanding
thermal and component stability.8 The all-inorganic perovskite
based on Ag, Sb and Bi elements has attracted increasing
attention recently. The reported Cs2AgBiBr6 with heavy stable
element Bi and inorganic components has a relatively high
average atomic number and good thermal/moisture stability.9

Meanwhile, its indirect transition nature makes its carrier
lifetime long enough for carrier collection, and its suppressed
ionic migration can contribute to reduced noise current.9

However, the PCE of the prepared all-inorganic perovskite
devices is generally not high (at present, the champion PCE
of all-inorganic perovskites is 20.37% for CsPbI3 solar cells,10

while the maximum certified PCE is still 18.3%11). Therefore,
the discovery of new all-inorganic lead-free perovskites with
high photovoltaic performance is imminent.

In recent years, the machine learning (ML) technique has
made significant progress in the field of materials design for
accelerating the discovery of novel functional materials. The
main advantage of the ML method is that instead of relying on
physical or chemical intuition of scientists and solving time-
consuming quantum mechanical equations, it learns the
underlying structure–property relationships from existing
material data and can rapidly predict one or multiple targeted
properties with fewer computational resources. To date, the ML
method has been successfully applied to the discovery of many
novel functional materials, such as HOIP materials,12–15 metal-
lic glasses,16 stable inorganic perovskites,17,18 catalysts,19,20

lithium batteries21 and so on. Notably, many materials pre-
dicted using ML techniques have been synthesized through
experiments17,22–26 and have shown exciting performance. Very
recently, by adopting the target-driven ML method, we success-
fully screened out some stable perovskites as promising solar
cell candidates14 and solved the device optimization problem of
MASnxPb1�xI3 perovskite solar cells.27 These meaningful
attempts all show that with an appropriate material dataset,
the intelligent ML technique can provide fast and highly
accurate predictions of concentrated material properties at
much lower computational costs.

In this work, the high-throughput material discovery scheme
is applied to nearly 12 million AA0BB0X3X

0
3 perovskite candi-

dates to obtain potential all-inorganic lead-free perovskite
materials with excellent photovoltaic performance, where the
perovskite AA0BB0X3X

0
3, with A/A0 representing the metal

cation, B/B0 representing the metal cation, and X/X0 represent-
ing the anionic bridging ligand, can provide diverse electronic
structures and multiple material choices. In order to facilitate
modeling and obtain accurate results, the classification models
for the identification of the structure and appropriate band gap
of all-inorganic perovskite materials are established based on
the experimental data, and the logical structure of model input
features is explored using the neural network. Then, along with
the screening of structure identification and band gap predic-
tion models, auxiliary rules such as toxicity, cost optimization
and synthetic feasibility are also considered, and finally

500 potential candidates are obtained for further verification
using the density-functional theory (DFT) calculation method.
After screening nearly 12 million candidates, alternative per-
ovskites with suitable semiconductor and thermal properties,
low toxicity and cost for use in PSCs are identified.

2 Modeling for all-inorganic
perovskites
2.1 All-inorganic perovskite model

Generally, high-quality data are crucial to realize a high-
performance ML model. The input data for this study are
divided into two parts. The first part is used for the classifica-
tion model, which distinguishes between perovskites and non-
perovskites to assess the formability of the perovskite structure,
including 282 perovskites28 and 204 non-perovskites.29 These
perovskites have been shown to be thermally stable. The second
part is for the band gap model and the band gap of perovskite
materials is the key photoelectric property to evaluate their
potential as excellent perovskite solar cell materials. The
previous research usually used DFT calculation results to
build a prediction model. However, the results of DFT calcu-
lation are usually different from the actual experimental
values due to the misestimation of electron correlation. This
study collects and uses the experimental band gap results,
but variations in the crystal structures of the compounds
measured in the experimental dataset are unavoidable. Also
considering that when doing high-throughput screening, we
only need to focus on determining whether the band gap of
the perovskite material is in the appropriate range for further
validation through DFT calculations. Therefore, to facilitate
modeling, the regression task for prediction is transformed
into the classification task. And because of the strong fitting
ability of the ML algorithm, it can still obtain the electronic
and optical properties of material from the prepared data.
140 perovskites with appropriate band gaps (0.4 eV r Eg r
3.0 eV) and 142 perovskites with inappropriate band gaps are
included in the band gap dataset.28 In these two classifica-
tion tasks, the proportion of positive and negative samples in
the dataset is around 1 : 1.

