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predicting adsorption in nanoporous zeolites†
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Wei Fan, a Subhransu Maji*b and Peng Bai *a

Zeolites are one of themost widely usedmaterials in the chemical industry due to their nanometer-sized pores that

can adsorb and react uponmolecules selectively. With hundreds of known framework topologies and hundreds of

thousands of computationally predicted structures, the ability to rapidly predict zeolite performance allows

researchers to prioritize their efforts on the most promising structures for a given application. Although the

accuracy of forcefield-based atomistic simulations has advanced significantly in the past two decades, these

simulations can be computationally expensive, especially for long-chain, complex molecules. We present

ZeoNet, a representation learning framework using convolutional neural networks (ConvNets) and 3D volumetric

representations for predicting adsorption in zeolites. ZeoNet was trained on the task of predicting Henry's

constants for adsorption, kH, of n-octadecane in more than 330000 known and predicted zeolite materials.

Employing a 3D grid based on the distances to solvent-accessible surfaces, a volumetric representation that can

be generated efficiently, the best-performing ZeoNet achieved a correlation coefficient r2 = 0.977 and a mean-

squared error MSE = 3.8 in ln kH, which corresponds to an error of 9.3 kJ mol−1 in adsorption free energy. In

comparison, a model based on hand-designed geometric features has values of r2 = 0.783 and MSE = 35.7.

ZeoNet is also relatively efficient and can process z8 structures per second on an Nvidia RTX 2080TI GPU,

orders of magnitude faster than forcefield-based simulations. A systematic analysis was conducted to investigate

how the choice of ConvNet architectures, the linear dimension (L) and spatial resolution (Dd) of the distance

grids, batch size, optimizer, and learning rate impact the model performance. We found that ConvNets based

on the ResNet architecture offer the best tradeoff between expressiveness and efficiency. The performance for

all models reaches a plateau at L = 30–45 Å and depends less sensitively on grid resolution, with a small benefit

around Dd = 0.30–0.45 Å. Finally, saliency maps were visualized to identify which regions of the materials

contributed the most to model predictions. It was found, interestingly, that the predictions are driven primarily

by the accessible pore volume rather than the region occupied by the framework atoms.
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1 Introduction

Nanoporous materials such as zeolites and metal organic
frameworks (MOFs) are important adsorbents and catalysts in
the chemical industry due to their numerous applications such
as gas storage, separation, and shape-selective catalysis.1,2

However, nding the best zeolite for a given application is
challenging since the relationship between performance and
structure is oen unknown, and the space of potential struc-
tures is large. To date there are over 250 known zeolite frame-
work topologies3 and hundreds of thousands of
computationally predicted structures.4 Although the develop-
ment of accurate, transferable intermolecular potentials5–7 have
enabled the computational predictions of adsorption perfor-
mance in zeolites for a diverse range of applications,8–12 physics-
based simulations still require signicant computational
resources, especially when large materials databases or complex
mixtures are involved.8,13

Machine learning (ML) is increasingly being used to predict
structure–property relationships in a data-driven manner. Such
efforts have roots in quantitative structure–activity relation-
ships (QSAR) for drug design14 and other molecular property
predictions. These cheminformatics and ML approaches have
oen used features of atoms and their connectivity such as
electronegativity, bond order, molecular weights, and surface
area as descriptors. Along a similar line but adapting for
extended crystalline materials, Gaillac et al.15 selected 22 local
descriptors, 19 global descriptors, and seven porosity descrip-
tors including bond lengths, densities, pore volume, and
accessible surface area to predict the mechanical properties of
zeolites. Anderson et al.16 built a multi-layer perceptron (MLP)
model using six textural properties (e.g., helium void fraction,
gravimetric surface area, largest cavity diameter, pore limiting
diameter, inverse framework density, and the pore size stan-
dard deviation) together with the number density of 17 distinct
Fig. 1 The ZeoNet pipeline for predicting adsorption in zeolites. The unit
fixed-size volumetric chunk with random origins and orientations is c
ConvNets using data collected from physical simulations in a supervised
adsorption in more than 330 000 known and computationally predicted
in a feed-forward manner on the distance grids without the translation

