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learning strategy with density
functional theory to hasten the discovery of 2D
MXene-based catalysts for hydrogen generation†

B. Moses Abraham, ‡a Priyanka Sinha,‡a Prosun Haldera and Jayant K. Singh *ab

The complexity of the topological and combinatorial configuration space of MXenes can give rise to

gigantic design challenges that cannot be addressed through traditional experimental or routine

theoretical methods. To this end, we establish a robust and more broadly applicable multistep workflow

using supervised machine learning (ML) algorithms to construct well-trained data-driven models for

predicting the hydrogen evolution reaction (HER) activity of 4500 MM′XT2-type MXenes, where 25% of

the materials space (1125 systems) is randomly selected to evaluate the HER performance using density

functional theory (DFT) calculations. As the most desirable ML model, the gradient boosting regressor

(GBR) processed with recursive feature elimination (RFE), hyperparameter optimization (HO) and the

leave-one-out (LOO) approach accurately and rapidly predicts the Gibbs free energy of hydrogen

adsorption (DGH) with a low predictive mean absolute error (MAE) of 0.358 eV. Based on these

observations, the H atoms adsorbed directly on top of the outermost metal-atom layer of the MM′XT2-

type MXenes (site 1) with Nb, Mo and Cr metals with O functionalization are discovered to be highly

stable and active for catalysis, surpassing commercially available platinum-based counterparts. Overall,

the physically meaningful predictions and insights of the developed ML/DFT-based multistep workflow

will open new avenues for accelerated screening, rational design and discovery of potential HER catalysts.
1 Introduction

Growing concerns about environmental problems and the energy
crisis demand the urgent development of affordable and clean
renewable energy sources as a viable replacement for fossil fuels.
In this regard, electrochemical water splitting is an effective and
sustainable approach to generate a massive impact in clean-
energy technologies.1–3 However, the currently-used platinum
groupmetals (PGMs) are expensive, which limits their large-scale
applications, thereby promoting continuous research attempts
toward highly active non-noble metal electrocatalysts. Several
promising candidates with zero or reduced content of PGMs are
being considered, such as transition metals4 and their
dichalcogenides,5–8 phosphides,9 nitrides,10 borides11 and
carbides,12 andmetal-free carbon nitrides.13,14 Although extensive
experimental and theoretical studies have demonstrated the
usage of such catalysts in the hydrogen evolution reaction (HER),
the overall catalytic activity for large-scale hydrogen production is
still limited by their few active sites and poor electrical
dian Institute of Technology Kanpur,
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tion (ESI) available. See DOI:

f Chemistry 2023
transport.15 Therefore, it is of paramount signicance to develop
a broad range of catalytic materials with more active sites and
higher conductivity, for which a fundamental understanding
from an atomic-scale point of view is highly essential.

MXenes, unique accordion-like structures exfoliated from
MAX phases (M = transition metal; A = p-block element; X = C
and/or N), have recently attracted signicant attention for
electronic device,16–19 electromagnetic shielding,20

electrocatalysis,21–24 and energy storage and conversion25–30

applications. In particular, the long-term structural stability in
acidic electrolytes,31 large active surface area (21 m2 g−1)32 and
high electrical conductivity (4600 ± 1100 S cm−1)33 make them
suitable candidates for HER catalysis. In MXenes (Mn+1XnTx; n=

1, 2, 3), tuning of M (transition metal), X (C and/or N) and T
(surface functionalization) is found to improve the hydrogen
evolution activity.34 For instance, variation of the transition
metal atoms in Mn+1XnTx (Mn+1XnO2, M2M