To define each perovskite material, nine element properties
for the six constituent atoms of AA0BB0X3X

0
3 (i.e., the first

ionization potential, electron affinity, Mulliken electronegativ-
ity, ion radius, group number, Mendeleev number, highest
occupied molecular orbital level (HOMO), lowest unoccupied
molecular orbital level (LUMO) and HOMO/LUMO difference),
addition and subtraction of ion radii between different atoms,
tolerance factor Tf and molecular mass M are selected to
generate a total of 68 dimensional features to complete the
description of the properties in the target chemical space of the
AA0BB0X3X

0
3 perovskite. In this study, Tf and Of are defined as

follows:

Tf ¼
Rion

�A
þ Rion

�Xffiffiffi
2
p
ðRion

�B
þ Rion

�X
Þ

(1)
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Of ¼ Rion
�B =Rion

�X (2)

where Rion
�A

is the average ion radius of A and A0 cations, Rion
�B

is

the average ion radius of B and B0 cations, and Rion
�X

is the

average ion radius of X and X0 anions. The value of ion radius is
derived from Shannon’s ion radius.30 The t-stochastic neighbor
embedding (t-SNE) method31 is employed to visualize the entire
sample’s feature representation in two dimensions, which can
embed high-dimensional data into the low-dimensional space
and focus on visualizing clusters and local structures by pre-
serving pairwise similarities. The corresponding feature visua-
lization is provided in Fig. S1 (ESI†), which further illustrates
that the number of positive and negative samples in the dataset
is balanced.

Based on the obtained dataset and features, the ML models
for perovskite structure identification and band gap classifica-
tion for AA0BB0X3X

0
3 all-inorganic perovskite can be estab-

lished. Traditional ML is naturally adapted for small training
datasets and is a powerful tool in materials science. In the
process of model establishment and verification, the dataset is
randomly divided into a training set and a test set in the ratio of
80% and 20%. The relationship between input data and mate-
rial target properties can be obtained from the training set,
which is used to make predictions for unknown materials.
Then the accuracy of the prediction model is verified using
the test set. For the input features, the normalized scaling
process can ensure the consistency of the used data and
facilitate model learning. In order to evaluate the performance
of each ML model, corresponding metrics are introduced to
estimate the prediction error for the classification and regres-
sion tasks. For the regression model, the quality of ML model is
evaluated using the values of determination coefficient (R2) on
the training set and test set, and for classification models, the
performance of the ML model is evaluated using accuracy,
precision and recall metrics. The detailed calculation formulas
of listed metrics are shown in Experimental section. The results
of evaluation metrics of perovskite structure identification and
band gap classification models obtained using five ML classi-
fication algorithms are shown in Table 1. Among the five ML
classification algorithms, the gradient boosting classification
(GBC) algorithm and supporting vector classification (SVC)
algorithm are outstanding. The accuracy, precision and recall
of the GBC algorithm in the classification model for distin-
guishing the perovskite structure and suitable band gap are
0.899/0.875/0.896 and 0.842/0.821/0.852, respectively. The
corresponding evaluation metrics of the SVC algorithm are
0.910/0.909/0.910 and 0.858/0.743/0.864, respectively. Since
the GBC model can characterize the importance of each input
feature to the output, it is further analyzed below.

2.2 Classification model for perovskite structure
identification

The appropriate number of features is conducive to reducing
the complexity of the ML model and lowering the risk of model
over-fitting. Combined with the last elimination algorithm, the
GBC model is adapted to complete feature selection, so as to

select the more important input features to get the target
output. Fig. 1(a) shows the process of feature selection in the
structural identification model, in which as the number of
features decreases from right to left, blue dots and black dots
represent the changes in model accuracy and AUC values,
respectively. It is found that when the number of features is
greater than 9, the metrics of the GBC model are basically
stable, which indicates that these 9 features are most relevant
for the task of distinguishing the formability of perovskite
structures. The corresponding feature importance of these 9
features is shown in Fig. 1(c). The formation of a perovskite
structure is closely related to the inclination and deformation
of octahedra and the ion packing in the perovskite structure,
which are both geometrically related to the ion radius and
relative atom size at different positions. Among these 9
features, 5 features are related to the radii of the ions at
different positions, among which the top 5 features are

Rion
�B
=Rion

�X
ð¼ OfÞ, Rion

�A
=Rion

�B
, Tf, Rion

�A
� Rion

�X
and Rion

�A
� Rion

�B
. In

previous works,12–14 to design a new perovskite, the tolerance
factor Tf and octahedral factor Of were often used as the first
criteria to evaluate the formability of perovskite structures. In
this study, Of and Tf also rank among the top three important
features. Then, in order to further analyze the correlation
among the selected 9 features, the Pearson correlation coeffi-
cient is calculated, which can result in positive and negative
correlations between one pair of features and the correlation
results are shown in the left inset of Fig. 1(c). If the correlation
coefficient between two features is greater than 0.8, the rela-
tively unimportant feature will be deleted to reduce the redun-
dancy of used features, where the importance of features is
determined using the gradient boosting algorithm through
evaluating the contribution of each feature in reducing the
training error during the ensemble learning process. As shown
in the right inset of Fig. 1(c), the total number of features is
further reduced to 6, with most features showing weak correla-
tion, and the top 5 important features before pruning are

decreased to 3 (Rion
�B
=Rion

�X
, Rion

�A
=Rion

�B
and Rion

�A
� Rion

�X
).