This journal is © The Royal Society of Chemistry 2023
MOF chemical moieties to predict the adsorption isotherms in
MOFs. While conceptually intuitive, these features are high-
level coarse-grained properties that may not be able to accu-
rately capture phenomena dominated by structural details of
a material. Adsorption by all-silica zeolites is one such example:
the materials are chemically identical, which all consist of
corner-sharing SiO4 tetrahedra, and their dramatic molecular
shape selectivity is completely controlled by how framework
atoms are arranged in space.1,17,18

Given the materials structures and an accurate intermolec-
ular potential, the quantitative prediction of adsorption in
porous materials is, to a large extent, a solved problem through
the use of molecular simulations.1 For many adsorption
systems, the assumption of a rigid framework structure allows
one to pre-tabulate the energies felt by a probe molecule on
a regular grid, a practice that improves the simulation efficiency
by allowing the framework–sorbate interactions to be interpo-
lated rather than computed. In other words, the energy grid
contains complete information about a solid material that can
be considered as rigid. Based on this insight, energy grids have
been used as the input for ML models by Snurr et al.19,20 The
interaction energy of a hydrogen probe at each grid point within
the MOF unit cell was calculated and then summarized as an
energy histogram. Bins of the energy histogramwere used as the
input to train a regression model to predict hydrogen and
methane uptake with an accuracy within 3 g L−1. Then, they
extended this method to gas mixtures such as binary mixtures
of Ke and Xr, and short linear alkanes up to propane. The
selectivity for Xe over Kr in Xe/Kr mixtures and single-
component adsorption of ethane and propane can be pre-
dicted in good agreement with grand-canonical Monte Carlo
simulations. However, energy grids are computationally rela-
tively expensive to calculate and condensing them into histo-
grams may also lose 3D structural information.
cell of a zeolite is replicated to obtain an extendedmaterial structure. A
onverted to a distance grid representation, which is fed to train 3D
learning setting. In this work, Henry's constants for n-octadecane (C18)
zeolites were used as the training data. For inference, ZeoNet is applied
and rotation augmentations.

J. Mater. Chem. A, 2023, 11, 17570–17580 | 17571

https://doi.org/10.1039/d3ta01911j


Table 1 Model performance for predicting C18 adsorption in zeolites,
comparing the accuracy and efficiency of a multi-layer perceptron
(MLP) and extreme gradient boosting (XGBoost) trained on geometric
features with various ZeoNet architectures operating on distance
grids. The optimal input representations for each model are given in
parentheses, (Dd, L) in Å (see the main text for details)

Model r2 MSE
Time [s per
sample]

MLP 0.783 35.7 0.0049
XGBoost 0.841 26.2 0.001
3D AlexNet (1, 100) 0.944 9.2 0.14
3D VGG (0.45, 45) 0.961 6.4 0.14
3D ResNet (0.45, 45) 0.973 4.4 0.13
3D DenseNet (0.45, 45) 0.977 3.8 0.14
MC simulations z1 hour
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To represent 3D structures directly, Lin et al.21 pioneered the
use of 3D ConvNets with a binary occupancy grid, in which each
grid location was marked as either zero or one depending on its
distance to the nearest framework atom. They used a LeNet/
AlexNet based network to predict methane adsorption
isotherms and were able to achieve an MSE of 0.015 mol kg−1 in
loadings. This approach was recently extended to CO2 adsorp-
tion in MOFs.22 Using both structural and energy grids, Kim
et al. developed a generative adversarial network to produce
plausible zeolite structures with user-specied heats of
adsorption for methane.23,24 While these studies demonstrate
the utility of modern ConvNets in representing materials
structures, they have focused on the adsorption of small, rela-
tively rigid molecules. It remains unclear how well 3D ConvNets
perform for large, exible molecules whose properties are ex-
pected to be inuenced not only by the local pore dimensions,
but also their larger structural features.