′X2O2, and
M2M

′
2X3O2) led to the identication of 110 unexplored candi-

dates with better HER performance.35 Sun et al.36 screened 271
different congurations of Mn+1Xn by tuning X from C to B and
found that Mn/Co2B2, Os/Co2B2, Co2B2, Pt/Ni2B2 and Co/Ni2B2

candidates surpass the HER activity of PGMs. Doping of P-group
elements (surface functionalization) modulates the in-plane
surface atom activity and improves the HER performance,
thereby leading to an optimal HER Gibbs free energy.37 MXenes
can also be used as substrates in HER applications because of
J. Mater. Chem. A, 2023, 11, 8091–8100 | 8091
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their adjustable surface structures as well as promising physi-
cochemical properties.38,39 In such cases, the performance of
Ti2CO2 at various hydrogen coverages is found to improve with
doping of S atoms to substitute the surface O atoms.40 NiS2@-
VMXene exhibits long-term durability and low HER over-
potential.35 The aforementioned congurational space offered
by the broad range of MXenes and their active sites makes using
traditional approaches for optimization of catalysts via experi-
mental and theoretical screening particularly challenging, time-
consuming and expensive. Thus, nding suitable advanced
methods has become an essential task for accelerating the
rational design of efficient catalysts.

The screening of potential MXene-based catalysts from their
tremendous combinatorial and structural space requires a huge
amount of computational resources.41 In traditional routine
simulations, the H-adsorption energy is typically the most
important parameter in evaluating the HER activity.42 According
to the Sabatier principle, the binding of hydrogen should be
neither too strong nor too weak to obtain the best catalytic
activity.43 However, direct simulations of this might not provide
complete information regarding HER performance since the
descriptors of various reaction processes are equally important.
In this regard, the incorporation of physical interaction through
scientic knowledge into models trained by data-driven
approaches has gradually emerged as a powerful and reliable
tool for hastening the identication of catalysts.44–46 In particular
, random forest regression, support vector regression (SVR),
kernel ridge regression and Elman articial neural network
(Elman ANN) algorithms are typically employed to predict Gibbs
free energy, which is a widely accepted descriptor of HER activity.
For instance, the regularized random forest learning method
reveals the Ni–Ni bond length to be the primary feature in
Fig. 1 Workflow of the machine learning approach, starting from data
property prediction for screening of ideal HER catalysts from MXenes. F
a large number of possible combinations of the selected elements and

8092 | J. Mater. Chem. A, 2023, 11, 8091–8100
determining the binding strength of hydrogen on the Ni2P (0001)
plane.47 Sun et al.48 predicted the HER performance of
graphdyine-based atomic catalysts using the bag-tree learning
model. These results demonstrate that machine learning (ML)
models not only allow discovery of novel catalyst materials, but
also provide an in-depth understanding of the fundamental
correlation between the catalytic structures and their properties.
This is highly essential to modify the strategies for developing
new design principles in improving the electrocatalytic efficiency.

Here, we explore a robust and more broadly applicable
multistep workow, as shown in Fig. 1, where the ab initio
adsorption properties are combined with supervised machine
learning algorithms for the source, verication and predictions.
For this purpose, a data set of 4500 MM′XT2-type MXenes was
constructed and their HER performance was systematically
investigated. Among them, 1125 systems (25% of the materials
space) were randomly selected for evaluation of their HER
activity using density functional theory (DFT) calculations as
well as to train the ML model. Predominating indicators were
then employed to build an interpretable MLmodel that predicts
the HER performance of the remaining 85% of the materials
space. Overall, the MLmodel achieves better prediction activity,
on par with rst-principles calculations. It deciphers the
underlying factors that govern the HER performance and
provides a coherent path to investigate a large number of
MXene congurations.
2 Methods
2.1 Density functional theory

Ab initio simulations were performed using plane-wave-based
Vienna ab initio simulation package (VASP) code within the
processing, feature engineering, model training, model selection and
rom first principles calculations, the materials space is generated from
functionalization.