Under the optimized feature set, the receiver operating
characteristic (ROC) curve and confusion matrix are used to
measure the accuracy and error of the GBC model, respectively.
The corresponding results are shown in the illustration of
Fig. 1(a). The area under curve (AUC) is used to evaluate the
performance of the established ML model, which is positively
related to the accuracy of the corresponding model. In this

Table 1 The predicted performance comparison of structural identifi-
cation and band gap classification with different ML algorithms using three
evaluation metrics

Models

Structure identification Band gap classification

Accuracy Precision Recall Accuracy Precision Recall

KNC 0.8894 0.8488 0.8833 0.8102 0.7704 0.7723
SVC 0.9098 0.9092 0.9098 0.8577 0.7426 0.8639
GBC 0.8991 0.8746 0.8956 0.8421 0.8214 0.8519
RFC 0.8977 0.8756 0.8946 0.8309 0.7491 0.8100
DTC 0.9006 0.8768 0.8968 0.8391 0.7687 0.8149
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study, the calculated AUC of the structure identification model
can reach 90.4%. Meanwhile, the confusion matrix counting
the number of predicted and real classes in the test set shows
that only about 10.5% of perovskites are misclassified by the
established ML model, so the trained GBC model can give
reliable results for distinguishing perovskite from non
perovskite.

2.3 Classification model for band gaps

In order to find the promising perovskite suitable for solar cell
applications, the band gap range is appropriately expanded in
this study, and the prediction of band gap is converted into a
classification task for modeling. According to the above feature
engineering, a total of 68 features are sorted and 23 features are
gradually screened, which is shown in Fig. 1(d). Among the 23
features, the first 9 most important features are DEB0, DEB, M,

Rion
�A
þ Rion

�B
, LUMOA0, LUMOA, Rion

�B
þ Rion

�X
, LUMOB and LUMOB0,

mainly including energy levels of the A/A0 site and B/B0 site, and
ion radii of different sites. After the features with high correla-
tion are eliminated by calculating the Pearson correlation
coefficient, 19 key features are left as the optimized feature
set of the classification model for band gaps. As seen from
Fig. 1(b), in the GBC model of band gap classification, the AUC
value can reach 87.2%, and the corresponding confusion
matrix indicates that only about 15.8% of the perovskite band
gaps in the test set are misclassified; thus a relatively reliable
band gap classification model is established.

As mentioned above, it is challenging for traditional ML to
establish a regression model for the experimental band gap
dataset. Compared with the traditional ML algorithm, the
neural network (NN) has more powerful nonlinear fitting ability
when learning from prepared data. Therefore, here we also
establish the regression model for band gap prediction of
AA0BB0X3X

0
3 all-inorganic perovskites, and propose the

physics-inspired multi-component NN while exploring how
different input logic ways for features affect model results.
The schematic diagram of different input logic ways is shown
in Fig. 2, where the dark purple square, light blue square and
light purple circle represent the input layer, hidden layer and
output value, respectively. The first model (NN1) is directly fed
with 68 dimensional features and established through three
layers of a fully connected network. An R2 value of 0.75 for the
corresponding model is achieved. The second model (NN2) is
based on 23 important features extracted from the previous
band gap model as input, and then established through three
fully connected network layers whose R2 value drops to 0.70.
The third model (NN3) is built using 23 important features
through one layer of the fully connected network; it then
concatenates the output vector with the remaining 45 dimen-
sional features, and after that it produces the output through
two layers of the fully connected network. This model can
achieve an R2 value of 0.76 which is equivalent to the first
model and reduces the network parameters to less than half. In
the fourth model (NN4), the input is divided into four parts,
which represent the features of A, B, and X positions and the

Fig. 1 The optimization process and resulting features with performance metrics for perovskite structure identification and band gap classification
models, respectively: (a) and (b) the feature elimination process and ROC curve, and (c) and (d) relative importance ranking of selected features and heat
map of feature correlation.
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overall properties of the compounds. The features in the four
parts are independently passed through a layer of fully con-
nected network. Then the four output vectors are concatenated
and the final output is obtained through two fully connected
layers. With the same number of hidden layers, NN4 reduces
the network learning parameters but cannot achieve an R2 value
equivalent to NN1.

The above analysis of the network architecture and model
results demonstrates that an augmented feature input corres-
ponding to increased information assimilation can improve
model performance. Nevertheless, this enhancement will esca-
late model complexity, potentially leading to over-fitting.
Among the four explored structures, optimal results are
achieved by incorporating pivotal features into the network
for high-dimensional representations, coupled with the utiliza-
tion of residual features as the perturbation to the system. This
strategy can proficiently facilitate the comprehensive acquisi-
tion of key features while the direct supplementation of per-
turbation can mitigate model intricacy and prevent over-fitting.
Furthermore, the unsatisfactory performance of NN4 serves as
evidence for the interdependence between the properties of A,
B, and X sites in the characterization of perovskite properties.
The separate presentation of these properties to the network
impedes the coherent acquisition of inter-attribute correla-
tions. In this task, the value of R2 for the GBR model (using
68 dimensional features as input) is 0.66, which suggests that
compared with the GBR algorithm, the performance of all NN
models is better which indicates that NN has a stronger
learning and fitting ability for tasks, and the input way and
model structure can be flexibly adjusted, but this can increase
the model building complexity.