In this work, we propose a 3D structural representation
learning method, ZeoNet, for the task of predicting the
adsorption of n-octadecane, a long-chain hydrocarbon mole-
cule, in all-silica zeolites (see Fig. 1). We carried out a systematic
evaluation of 3D ConvNets and benchmarked them against
MLP and XGBoost regressors trained on high-level descriptors.
Four 3D ConvNets were tested, which were 3D variants of the
popular AlexNet,25 VGG Net,26 ResNet,27 and DenseNet.28 Two
volumetric representations, one based on binary occupancy
grids and the other based on distance grids, were compared.
The effect of grid resolution, input size, and other hyper-
parameters such as batch size, learning rate, and optimizer
were examined. As summarized in Table 1, ZeoNet vastly out-
performed the MLP and XGBoost regressors and among the
various 3D ConvNets, modern deep networks provided signi-
cant improvement in model accuracy compared to older Alex-
Net without sacricing inference speeds.
2 The ZeoNet framework
2.1 Adsorption dataset

To study the ability of 3D ConvNets in capturing spatial corre-
lations of materials structures, the dataset of long-chain
hydrocarbon adsorption was selected. This dataset was
17572 | J. Mater. Chem. A, 2023, 11, 17570–17580
produced from a computational screening study that used
Monte Carlo (MC) simulations to predict the adsorption of three
normal alkanes from C18 to C30 and mono- and di-branched
C18 isomers.8 The adsorption at both the innite-dilution
regime (as characterized by Henry's constants, kH, and heats
of adsorption) and a high-pressure, liquid regime (as charac-
terized by the loadings at p = 3 MPa for an equimolar, six-
component mixture) was calculated. The intermolecular
potentials used in this study were developed for a diverse range
of molecules and zeolite structures and their accuracy has been
validated extensively against experiments.7,29 In total, the study
included 402 experimentally synthesized structures catalogued
by the Structure Commission of the International Zeolite
Association (IZASC)3 and 331 172 computationally predicted
structures from the Predicted Crystallography Open Database
(PCOD).4 Here, we focus on n-octadecane (C18), a linear
hydrocarbon molecule that has a length of ∼2.2 nm when fully
extended, and predicting ln kH, as kH scales exponentially with
the adsorption free energy. Therefore, zeolites for which kH =

0 were removed, leaving 100 520 structures (269 IZA zeolites and
100 251 PCOD zeolites). It is also worth noting that due to the
stochastic nature of the simulations, the adsorption estimates
have statistical uncertainties, not unlike experimental
measurements, and zeolites with higher adsorption strengths
tend to have smaller uncertainties; fortunately these are
precisely the structures more important for the application.

The dataset was initially split randomly into 60% (60 312) for
training, 20% (20 104) for validation, and 20% (20 104) for
testing. The test set was then sub-divided in order to determine
the minimum size needed to reach the level of precision desired
for model evaluation. The rst subdivision included ten sets,
each containing 2000 samples, the second included four sets of
5000 samples each, and the third included two sets of 10 000
samples each. Based on the results discussed later, 10 104
testing samples were moved to the training set, resulting in
a training/validation/testing split of roughly 7 : 2 : 1.
2.2 Volumetric grids and high-level feature descriptors

Zeo++, version 0.3,30 was used to calculate distance grids with
a probe radius of 1.2 Å and a grid resolution of 0.15 Å, while
distance grids with lower resolutions were obtained via down-
sampling using the trilinear interpolation. In a distance grid,
each grid location is assigned its shortest distance to the
solvent-accessible surface formed by zeolite framework atoms.
In this calculation, Si and O atoms have radii of 2.1 and 1.52 Å,
respectively. The distance can be positive or negative, depend-
ing on whether the grid locations lie outside or inside the
solvent-accessible surface. To construct the binary occupancy
grid, we simply assign a value of one to all grid locations where
distances are non-positive and zero where they are positive.

Zeo++ was also used to calculate the pore-limiting diameter
(PLD, unit Å), the largest-cavity diameter (LCD, unit Å), surface
area (unit m2 g−1), and pore volume (unit cm3 g−1) for each
zeolite using a spherical probe with a radius of 1.2 Å, as well as
the number density of framework Si atoms (rSi, unit number per
nm3). These high-level aggregate feature descriptors were used
This journal is © The Royal Society of Chemistry 2023
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to construct a MLP regressor and an XGBoost regressor as the
performance baseline.
Table 2 Mean, standard deviation, and spread of r2 and MSE for
a trained AlexNet model as evaluated using test sets of different sizes