This journal is © The Royal Society of Chemistry 2023
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framework of density functional theory. The exchange correla-
tion effects and ion–electron interactions were incorporated
through the Perdew–Burke–Ernzerhof generalized gradient
approximation (GGA) functional and projected augmented wave
(PAW) method, respectively. For structural relaxation, the
convergence thresholds of 10−2 eV Å−1 force and 10−5 eV energy,
with a cutoff energy and Monkhorst–Pack method k-point grid
of 450 eV and 7 × 7 × 1, respectively, were employed to expand
the electron wave functions and sample the Brillouin zone. A
vacuum space of 15 Å was adopted along the z-direction to
prevent spurious interaction between the periodic units.
Grimme’s empirical correction scheme (DFT + D3) was adopted
to describe the van der Waals interactions.

The hydrogen adsorption Gibbs free energy (DGH) was
dened based on the computational hydrogen electrode (CHE)
model54 as follows:

DGH = DEH + DEZPE − TDS (1)

where DEH is the DFT-computed differential hydrogen adsorp-
tion energy. DEZPE, T and DS are the change in the zero-point
energy, temperature (298.15 K) and entropy change, respec-
tively, calculated in the harmonic approximation. DEH can be
calculated as follows:

DEH ¼ EH � Eslab � 1

2
EH2

(2)

where Eslab, EH and EH2
are the total energies before H adsorp-

tion, aer H adsorption and of the isolated H2 gas molecule,
respectively. For this denition of DGH, highly positive or highly
negative values are detrimental as they act as a large barrier to
the electrochemical reduction reaction andmake H2 desorption
difficult. However, optimal DGH values close to zero are highly
preferable to obtain an excellent HER catalyst.

The cohesive energy (Ecoh), which is a measure of the total
energy of the system extracted from the sum of the individual
constituent atom energies, can be used to determine the
structural stability by understanding the strength of the forces
that bind the atoms together in a system and is dened as
follows:

Ecoh = Etotal − NEM − NEM′ − NEX − NET (3)

where Etotal is the total energy of the system, and EM/EM′, EX
and ET are the energies of the free atoms of M (M = Sc, Ti, V,
Cr, Mn, Y, Zr, Nb, Mo or W), X (X = B, C or N) and T (T = O, F, S
or Cl), respectively. N is the number of atoms. We further
computed the cohesive energy per atom by normalizing the

Ecoh of different systems: Ecoh ¼ Ecoh

no: of atoms
.

2.2 Feature space construction

To establish accurate ML models or to evaluate the main contri-
butions controlling the hydrogen evolution reaction, it is impor-
tant to map the material-to-attribute connection. In view of this,
a group of features (materials variables) that represent a system in
a computationally friendly manner is highly required. Typically,
This journal is © The Royal Society of Chemistry 2023
an ideal feature set reveals the structure–activity relationships of
a system and specically describes each materials input data set.
However, materials representations are an area of complex and
intense development, where their explicit interpretation is
a signicant challenge when compared with the success recently
attained for molecular representations.55,56 Thus, it is very
important to generate suitable and comprehensive features
during the construction of ML models. For easy training of an
efficient and fast ML model, every selected feature has to inde-
pendently represent the physicochemical properties. For this
purpose, we have considered atomistic, structural and electronic
indicators as an initial pool of descriptors, leading to a total of 60
primary features, as shown in Table S1.† Nevertheless, the
selected primary features were unable to capture the HER
performance due to different numbers of constituent atoms that
have different feature space sizes. To this end, statisticalmeasures
of some selected primary features were considered, including
average, weighted average, maximum, minimum, standard devi-
ation, variance, and squared values (see Table S2†). Feature
addition using statistical functions increased the features to 125.
These features are categorized into Set 1 (atomistic features), Set 2
(surface features) and Set 3 (statistical features) and their corre-
sponding subset combinations are employed to identify the key
descriptors. The considered descriptorsmay not provide complete
information about the fundamental physicochemical principles.
However, from a pragmatic outlook, their predictions can be used
as an indicator to understand the importance of variables that
inuence the property of interest, thereby establishing a potential
practical model to solve this complicated problem.