2.4 High-throughput screening

Based on the established ML model above, a scheme of high-
throughput material search is developed for the AA0BB0X3X

0
3

all-inorganic perovskite applied in solar cells. This search
scheme for perovskites is shown on the right side of Fig. 3,
which not only considers the structural formability and band
gap of perovskite materials, but also systematically incorpo-
rates materials’ toxicity and preparation cost. In the first step of
the scheme, the common valence of element is used to obtain
possible candidates for electrical neutrality. Through traversing
the periodic table, 13 cations are adopted for A and A0 sites,

including alkali metals, alkaline earth metals and group-3
metals. For B and B0 sites, 85 cations are used, including
transition metals and p-block metals. For X and X0 sites, 8
anions, including chalcogens and halogens, are used. The
specific ions are listed in Fig. 3(a). According to charge neu-
trality, 11 973 780 electrically neutral AA0BB0X3X

0
3 candidates

are generated from the above ion library, which constitutes the
prediction set. Then, these materials are screened step by step
according to the search plan.

In the first screening step, the stability of the obtained
AA0BB0X3X

0
3 candidates to form a perovskite is evaluated

through the general properties of the constituent ions (i.e.,
ion valence, the number of valence electron, and ion radius). If
the related properties meet the following six criteria, the
candidate is considered to have structural stability and be
synthetically feasible in the preliminary analysis: (i) the number
of electrons is even; (ii) the tolerance factor Tf is between 0.8
and 1.1;32 (iii) the octahedral factor Of is greater than 0.4;32 (iv)
its ion radius difference and ratio of A and A0 -site cations meet
the condition in Eqn (3); (v) its ion radius difference and ratio
of B and B0 -site cations meet the condition in Eqn (4); and (vi) X
and X 0 -site anions have the same group number. The calculation
of Tf and Of defined using Eqn (1) and (2) is usually used for ABX3

single perovskites which does not take the differences between
the ion radius of A and A0, B and B0, or X and X0 into account for
AA0BB0X3X

0
3 perovskites. Recently, Bartel et al. presented a new

tolerance factor for predicting the stability of the A2BB0X6 double
perovskite.33 However, even if the tolerance factor proposed by
Bartel et al. is adopted here, it may not be enough to judge the
stability of AA0BB0X3X

0
3 perovskites because the differences

between the iron radius of A and A0 or X and X0 are not
considered. Therefore, the traditional Tf and Of or the new
tolerance factor proposed by Bartel et al. cannot be simply applied
to AA0BB0X3X

0
3 perovskites. Here the (iv) and (v) criteria consider

the ion radius difference between A and A0 and between B and B0,
respectively, and the specific rules are as follows:

0:73 � Rion
A

Rion
A0
� 1:37; Rion

A � Rion
A0

�� �� � 0:45 Å (3)

0:50 � Rion
B

Rion
B0
� 2:00; Rion

B � Rion
B0

�� �� � 2:00 Å (4)

Fig. 2 Physics-inspired multi-component neural network for exploring how different input logic ways affect model results.
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The criteria (iv), (v) and (vi) are concluded in the experimental data
of collected perovskite compounds. If the AA0BB0X3X

0
3 candi-

dates satisfy the above six rules, it is preliminarily believed that
candidates can form a perovskite structure. 84 030 AA0BB0X3X

0
3

candidate materials among 11 973 780 compounds pass the
screening at this step, and will enter the next screening step.

In the second screening step, 84 030 AA0BB0X3X
0
3 candi-

dates are judged again to determine whether each candidate
has the structural formability of perovskite and has suitable
band gap for PSC applications, using an ML model. According
to the atomic and ionic information of the constituent ele-
ments of perovskite candidates, the features of 84 030
AA0BB0X3X

0
3 candidates are generated. The data statistics for

the training and prediction set are shown in Fig. S2 (ESI†). In
the collected training set, few compounds have the
AA0BB0X3X

0
3 chemical formula (for AA0BB0X3X

0
3, the elements

of A and A0, B and B0, or X and X0 are different) and it is difficult
to achieve diversity in element combinations for the training
set. In order to make up for the above defects, ensemble
learning using two ML models, including GBC and SVC, is
applied to establish a mapping relationship and predict struc-
tural formability and the band gap of unknown 84 030
AA0BB0X3X

0
3 candidates. In each task of the ensemble learning

process, only if the AA0BB0X3X
0
3 candidate meets the require-

ments in GBC and SVC models, it can be confirmed that the
corresponding candidate passes the ML ensemble screening.
Through this step of screening, 2282 AA0BB0X3X

0
3 candidates

are identified as all-inorganic perovskites with appropriate

band gaps. In many previous material-search works, the dis-
covery of such a database of 2282 AA0BB0X3X