Test set 10 × 2000 4 × 5000 2 × 10 000 1 × 20 104

r2 0.665 � 0.012 0.665 � 0.002 0.665 � 0.002 0.665
Spread [0.639, 0.682] [0.662, 0.667] [0.663, 0.667]
MSE 56 � 3 55.7 � 0.4 55.7 � 0.3 55.8
Spread [51, 60] [55.3, 56.4] [55.4, 56.0]
2.3 ConvNet architectures

3D variants of four ConvNet architectures, which have been
used extensively for image recognition, were evaluated. These
architectures are designed to work with primarily RGB images
and employ 2D convolutions. To operate on 3D data, we replace
the 2D convolutions and pooling operations in these networks
with their 3D variants similar to prior work that has extended
these architectures to handle spatio-temporal data (e.g., for
video understanding31). We briey describe these architectures
below.

2.3.1 AlexNet. AlexNet was the rst large-scale model
trained for image classication and won the 2012 ImageNet
Challenge.25 Our implementation consists of seven 3D con-
volutional (Conv) layers and two fully-connected (FC) layers.
Each Conv layer is followed by batch normalization and ReLU
activation. Two max pooling layers are inserted aer the second
and fourth Conv layers. All conv lters have 16 channels,
a kernel size of 3, a stride of 1, and a padding of 1. The max
pooling layers have a kernel size of 2 and a stride of 2.

2.3.2 VGG16. The VGG architectures26 were introduced as
deeper variants of AlexNet with several design changes and
outperformed AlexNet on the ImageNet challenge. This VGG16
architecture consists of ve blocks and three FC layers. A
dropout of 0.5 is added aer each of the rst two FC layers. The
rst two blocks each contain two Conv layers and the latter three
contain three Conv layers. All Conv layers have a kernel size of 3,
a stride of 1, and a padding of 1, which is followed by batch
normalization, and ReLU activation. Each block is terminated
by a max-pooling layer with a kernel size of 2 and a stride of 2.
The rst block has 64 output channels and each subsequent
block doubles the number of output channels, until it reaches
512.

2.3.3 ResNet18. He et al. introduced residual blocks with
skip connections for training substantially deeper networks.27

The ResNet18 architecture used in this work consists of a Conv
layer with a kernel size of 7, a stride of 2, and a padding of 3,
followed by amax pooling layer with a kernel size of 3, a stride of
2, a padding of 1, and a dilation of 1. This is followed by four
modules that each contain two residual blocks, and nally, an
average pooling layer and a FC layer. Each residual block
contains two Conv layers with a kernel size of 3, a stride of 1 or 2,
and a padding of 1. The output channels of the rst residual
module is 64, and is doubled in each subsequent residual
module by including a 1 × 1 Conv layer in the rst skip
connection while the height, width, and depth are halved in the
last Conv layer. Batch normalization and ReLU activation are
used aer all Conv layers.

2.3.4 DenseNet121. Extending the idea of residual
connections, Huang et al.28 proposed densely-connected
networks in which each layer's output is concatenated in all
subsequent layers in a feed-forward fashion. The DenseNet121
architecture used here consists of a Conv block, six dense
blocks, a transition block, 12 dense blocks, a transition block,
This journal is © The Royal Society of Chemistry 2023
24 dense blocks, a transition block, 16 dense blocks, and a FC
layer. The rst Conv layer has a kernel size of 7, a stride of 2, and
a padding of 3. All dense blocks are identical, containing two
Conv blocks, each using the modied ResNet structure32 of
batch normalization, ReLU activation, and convolution. The
Conv layer in the rst block has a kernel size of 1 and a stride of
1 and that in the second block has a kernel size of 3, a stride of
1, and a padding of 1. The transition block contains batch
normalization, ReLU activation, a Conv layer with a kernel size
of 1 and a stride of 1, and an average pooling layer with a kernel
size of 2 and a stride of 2, hence reducing the number of the
output channels. The number of output channels of the three
transition blocks are 128, 256, and 512, respectively.