2.3 Machine learning

Our ML approach is designed for establishing a regression
relationship between the HER catalytic activity and predom-
inating indicators, based on the results from DFT calculations.
Nine ML algorithms, namely the AdaBoost regressor (ABR),
elastic net regressor (ENR), gradient boosting regressor (GBR), K
neighbors regressor (KNR), kernel ridge regressor (KRR), lasso
(LAS), partial least squares (PLS), random forest regressor (RFR)
and ridge regression (RDG) were employed to predict the HER
performance. An open-source Python distribution platform was
used to train the models via scikit-learn libraries. 25% of the
materials space (1125 systems) was randomly selected to eval-
uate the HER performance using DFT calculations, while the
activity of the remaining 75% of the materials space was pre-
dicted through the well-trained ML model. To ensure the
accuracy and generalization of the supervised MLmodels, the H
binding energy data obtained from DFT-calculations were
randomly partitioned into training and test sets in an 80 : 20
ratio. The stability and accuracy of all models were evaluated
through the coefficient of determination (R2) and mean abso-
lute error (MAE), with standard deviations indicated, and the
formulae are:

R2 ¼ 1�
Pn

i¼1

ðyi � yÞ2

Pn

i¼1

ðy� i � yÞ2
(4)
J. Mater. Chem. A, 2023, 11, 8091–8100 | 8093
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Fig. 2 (a) The selected elements for MM′XT2 MXenes (M/M′ = Sc, Ti, V,
Cr, Mn, Y, Zr, Nb, Mo or W; X = B, C or N; T = O, F, Cl or S). Optimized
structures of (b) pristine and (c) functionalized MXenes. Here, the X
layers are alternately sandwiched between different metal layers, and
the surfaces are terminated with functional groups. Through these
combinations, a large materials space consisting of 1500 possible
configurations is generated. Color code: M/M′, X and T layers are
presented in blue/violet, dark grey and pink colors, respectively. The
numbers 1, 2 and 3 in circles indicate possible adsorption sites. (d)
Computed normalized cohesive energies Ēcoh (eV per atom) and (e)
corresponding distributions of MM′X, MM′XCl2, MM′XF2, MM′XO2 and
MM′XS2 MXenes.
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MAE ¼
Pn

i¼1

ðyi � y
�

iÞ2

n
(5)

where yi, _y, and �y are the prediction, true and average values,
respectively. The R2 score ranges from 0 to 1. The model with an
R2 value (MAE) closer to 1 (0) demonstrates better model
performance.

2.4 General workow

The general workow of the DFT-ML hybrid scheme for the
prediction of potential HER catalysis by MXenes is depicted in
Fig. 1. The rst step involves data preprocessing to construct
a data set of 4500 MM′XT2-type MXenes. The DFT calculations
were then performed to predict the target property of hydrogen
adsorption Gibbs free energy (DGH) for the 1125 congurations
that were randomly selected from the data set. Subsequently,
the data underwent feature engineering to produce a unique
collection of machine learning descriptors that cover the entire
materials design space, which includes atomistic, structural
and electronic indicators. Various ML algorithms were then
trained and the best two models were selected based on the
cross-validation (train/test) score. The accuracy of the developed
ML model was further improved by recursive feature elimina-
tion (RFE), hyperparameter optimization (HO), and the leave-
one-out (LOO) approach. Using the best-performing model, we
predicted the catalytic properties of the remaining congura-
tions (3375 MM′XT2-type MXenes) that were not included in the
training data. Finally, analysing these results helped identify
the key descriptors that govern the HER activity of MXenes.