0
3 perovskites may

be the final goal.
In the third screening step, the 2282 perovskite candidates

are evaluated for their toxicity and cost. Among them, the
Guideline for Elemental Impurities Q3D34 is used for toxicity
assessment. This guideline classifies elements into four cate-
gories: highly toxic class-1 elements, moderately toxic class-2
elements, low toxic class-3 elements and low toxic or non-toxic
other elements. Pb, Hg, As and Cd are class-1 elements, and Co,
V, Ni, Tl, Au, Pd, Ir, Os, Rh, Ru, Se, Ag and PT belong to class-2
elements. In this screening step, the AA0BB0X3X

0
3 perovskite

containing class-1 or class-2 elements is rejected, and 709 low
toxic perovskites are found, which are composed of only class-3
and other elements. After toxicity assessment, the preparation
cost of the remaining 709 perovskites is estimated using the
Chemicool database,35 which lists the price of each element in
the form of pure phase and bulk material. Based on this
database, the manufacturing cost of 709 AA0BB0X3X

0
3 perovs-

kites are estimated in US dollars per mole, and 500
AA0BB0X3X

0
3 perovskite candidates with lowest cost are

selected for further analysis.
In the final screening step, first-principles calculations are

employed to calculate the structures, band gap, Debye tempera-
ture, carrier effective masses, and semiconductor properties of
500 AA0BB0X3X

0
3 candidates. The corresponding tolerance

factor, octahedral factor, PBE/HSE band gap, Debye tempera-
ture, formation energy, hole and electron effective mass and

Fig. 3 The scheme chart of high-throughput material search for AA0BB0X3X
0
3 all-inorganic perovskites: (a) the composition and structure of perovskites

in prediction set and (b) the multi-step screening process of discovering novel AA0BB0X3X
0
3 perovskites according to the combination of ML and DFT

calculation for photovoltaic application.
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semiconductor properties calculated through DFT for 500
candidates are shown in Table 2, of which 34 candidates have
suitable band gap and their formation energy is less than zero.
The exciton binding energy of perovskite material is calculated
according to the Rydberg formula,36 i.e.,

Eb ¼
e4

2�h2e2
m�hm

�
e

m�h þm�e
(5)

where e is the obtained dielectric constant of perovskite according
to density functional perturbation theory. Generally, the larger the
dielectric constant, the smaller the exciton binding energy, and
the easier the exciton dissociation in practical applications. Then
the PCE of these candidates is calculated according to the PCE
theoretical calculation method proposed by Kanno et al.,28 that is

Voc = Eg � Eloss (6)

Jsc ¼
ð
EQEðEÞ � fsolar

AM1:5ðEÞdE (7)

The static dielectric constant, exciton binding energy and PCE
thus obtained are shown in Table 2. According to Table 2, among
the 34 AA0BB0X3X

0
3 all-inorganic perovskite materials, the theore-

tical PCE of 17 candidates can reach more than 20%, including
CaBaZrHfS6, RbCsCuBiBr3I3, Cs2CuBiBr3I3, Cs2CuBiCl3I3, Cs2CuBi-
Br3I3, Cs2ZnSnCl3I3, Cs2ZnSnCl3Br3, CsBaCuSnCl3I3, KLaPrBiO6,

KLaHoBiO6, CaSrLaBiO6, CaSrPrBiO6, CaBaLaBiO6, CaBaPrBiO6,
RbLaPrBiO6, RbLaHoBiO6 and YLaInBiO6, and the theoretical
PCE is 22.1%, 23.0%, 23.1%, 22.1%, 22.4%, 20.6%, 21.8%,
22.9%, 20.7%, 21.7%, 22.5%, 23.2%, 22.3%, 22.4%, 21.4%, 21.6%
and 22.2%, respectively, and they are expected to have excellent
photovoltaic characteristics. RbCsCuBiBr3I3, Cs2CuBiBr3I3, Cs2Cu-
BiCl3I3, Cs2CuBiBr3I3, Cs2ZnSnCl3I3, Cs2ZnSnCl3Br3 and CsBaCuSn-
Cl3I3 are excluded because the values of Debye temperature are
relatively low. The remaining 10 candidates are CaBaZrHfS6,
KLaPrBiO6, KLaHoBiO6, CaSrLaBiO6, CaSrPrBiO6, CaBaLaBiO6,
CaBaPrBiO6, RbLaPrBiO6, RbLaHoBiO6 and YLaInBiO6, most of
which are Bi-based compounds. Their Debye temperatures are
366.5, 452.2, 476.9, 465.3, 481.1, 447.5, 462.3, 436.0, 460.7 and
434.7 K, respectively (much larger than the Debye temperature of
CH3NH3PbX3 crystals), which should have good thermal conduc-
tivity and the potential for suppressing both non-radiative combi-
nation and heat-induced degradation.