2.4 Training

All models were trained to predict ln kH using the mean squared
error (MSE) as the loss function. The baseline MLP and XGBoost
models used high-level aggregate features including PLD, LCD,
density of framework Si atoms, surface area, and pore volume as
input, while the four 3D ConvNets used distance grids as input.
During training of 3D ConvNets, random translations up to full
unit cell lattice lengths and rotations covering all possible
spherical angles were applied as data augmentation techniques.
The resulting 3D grid was then tiled and cropped to create the
desired input size (see Fig. 1). The grids at this stage have the
same lattice system as the materials themselves but were re-
sampled into a cubic lattice. Trilinear interpolation was used
for the translation, rotation, and re-sampling operations. For all
modeling work, PyTorch v1.11.0 was used with an Nvidia RTX
2080TI or A100 GPU as the accelerator. All 3D ConvNets were
trained for a total of 30 epochs with a batch size up to what is
allowed by the GPU memory. Apart from the section on hyper-
parameter optimization, the Adam optimizer was used with
a learning rate of 0.001 and a batch size of 16 for AlexNet and
ResNet18, 4 for VGG16, and 8 for DenseNet121.

3 Results and discussion
3.1 How large does the test set size need to be?

To maximize the number of training samples while also
ensuring that the test set is large enough to allow for precise
estimates of model performance, test sets of different sizes were
used to evaluate an AlexNet model pre-trained using 60 312
training and 20 104 validation samples. As shown in Table 2,
increasing the test set size from 2000 to 5000 leads to roughly
seven times more precise estimate of the model performance.
With 5000 or 10 000 testing samples, r2 is accurate to the third
J. Mater. Chem. A, 2023, 11, 17570–17580 | 17573
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Table 3 Statistics of the geometric features for all zeolites from the
IZA and PCOD databases for which kH > 0 and channels are externally
accessible to a probe of radius 1.2 Å

Min Max Mean Median SD

All zeolites
PLD (Å) 2.8 28.8 5.3 4.8 1.8
LCD (Å) 3.6 29.2 6.7 6.3 1.7
rSi (number per nm3) 8.3 26.3 17.9 18.0 1.7
Surface area (m2 g−1) 60 2038 700 676 200
Pore volume (cm3 g−1) 0.0014 0.6684 0.06 0.0471 0.04

IZA zeolites
PLD (Å) 2.9 12.4 5.4 5.2 1.6
LCD (Å) 4.4 16.9 7.6 7.1 2.0
rSi (number per nm3) 10.8 26.3 16.6 16.9 2.0
Surface area (m2 g−1) 350 2038 1000 927 300
Pore volume (cm3 g−1) 0.0211 0.3483 0.09 0.0774 0.05

PCOD zeolites
PLD (Å) 2.8 28.8 5.3 4.8 1.8
LCD (Å) 3.6 29.2 6.7 6.3 1.7
rSi (number per nm3) 8.3 26.3 17.9 18.0 1.7
Surface area (m2 g−1) 60 1826 700 676 200
Pore volume (cm3 g−1) 0.0014 0.6684 0.06 0.0470 0.04
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decimal digit and MSE is accurate to the rst decimal digit,
which we consider adequate for comparing subsequent
benchmarks.
Fig. 2 Probability density for the distributions of five geometric features:
with kH > 0. A value of zero indicates zeolites without externally accessibl
0.089, 0.089, 0.091, 14.96, and 0.002 for PCOD zeolites and 0.68, 0.58

17574 | J. Mater. Chem. A, 2023, 11, 17570–17580
3.2 Materials characteristics andMLP/XGBoost performance

Porous materials are conventionally characterized using
geometric concepts. Viewing framework atoms as spheres of
different radii, one can dene the pore volume and surface area
to be the unoccupied space (a 3D property) and exposed surface
(a 2D property) per unit mass of the material. If a spherical
probe is placed in the free space, the radius of the largest sphere
that can t at a given location is dened as the local pore
diameter (a 1D property), and since the interior of zeolites is not
uniform, one can further distinguish between the pore-limiting
diameter (PLD) and the largest-cavity diameter (LCD), which are
the smallest and largest local pore diameters across an entire
zeolite, respectively. Table 3 gives a summary of the descriptive
statistics of these high-level geometric features for all materials
in the dataset and Fig. 2 compares the distributions of all the
known zeolites and the computationally predicted ones. As
shown in Fig. 2 and also noted by Pophale et al.,4 the compu-
tationally generated PCOD database contains a larger amount
of smaller-pore zeolites, coincident with higher Si atom density,
lower surface area, and smaller pore volume. A fraction of these
zeolites contain channel systems inaccessible externally by
a probe with a radius of 1.2 Å, which is given a value of zero
in Fig. 2.