3 Results and discussion

MM′XT2-type (M/M′ = Sc, Ti, V, Cr, Mn, Y, Zr, Nb, Mo or W; X =

B, C or N; T = O, F, Cl or S) MXenes were constructed with
quintuple atomic layers of T–M–X–M′–T, where the X layers are
alternately sandwiched between different metal layers (M/M′)
and the surfaces are terminated with functional groups (T), as
shown in Fig. 2a–c. Possible combinations of metal layers were
then considered to generate 1500 MM′XT2-type MXenes.
Initially, we evaluated the cohesive energies to understand the
stability trends of these congurations. The computed
normalized cohesive energies Ēcoh (eV per atom) and corre-
sponding distributions of the various functionalized MXenes
are shown in Fig. 2d and e. From the viewpoint of functionali-
zation, the lowest Ēcoh is obtained for –O terminated MXenes
when compared with the other terminations, –F, –Cl and –S,
which indicates that –O is more likely to be synthesized during
experimentation. Moreover, the structural stability of the
terminated MXenes increases in the order of MM′X < MM′XCl2 <
MM′XS2 < MM′XF2 < MM′XO2, showing better stability for fully
functionalized MXenes with respect to their pristine counter-
part. This observed behavior also conrms why MXenes are
usually terminated with functional groups during experimental
synthesis.49 In addition, the Ēcoh values of MM′CT2 are lower
than those of MM′BT2 and MM′NT2, suggesting that carbon-
based MXenes are more stable than boride- and nitride-based
8094 | J. Mater. Chem. A, 2023, 11, 8091–8100 This journal is © The Royal Society of Chemistry 2023
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MXenes (see Fig S1a and b†). This also provides an alternative
explanation for the poor stability of boride- and nitride-based
MXenes during etching in their synthesis process.50,51

3.1 Adsorption energy distribution

Typically, the availability of active catalytic sites on the
surface of MXenes is highly required to carry out the HER: the
larger the number of active sites on the surface, the stronger
the catalytic performance will be. There are three possible
adsorption sites available on MXene surfaces for hydrogen
adsorption. Site 1 has the H atom adsorbed directly on the
innermost metal-atom layer of the MXene, site 2 has the H
atom adsorbed on top of the outermost M atom of the MXene
and site 3 has the H atom adsorbed directly above the X atom
of the MXene structure. Overall, the adsorption of the H atom
on the three available active sites of the 1500 MM′XT2-type
MXenes leads to 4500 congurations. Among them, 1125
systems (25% of the materials space) were randomly selected
to evaluate the HER activity using DFT calculations as well as
to train the ML models, while the catalytic performance of the
rest of the materials was predicted using the well-trained ML
model. Based on the computational hydrogen electrode
(CHE) model,52 the Gibbs free energy of the adsorbed
hydrogen (DGH) is a universal indicator to evaluate the HER
Fig. 3 (a) DFT-computed hydrogen adsorption Gibbs free energies (DGH

of −0.1 to +0.1 eV is represented by the yellow-shaded region. (b) N
candidates with better stability and high HER activity are highlighted i
evolution for the top 10 potential candidates. (d) Distribution of DGH w
geometries of hydrogen adsorbed on the top 10 promising MXenes. Here
H atoms, respectively.

This journal is © The Royal Society of Chemistry 2023
performance. Accordingly, a jDGHj close to zero signies
prominent HER activity of the catalyst, while a negative or
positive DGH, indicating too strong or too weak adsorption,
will tend to reduce the overall reaction rate. The HER
performance is highly dependent on functionalization (see
Fig. 3a–e and S2†); for instance, most of the F- and Cl-
terminated MXenes exhibit poor HER activity due to their
highly positive DGH, indicating a weak interaction between
the adsorbed H and F- and Cl-groups on the MXene surfaces.
There is even a signicant difference in HER activity when
varying the X layers, where the carbon-based MXenes with
jDGHj smaller than 0.1 eV show better HER performance
when compared to boride- and nitride-based MXenes. Over-
all, 48 systems show optimal DGH values in the range of −0.1
to 0.1 eV. Among them, CrMoNO2-1, MnNbCO2-3, NbMoNO2-
3, NbYBO2-1, VMoCO2-1, TiMoN-2, NbCrC-2, NbTiC-2,
NbTiN-2 and TiMoC-2 have better stability and superior
HER activities when compared with the noble metal Pt53 and
thus can be considered as promising HER catalysts. These
results reveal that the HER activity also depends on the active
site where the H is adsorbed. It is found that the H adsorbed
directly on the outermost metal-atom layer of the MXene
structure (site 2) has better HER catalytic performance when
compared with that on other sites.
) for the randomly selected 1125 MM′XT2-type MXenes. The DGH range
ormalized cohesive energies Ēcoh versus DGH. The top 10 promising
n the yellow-shaded region. (c) The free energy profile of hydrogen
ith respect to functionalization and type of active site. (e) Optimized
blue, violet, grey, pink and white colored balls represent M, M′, X, T and