3 Disscussion

The theoretical PCE of AA0BB0X3X
0
3 all-inorganic perovskites

can reach more than 20% in this study, which is similar to the
HOIP in our previous study (the theoretical PCE of three lead-
free candidates (CH3NH3)2AgGaBr6, (CH3NH3)2AgInBr6 and

Table 2 The estimated cost, DFT calculated PBE band gap, HSE band gap, Debye temperature, formation energy, hole and electron effective mass,
dielectric constant, exciton binding energy and theoretic PCE of 34 most promising perovskites

Order AA0BB0X3X
0
3 Tf Of Cost EPBE

g Type EHSE
g Type YD DH m�h m�e e Eb PCE

1 K2Sn2Cl3Br3 0.97 0.48 147 0.47 Direct 0.68 Direct 272.8 �1.02 0.43 1.28 27.77 5.6 9.0
2 KCsSn2Cl3Br3 1.00 0.48 1570 0.28 Direct 0.42 Direct 260.0 �1.06 0.28 1.18 31.46 3.1 0.6
3 Ca2ScBiO3S3 0.88 0.62 772 0 Indirect 0.53 Indirect 440.2 �1.46 0.94 0.92 38.21 4.3 4.4
4 Ca2SbBiO3S3 0.88 0.62 148 0.14 Indirect 0.48 Indirect 395.3 �1.03 0.66 0.61 25.69 6.5 2.7
5 CaBaZrSnS6 0.92 0.50 345 0.03 Indirect 0.80 Indirect 384.8 �1.20 0.68 0.74 48.43 2.1 12.9
6 CaBaZrHfS6 0.92 0.50 531 0.47 Indirect 1.54 Indirect 366.5 �1.66 2.27 0.41 54.79 1.6 22.1
7 RbCsCuBiBr3I3 0.96 0.47 2619 0.46 Indirect 1.33 Indirect 232.8 �0.29 0.71 2.61 47.75 3.3 23.0
8 RbCsSn2Cl3Br3 1.01 0.48 2557 0.31 Direct 0.41 Direct 255.6 �1.09 0.53 1.17 22.77 9.6 0.3
9 Cs2CuBiBr3I3 0.98 0.47 3055 0.54 Indirect 1.39 Indirect 241.8 �0.27 0.69 3.03 16.98 26.5 23.1
10 Cs2CuBiCl3Br3 1.00 0.52 3024 0.22 Direct 2.21 Indirect 253.1 �0.84 1.34 1.38 16.39 34.5 13.8
11 Cs2CuBiCl3I3 0.99 0.49 3043 0.25 Indirect 1.13 Indirect 249.2 �0.39 0.73 2.96 17.21 26.9 22.1
12 Cs2CuBiBr3I3 0.98 0.47 3055 0.54 Indirect 1.19 Indirect 243.4 �0.27 0.69 3.04 16.98 26.5 22.4
13 Cs2ZnSnCl3I3 1.01 0.46 2988 0.56 Indirect 1.04 Indirect 276.9 �0.39 0.72 0.99 11.94 39.7 20.6
14 Cs2ZnSnCl3Br3 1.02 0.49 2968 1.22 Indirect 1.59 Indirect 256.4 �1.09 0.88 1.11 10.12 65.5 21.8
15 CsBaCuSnCl3I3 0.97 0.47 1604 0.54 Indirect 1.33 Indirect 264.0 �0.52 1.02 1.52 14.26 40.9 22.9
16 CsBaCuSnBr3I3 0.96 0.45 1616 0.35 Indirect 0.94 Indirect 255.7 �0.34 0.68 1.07 15.54 23.5 17.6
17 NaYLaBiO6 0.79 0.86 1581 0.62 Indirect 2.06 Indirect 465.0 �2.07 3.36 0.55 15.33 27.3 15.9
18 NaYPrBiO6 0.79 0.84 1132 0.49 Indirect 1.89 Indirect 468.8 �2.04 3.47 0.46 13.81 29.2 18.4
19 NaYHoBiO6 0.81 0.80 1888 0.45 Indirect 1.85 Indirect 496.4 �2.17 11.88 0.37 22.71 9.6 18.8
20 NaLaHoBiO6 0.83 0.80 2617 0.44 Indirect 1.82 Indirect 482.4 �2.26 2.03 0.39 18.93 12.4 19.1
21 KLaPrBiO6 0.85 0.84 1894 0.41 Direct 1.70 Indirect 452.2 �2.18 26.92 0.46 33.49 5.5 20.7
22 KLaHoBiO6 0.87 0.80 2650 0.3 Direct 1.60 Indirect 476.9 �2.30 5.05 0.35 23.74 7.9 21.7
23 CaSrLaBiO6 0.86 0.86 1289 0 Direct 1.24 Indirect 465.3 �2.23 0.66 0.58 18.17 12.7 22.5
24 CaSrPrBiO6 0.87 0.84 840 0 Direct 1.40 Indirect 481.1 �2.20 0.58 0.51 27.96 4.7 23.2
25 CaYHfBiO6 0.84 0.72 686 1.2 Indirect 2.47 Indirect 483.0 �2.53 1.17 0.86 25.79 10.1 10.1
26 CaBaLaBiO6 0.89 0.86 1277 0 Direct 1.16 Indirect 447.5 �2.18 0.61 0.82 23.37 8.7 22.3
27 CaBaPrBiO6 0.90 0.84 828 0 Direct 1.24 Indirect 462.3 �2.14 0.52 0.66 23.25 7.3 22.4
28 RbLaLaBiO6 0.86 0.86 3330 0.45 Direct 1.77 Indirect 433.9 �2.21 20.75 0.61 16.03 31.2 19.8
29 RbLaPrBiO6 0.87 0.84 2881 0.38 Direct 1.65 Indirect 436.0 �2.18 8.84 0.48 16.54 22.6 21.4
30 RbLaHoBiO6 0.88 0.80 3637 0.27 Direct 1.59 Indirect 460.7 �2.29 4.87 0.36 27.35 6.2 21.6
31 SrYHfBiO6 0.85 0.72 766 1.58 Indirect 2.88 Indirect 462.1 �2.64 0.94 0.84 33.37 5.4 5.0
32 YLaFeZrO6 0.81 0.67 1641 0.15 Indirect 2.82 Indirect 595.1 �2.70 0.92 1.02 42.54 3.6 5.2
33 YLaFeHfO6 0.81 0.66 1712 0.17 Indirect 2.81 Indirect 561.8 �2.75 0.86 0.91 47.58 2.7 5.7
34 YLaInBiO6 0.77 0.76 2687 0.39 Indirect 1.52 Indirect 434.7 �1.99 4.87 1.53 31.81 15.7 22.2
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(C2NH6)2AgInBr6 achieved 20.6%, 19.9%, and 27.6%, respectively14).
However, in the process of calculating the theoretical PCE in this
work, the unified value of external quantum efficiency is adopted,
and the non-radiative recombination effect and the loss at the
device interface during device operation are completely ignored.
The estimated values of Jsc and Voc will be greater than the results
calculated by the GW + BSE method under the multi-body pertur-
bation theory in the previous work,14 and will also be better than
the measured values under the actual environment. However,
considering the material stability, the International Electrotechni-
cal Commission claims that the evaluation standard of photovoltaic
stability should meet the requirement that device can work stably
for more than 2000 hours under the environment of water (80%
relative humidity) and heat (80 1C). The all-inorganic PSC is
obviously more likely to meet these requirements, and its working
life is expected to be longer than that of HOIP, because it does not
face thermal and photo degradation problems caused by the
introduction of organic groups.