The above geometric features are oen used in scatter plots
to construct structure–property relationships, although the
(a) PLD, (b) LCD, (c) rSi, (d) surface area, and (e) pore volume, for zeolites
e channels for a probe of radius 1.2 Å. From (a) to (e), the bin widths are
, 0.74, 127.39, and 0.018 for IZA zeolites.

This journal is © The Royal Society of Chemistry 2023
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resulting correlations are largely noisy and non-predictive (see
Fig. 3 of ref. 8 as an example). However, to provide a baseline to
compare with results obtained with 3D ConvNets, we trained
a MLP model and an XGBoost model to predict ln kH, the log-
arithmic Henry's constant for the adsorption of n-octadecane.
The MLP achieved a value of r2 of 0.783 and an MSE of 35.7,
which corresponds to an error of ∼28.5 kJ mol−1 in the free
energy of adsorption, DGads. The XGBoost model performs
better, with r2 = 0.841 and MSE = 26.2. The performance of the
two models is signicantly better than can be expected from the
broad scatter plots of individual geometric descriptors.

3.3 Performance and optimization of ZeoNet

3.3.1 Comparing binary occupancy grids and distance
grids. Among different volumetric representations, intuitively,
energy grids would be expected to contain the most physical
information, as they are widely used to speed up atomistic
simulations. However, computing an energy grid involves
calculating the interactions of a probe atom with all framework
atoms and is thus computationally rather expensive. We
therefore investigate two alternative volumetric representations
that are easier to calculate, including binary occupancy grids
that have been used by Lin's group21 and distance grids
implemented by Zeo++ (see Computational Details for the
calculation of both grid representations). All four 3D ConvNet
models were trained using both representations with an input
shape of 100 × 100 × 100. As shown in Table 4, distance grids
outperform binary occupancy grids in almost all cases, with the
only exception being VGG16 at a grid resolution of 1 Å. When
using the default grid resolution in Zeo++, Dd = 0.15 Å, the
values of r2 for distance grids exceed those for occupancy grids
by 0.014–0.046, while MSE is lower by 2.2–7.6. The largest
difference is found for AlexNet, which also shows the worst
performance for both representations, with r2 < 0.68 and MSE >
54, while the deeper VGG16 model and the more modern
architectures, ResNet18 and DenseNet121, exhibit a dramatic
improvement, with r2 > 0.83 and MSE < 28. Also included in
Table 4 are the results obtained with the two representations
down-sampled to a grid resolution of 1 Å (while keeping the
same input grid dimension). The resulting coarser, but larger
volumetric grids show even more pronounced improvements
than achieved by the more modern 3D ConvNet architectures.
The r2 values are larger than 0.91 and MSE lower than 13.5 in all
Table 4 Validation accuracy for binary occupancy grids and distance
grids of different resolutions, Dd, in Å. The grid dimension is 1003 in all
cases

Model

Binary grids Distance grids

Dd = 0.15 Dd = 1 Dd = 0.15 Dd = 1

r2 MSE r2 MSE r2 MSE r2 MSE

AlexNet 0.630 61.6 0.937 10.4 0.676 54.0 0.946 9.0
VGG16 0.836 27.4 0.942 9.6 0.851 24.9 0.919 13.5
ResNet18 0.840 26.7 0.953 7.8 0.879 20.1 0.961 6.5
DenseNet121 0.867 22.1 0.957 7.2 0.881 19.9 0.968 5.3

This journal is © The Royal Society of Chemistry 2023
cases, with a much smaller difference between the two repre-
sentations. It is apparent that a large enough input volume is
critical to ensure good performance, presumably due to the
long-chain hydrocarbon molecule selected for the target appli-
cation, which requires spatial learning of larger patches of the
materials structure. As the input volume becomes more limited,
the performance of the simplest AlexNet model suffers the
most.