J. Mater. Chem. A, 2023, 11, 8091–8100 | 8095
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3.2 ML model optimization

The precision of a well-trained ML model mainly depends on
the materials descriptor as well as the choice of algorithm.
Historically, several aspects have been considered to be con-
nected with the chemical reactivity of catalytic materials, such
as the d-band characteristics, coordination number and bulk or
atomic properties. Correlating such physical aspects with the
adsorption energies using highly non-linear regression algo-
rithms requires features from the fully optimized geometries of
the pristine adsorption sites. With the selected subset of
atomistic, surface and statistical features, we establish nine
different ML models as shown in Table S3,† namely the ABR,
ENR, GBR, KNR, KRR, LAS, PLS, RFR and RDG, using the
dataset containing 1125 H-adsorption energies obtained from
DFT calculations. To ensure the accuracy and generalization of
the supervised MLmodels, we partitioned the data into training
and test sets in an 80 : 20 ratio (see Fig. S3†). For controlling and
assessing against overtting, the coefficient of determination
value (R2 score) and mean absolute error (MAE) were estimated
with and without using the 10-fold cross-validation technique.
As shown in Fig. S4 and Table S4,† the subset of features with
representative physical indicators anisotropically captures the
H adsorption energy on the studied MXenes. Among all the
subsets of features, the combination of primary features with
the indicators processed through statistical functions provides
the best predictive performance. The predicted MAE and R2 of
the ABR, ENR, GBR, KNR, KRR, LAS, PLS, RFR and RDG algo-
rithms using primary and statistical function-processed
features are presented in Fig. 4a. The use of the RFR model
results in convergence to a low MAE with the highest R2 score,
irrespective of the feature subset, thereby demonstrating its
Fig. 4 (a) Mean absolute error (MAE) and coefficient of determination
algorithms using primary (atomistic, structural and electronic indicators
performing RFR and GBR models (b) with and (c) without cross-validati
(DGH). The pink-shaded regions indicate a deviation of up to 0.5 eV.

8096 | J. Mater. Chem. A, 2023, 11, 8091–8100
good generalization ability. Predictions by the best-performing
RFR and GBR models with and without cross-validation using
the DFT dataset of the hydrogen adsorption Gibbs free energies
(DGH) are shown in Fig. 4b and c, respectively. The GBR model
shows better performance with an R2 score of 0.909 (0.791) and
MAE of 0.303 (0.420) eV in the model training (testing), indi-
cating inferior accuracy prediction to the RFR model. It should
be noted that these tree-based RFR and GBR ensemble models
are robust for high-dimensional data sets due to the good ability
to t nonlinear data. On the other hand, the ABR, ENR, KNR,
KRR, LAS, PLS and RDGmethods have unsatisfactory prediction
performance, which is reected by their considerable MAEs of
0.702, 0.573, 1.342, 0.625, 0.578, 0.647 and 0.568 eV (see Table
S5†), respectively, due to the poor extrapolation capabilities of
the models. Using 10-fold cross-validation, the studied models
exhibit similar prediction performance for the training/testing
sets, as shown in Fig. S5.† These results demonstrate that the
materials descriptors are crucial to reproduce the adsorption
energies on MM′XT2-type MXenes, thereby validating the suit-
ability of our feature pool. The combination of primary and
statistical features achieved satisfactory prediction accuracy.
Nevertheless, the presence of a large number of input features
makes it difficult to readily derive physical insights, thereby
increasing the complexity and time consumption in the ML
model. Thus, it is important to look for a ne balance between
accuracy and the number of features for obtaining efficient
results.
3.3 Feature elimination and hyperparameter optimization