4 Conclusions

By combining ensemble ML technology, this work develops a
scheme of high-throughput discovery based on material infor-
matics and applies it to screen 11 973 780 AA0BB0X3X

0
3 all-

inorganic perovskite candidates to obtain potential candidates
with low cost, low toxicity and excellent photovoltaic perfor-
mance. This multi-step screening scheme not only system-
atically considers the semiconductor characteristics of
candidate materials, but also weighs the feasibility, toxicity
and cost of material’s experimental synthesis. The ML classifi-
cation models are trained on 486 data points of structural
formability and 282 data points of experimental band gaps,
and ensemble learning is employed to guarantee the reliability
of prediction results. Through the step-by-step material search
scheme, from 11 973 780 AA0BB0X3X

0
3 candidates, 34 promis-

ing materials are found, including 10 candidates CaBaZrHfS6,
KLaPrBiO6, KLaHoBiO6, CaSrLaBiO6, CaSrPrBiO6, CaBaLaBiO6,
CaBaPrBiO6, RbLaPrBiO6, RbLaHoBiO6 and YLaInBiO6 with
potential excellent photovoltaic performance.

5 Experimental section
5.1 DFT calculations

The calculation of material properties is completed through the
Vienna Ab initio Simulation Package (VASP) based on DFT.37

With the projector-augmented wave (PAW) method, the inter-
action between valence electrons and core charges is repre-
sented by the pseudopotential. And the generalized gradient
approximation (GGA), with the Perdew–Burke–Ernzerhof (PBE)
version as the parameterized form, is chosen to describe the
exchange–correlation interaction. The plane wave cutoff energy
is set to 600 eV. A 2 � 1 � 1 cubic-based unit cell shown in
Fig. 3(a) is adopted as the initial crystal structure of candidates
for structural optimization based on the considerations of
symmetry, computational efficiency and its suitability as a

reasonable initial approximation. The Monkhorst–Pack scheme
is used for geometry structure optimization and physical prop-
erty calculation. A minimum K-point grid spacing of 0.2 is used
to sample the high-symmetry points of the Brillouin zone. The
energy convergence threshold between two consecutive electro-
nic steps is set to 1 � 10�4 eV, and the threshold for the
maximum Hellman–Feynman force in the crystal is set to
0.01 Å�1. In order to eliminate the calculation errors of PBE,
the Heyd–Scuseria–Erzenhof (HSE) hybrid functional method is
also used to improve the accuracy of band gap calculations. The
effective mass tensor of the holes and electrons is obtained
using the double partial derivative of the energy band E(k) at
the valence band maximum (VBM) and conduction band mini-
mum (CBM), respectively, as follows:38

1

m�h;i;j
¼ 1

�h2
@2EðkÞ
@ki@kj

����
k¼VBM

ði; j ¼ x; y; zÞ (8)

1

m�e;i;j
¼ 1

�h2
@2EðkÞ
@ki@kj

����
k¼CBM

(9)

And the average value of each tensor diagonal term is taken as
the effective mass of the hole and electron, respectively.