3.3.2 Effect of input volume and grid resolution. Following
the observation that the size of the input volume greatly inu-
ences the performance of 3D ConvNets, in this section, the
effect of input volume was systematically studied. We focus on
the distance grid representation and vary the grid resolution
from 0.15 to 1 Å while keeping its shape at 100 × 100 × 100.
Consequently, the distance grids represent a cubic input
volume with a linear dimension, L, ranging from 15 to 100 Å
(see Fig. 3). Fig. 4 (numerical data can be found in ESI Tables
S5–S7†) shows how the performance metrics vary with input
volume: As L increases, r2 increases and MSE decreases sharply,
by 0.09–0.27 and 15.5–45.0, respectively, until the model stabi-
lizes roughly at L ∼ 45 Å for AlexNet and VGG16 and at L ∼ 30 Å
for ResNet18 and DenseNet121. Above L ∼ 45 Å, the perfor-
mance of ResNet18 and DenseNet121 decreases slightly, by
about 0.01 (r2) and 1.9 (MSE) at L = 100 Å, indicating a potential
loss of details due to the lower grid resolutions. The degrada-
tion is more signicant for VGG16, with r2 decreasing by 0.04
andMSE increasing by 7.1, although this observation may be an
idiosyncrasy of the specic training runs (see ESI Fig. S6†). In
contrast, the performance of AlexNet continues to improve,
albeit slightly, up to the largest input volume tested, L = 100 Å.
The relatively smaller depth of AlexNet might be limiting its
ability to learn larger-scale features, leading to its lower accu-
racy than that of the ResNet models at all input volumes/grid
resolutions.

Given the relatively similar performance, it is useful to
compare the training speeds of the four 3D ConvNet models.
With GPU acceleration using Nvidia RTX 2080TI, the ratio of
training times per epoch is roughly 1 : 2 : 1.5 : 2.5 for AlexNet,
Fig. 3 Illustration of a 3D volumetric grid with a shape of N × N × N
and a spatial resolution of Dd (in Å). NDd gives the linear dimension, L
(in Å), of the input volume represented by the grid.
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Fig. 4 The performance of 3D ConvNets as a function of the linear dimension of the input volume, showing r2 (a) and MSE (b) for AlexNet (red
circles), VGG16 (cyan diamonds), ResNet18 (open blue up triangles), DenseNet121 (magenta squares) with a fixed input tensor shape of 100× 100
× 100, for ResNet18 with a fixed grid resolution of 0.45 Å (filled blue up triangles), and for ResNet18 with a grid resolution of 0.3 Å and an input
tensor shape of 50 × 50 × 50 (blue down triangles) or with a grid resolution of 0.6 Å and an input tensor shape of 25 × 25 × 25 (blue left
triangles).

Table 5 Validation accuracy for ResNet18 trained with different
optimizers, batch sizes, and learning rates

Batch size &
learning rate

Adam Adagrad RMSprop SGD

r2 MSE r2 MSE r2 MSE r2 MSE

4 & 0.00025 0.968 5.3 0.935 10.9 0.971 4.8 0.972 4.6
8 & 0.0005 0.967 5.5 0.952 7.9 0.966 5.6 0.966 5.6
16 & 0.001 0.972 4.6 0.967 5.5 0.971 4.8 0.967 5.4
32 & 0.002 0.973 4.4 0.960 6.6 0.970 5.0 0.970 4.9
64 & 0.004 0.974 4.4 0.966 5.6 0.966 5.7 0.966 5.7
64 & 0.002 0.973 4.5 0.966 5.7 0.968 5.4 0.969 5.2
64 & 0.001 0.972 4.7 0.964 6.0 0.968 5.3 0.965 5.8
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VGG16, ResNet18, and DenseNet121. It is also worth noting that
the much larger models, VGG16 and DenseNet121, can only
afford a batch size of 4 with the 11GB GPU memory on Nvidia
RTX 2080TI. The training processes are thus much noisier and
are completely unstable for DenseNet121. As a result, all
training runs for DenseNet121 were run on Nvidia A100 with
40GB GPU memory using a batch size of 8. Considering these
technical characteristics, ResNet18 provides the best balance in
terms of model accuracy and computational efficiency and is
therefore chosen to be the focus of subsequent studies.