Identifying the most representative descriptors is an extremely
critical step for feature engineering to minimize prediction
(R2 score) of the ABR, ENR, GBR, KNR, KRR, LAS, PLS, RFR and RDG
) and statistical function-processed features. Parity plots of the best-
on using the DFT dataset of hydrogen adsorption Gibbs free energies

This journal is © The Royal Society of Chemistry 2023
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biasing and increase the efficiency of the ML model. For this
purpose, recursive feature elimination (RFE) is used to lter the
descriptors with extreme asymmetry (skewness) and with low/
zero variance for recognizing a more suitable and smaller
subset of features. In addition, hyperparameter optimization
(HO) was performed on the RFR and GBR models by varying the
range of parameters using 10-fold cross-validation; the best
combinations of hyperparameters are presented in Table S6.†
RFE decreased the number of features from 125 to 24 and 30 for
the RFR and GBR, respectively. Subsequently, a leave-one-out
(LOO)57 approach with 20-fold cross-validation was utilized to
further reduce the number of features. The leave-one-out
approach decreased the 24 features obtained from RFE to 15
descriptors for the RFR model with a low predictive mean
absolute error of 0.367 eV. Using the same approach for the GBR
model, the descriptors were reduced from 30 to 19 and the MAE
was further improved to 0.358 eV (see Fig. 5a, S6–S8 and Table
S7†). This demonstrates that the GBR model is slightly more
suitable and the best algorithm in our multistep ML workow.
Fig. 5 (a) Parity plot of predicted vs. actual DGH from the GBR model wit
region indicates a deviation of up to 0.5 eV. (b) Pearson correlation coe
feature elimination (RFE), hyperparameter optimization (HO) and the le
decrease in impurity for the GBR model with RFE–HO–LOO, evaluated
values of 4500 MM′XT2-type MXenes. The positive, negative and optim
symbol indicates pristine MXenes without termination. Clearly, the Cl- a
HER activity due to highly positive DGH, while site 1 (site 2) in the metal-
catalytic performance, as shown by yellow-colored links.
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However, by splitting the data into smaller subsets with similar
congurations, we found that the MAE decreased signicantly,
for instance, to 0.195 eV (0.193 eV) for MXenes functionalized
with Cl and F for the nal RFR (GBR) model. This indicates that
the MAE for a smaller subset of MXenes with particular func-
tionalization is very low. Additionally, it has been determined
that the reduced set of features is sufficient for capturing the
complex interactions inuencing the Gibbs free energies, where
the further removal of any feature leads to a relative decrease in
the efficacy of the model. The Pearson correlation coefficient
(PCC) heat map, which measures the linear relationship
between two variables, is shown in Fig. 5b. Here, a positive
correlation indicates that the two features tend to decrease or
increase together, while a negative correlation means that one
feature tends to decrease while the other increases. In addition,
a high ranking of a descriptor indicates a vital role in governing
the HER activity of MXenes; for example, the number of valence
electrons of the terminating groups (VT) predominately affects
the adsorption ability of H atom. As the typical descriptor sets
h RFE–HO–LOO in the best cross-validated process. The pink-shaded
fficient (PCC) heat map for the reduced set of features after recursive
ave-one-out (LOO) approach. (c) Feature importance from the mean
via 20-fold cross-validation. (d) Alluvial diagram for the predicted DGH

al DGH values are represented in blue, red and yellow colors. The “–”
nd F-functionalized MXenes show blue-colored links indicating poor
atom layers of O-terminated (pure) MXene structures has better HER
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generated from the RFE–HO–LOO process vary with the RFR
and GBR models, we particularly identied common potential
descriptors that precisely relate to the physicochemical prop-
erties of MXenes. Subsequently, the number of valence elec-
trons (VT) and electron affinity (EAT) of the terminating groups
and d-band center variance with respect to the average (dbcs2)
were identied as the strong key predictors of the Gibbs free
energy (see Fig. 5c, S9 and Tables S8 and S9†). Overall, the
feature importance based on the mean decrease in impurity
indicates that features with a high score could have more
importance in making accurate predictions.
3.4 Performance prediction of the unknown space