5.2 Gradient boosting

The core idea behind gradient boosting is to combine the
predictions of multiple weak learners to obtain a strong learner.
The principle behind gradient boosting can be described
mathematically as follows:

Given a labeled dataset with inputs X and outputs Y, a
function f (X) is sought to return the predicted output Ŷ. First,
start by defining an initial function f0(X) which approximates
the true f (X) as follows:

f0ðXÞ ¼ argmin
g

Xn
i¼1

Lðyi; gÞ; (10)

here g is the step size of gradient learning, and n is the number
of data samples. The basic learner gk(X) needs to fit the negative
gradient ỹk(X) of loss function L(Y, f (X)) for K (k o K) times

~ykðXÞ ¼ �
@LðY ; f ðXÞÞ

@f ðXÞ

� �
f ðXÞ¼fk�1ðXÞ

: (11)

And the learning rate gk is then optimized using the equation as
follows:

gk ¼ argmin
g

Xn
i¼1

Lðyi; fk�1ðxiÞ þ ggkðxiÞÞ (12)

Then the new function gk(X) is added to the ensemble by
updating the current function fk�1(X):

fk(X) = fk�1(X) + gkgk(X) (13)

Therefore, the final model fK(X) is applied to predict.

5.3 Hyper-parameter selection

Suitable hyper-parameters for each ML algorithm should be
determined before the training process for improving the
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efficiency and generalization performance of the model. The
optimization of hyper-parameters holds significant importance
and can be generally accomplished through techniques such as
grid search with cross-validation or random search over para-
meter settings. For the GBC algorithm, the hyper-parameters
encompass the number of estimators, learning rate, the max-
imum depth of individual estimators, the minimum number of
samples required to be at a leaf node, the minimum number
of samples required to split an internal node and the number of
features to consider when searching for the best split. However,
in the presence of multiple hyper-parameters simultaneously,
conventional methods of hyper-parameter optimization tend to
exhibit sluggishness. To address this challenge, a global search
algorithm based on the simulated annealing technique is
adopted, which is incorporated into an open-source Python
package, called hyperopt.39 This search method is also applic-
able to other algorithms discussed in this work. The predictive
results of our GBC model are the averaged values from 5-fold
cross-validation after 50 iterations.

5.4 Model evaluation for classification and regression
algorithms

Suitable performance metrics should be selected to evaluate the
performance of ML algorithms and reflect how well the model
fits the dataset. In this work, AUC, accuracy, precision and
recall are used in classification models, while the coefficient of
determination R2 is used in regression models.

The AUC is defined as the area under the receiver operating
characteristic (ROC) curve. Generally, ML classification algo-
rithms generate corresponding prediction probabilities for the
tested samples, and then determine the specific category of the
sample based on the comparison between the prediction and
the classification threshold. The threshold involved in this
work is set to 0.5. In fact, the detected samples can be ranked
based on the predicted probabilities, with the most likely
positive examples at the top and the least likely positive
examples at the bottom. Then, the samples are predicted as
positive examples in the sequence to calculate the values of the
false positive rate (FPR) and true positive rate (TPR) for each
prediction. Based on the FPR and TPR, the ROC curve can be
obtained. The calculation formulas for the FPR and TPR are:

FPR ¼ FP

TNþ FP
(14)

TPR ¼ TP

TPþ FN
(15)

where TP, FN, FP and TN represent the total number of positive
samples predicted correctly, negative samples predicted incor-
rectly, positive samples predicted incorrectly, and negative
samples predicted correctly, respectively. Since the TPR and
FPR always exclude each other, the best model performance is
achieved when AUC is maximized to 1.

Accuracy is defined as the proportion of correctly classified
samples. Generally, higher accuracy means better model per-
formance. However, accuracy cannot handle imbalanced data

well, whose definition is as follows:

Accuracy ¼ TPþ TN

TPþ TNþ FPþ FN
(16)

Precision describes the proportion of true positive results
among the samples that were predicted as positive:

Precision ¼ TP

TPþ FP
(17)

Recall describes the proportion of positive samples that were
correctly identified by the model:

Recall ¼ TP

TPþ FN
(18)

The abovementioned metrics were used in this work to com-
prehensively evaluate the performance of the established clas-
sification model. R2 is a standard metric to validate the
predictive performance of ML regression models, which
describes the deviation between predicted and actual values:

R2 ¼ 1�

Pn
i¼1
ðytruei � ypredi Þ2

Pn
i¼1
ðytruei � �ypredi Þ2

(19)

Here ytrue
i is the actual value, ypred

i is the predicted value and
%ypred

i is the mean value of ypred.
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