Aer developing the well-trained model, the best-performing
GBR and RFR strategies with RFE–HO–LOO were further
applied to the remaining 3375 MM′XT2-type MXenes to predict
the HER activity. As mentioned, the well-trained GBR model
with RFE–HO–LOO through cross-validation has an MAE of
0.358 for the randomly selected 25% of the materials space
(1125 systems). Thus, the optimal DGH values for the remaining
ML-predicted materials’ space were set as −0.458 eV (−0.1 −
0.358) to 0.458 eV (0.1 + 0.358). Fig. 5d presents the DGH for the
complete list of MM′XT2-type MXenes using the well-trained ML
methodology. Clearly, the DGH is anisotropically distributed
over a large energy scale ranging from 2.75 to −2.94 eV, indi-
cating the substantial heterogeneity of the active sites. Out of
the 4500 MM′XT2-type MXenes, 30 candidates show an optimal
DGH, which signies excellent HER catalyst activity (see Table
S10†). Similar to the DFT-computed results, the thermodynamic
increase in the proton adsorption energies on F- and Cl-
functionalized MXenes suppresses the hydrogen production
activity, while O termination gives more optimal DGH values.
These results reveal that the HER activity mainly depends on the
type of functionalization. In addition, the type of active site also
inuences the catalytic activity, where site 1 (site 2) is found to
exhibit efficient HER performance for O-terminated (pure)
MXenes (see Fig. S10a–c†). In a broader context, our calculation
results indicate that the H adsorbed on site 1 with O function-
alization can make MM′XT2-type MXenes suitable for
enhancing HER activity.
4 Conclusion

In the present work, we have developed amultistep workow for
rapid and accurate DGH predictions of 4500 MM′XT2-type
MXenes, from which 1125 systems were randomly selected as
the training samples to evaluate the HER performance using
DFT calculations. These MXenes show high structural stability;
in particular, O-terminated structures are highly preferable and
more likely to be synthesized during experimentation. The DFT
results demonstrate that hydrogen adsorbed directly on the
outermost metal-atom layer of the MXene structures (site 2) is
benecial to enhancing the HER performance. Predominating
indicators were then employed to build interpretable ML
models, where the Gradient Boosting Regressor (GBR) algo-
rithm with RFE–HO–LOO parameterization showed the best
8098 | J. Mater. Chem. A, 2023, 11, 8091–8100
predictive performance towards DGH with a low MAE and high
R2 of 0.358 eV and 0.826, respectively. These results demon-
strate that the materials descriptors are crucial to reproducing
the adsorption energies on MM′XT2-type MXenes, thereby vali-
dating the suitability of our feature pool. The feature impor-
tance analysis revealed the number of valence electrons (VT) and
electron affinity (EAT) of the terminating groups, and the d-band
center variance with respect to the average (dbcs2) to be key
descriptors that govern the HER performance. The well-trained
GBR model was then used to predict the HER activity of the
remainingmaterials space and we found that the metal layers of
MM′XT2-type MXenes with O-terminated Nb, Mo and Cr show
high stability and better HER activity. Overall, the present work
not only establishes a robust and more broadly applicable ML–
DFT-based multistep workow for efficient and accurate
screening of HER activity but also provides potential factors that
govern the efficiency of the catalysts, thereby accelerating the
design and development of novel catalysts with high
performance.
Code availability

The code can be retrieved from our GitHub repository (https://
github.com/cnislab/MXenes4HER). Several python libraries
are employed in the current work: pandas to analyse the
dataset, scikit-learn to build the regression models, Joblib to
save the best models, and Matplotlib together with Seaborn to
visualize the plots.
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