Using ResNet18, the effect of input volume was examined at
a xed grid resolution of 0.45 Å. This set of data is shown as lled
up triangles in Fig. 4, which largely fall onto the same trend line
as the previous test with different grid resolutions but a xed
input grid shape. Differences become larger with smaller input
volumes (those with L < 30 Å): comparing L = 14.4 Å and Dd =

0.45 Å and L= 15 Å andDd= 0.15 Å, the r2 andMSE values for the
latter are better by 0.03 and 5.7, respectively. To compare model
performance at exactly the same input volume, two additional
tests were performed using a grid resolution of 0.3 Å and an input
shape of 503 or a grid resolution of 0.6 Å and an input shape of
253, for an input volume with L = 15 Å. As shown in Fig. 4, the
performance of grid resolutions of 0.15 and 0.3 is almost indis-
tinguishable, while the grid resolution of 0.6 Å is slightly worse.

3.3.3 Optimization of hyperparameters. Here, the perfor-
mance of ResNet18 was further optimized by tuning the size of
the mini batches, optimizer, and learning rate. Given the
comparisons in the previous section, a grid resolution of 0.45 Å
and an input shape of 1003 are considered nearly optimal and
therefore used without change during the hyperparameter
optimization process. Four optimizers were tested, including
Adam,33 Adagrad,34 RMSprop35 and vanilla stochastic gradient
descent (SGD).36 Table 5 summarizes the results obtained with
17576 | J. Mater. Chem. A, 2023, 11, 17570–17580
the different hyperparameters. First, the effect of learning rate
was examined with a batch size of 64 (c.f., last three rows), the
largest that can t into the GPU memory of Nvidia A100. Next,
the batch size was varied from 64 to 4, while the learning rate,
according to the commonly used heuristic, was halved with
every halving of batch size, resulting in a learning rate of
0.00025 for a batch size of 4 and a learning rate of 0.004 for
a batch size of 64. Overall, the training of ResNet18 is largely
insensitive to batch sizes and learning rates, achieving nearly
identical results with all hyperparameters when the batch size is
larger than 8. At the two smallest batch sizes, 4 and 8, the
performance is slightly worse with the Adam or Adagrad opti-
mizers. Adam is the best optimizer for this system, slightly
outperforming the other three across combinations of batch
sizes and learning rates. The best model was obtained using
a batch size of 64 and a learning rate of 0.004, which achieved
a r2 coefficient of 0.974 and an MSE of 4.4 on the validation set.
Very similar performance metrics (r2 = 0.973 and MSE = 4.4)
were found for the test set, indicating a good model
generalization.
This journal is © The Royal Society of Chemistry 2023
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Fig. 5 Scatter plot of the testing performance, comparing Henry's constants for n-octadecane adsorption (unit: mol kg−1 MPa−1) predicted by
MLP (a) and ResNet18 (b) and target values from Monte Carlo simulations. Color indicates the number of points per pixel.
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3.4 Analysis

3.4.1 Break-down of model performance. To gain a better
understanding of model performance, a scatter plot was con-
structed to compare the target Henry's constants for n-octade-
cane adsorption from Monte Carlo (MC) simulations with the
values predicted by the best ResNet18model. As shown in Fig. 5,
the predictions from ResNet18 cluster nicely around the parity
line, although they are substantially more accurate for zeolites
with larger values of kH (i.e., stronger adsorption). For kH < 1mol
kg−1 MPa−1, the correlation is visibly noisier. It is worth noting
Fig. 6 Normalized confusion matrix showing the percentage of
zeolites from a given target group (kH for n-octadecane adsorption
from Monte Carlo simulations; y axis) in different predicted groups of
kH using the best ResNet18 model. The background color of each grid
indicates the number of zeolites represented. For comparison, the
ResNet18 model was also applied to the zeolites with kH = 0 that were
not included in the training set. The predictions for these unseen
zeolites are shown in the top row.

This journal is © The Royal Society of Chemistry 2023
that the ResNet18 model has a mean-squared error of 4.4 in ln
kH (Table 1), or 10.0 kJ mol−1 in DGads, but as kH scales expo-
nentially with DGads, even relatively small free energy differ-
ences manifest as large differences in Fig. 5. To quantify the
distribution of prediction errors, kH is grouped into nine classes
and the resulting confusion matrix is shown in Fig. 6. Both
gures show that the majority of zeolites have kH > 1 mol kg−1

MPa−1 and these materials were predicted very well by the
ResNet18 model. As kH decreases, the prediction becomes less
accurate and, interestingly, seems to be slightly positively biased
(while still ranking near the bottom). Fig. 6 further demon-
strates the generalizability of the trained model when they are
applied to zeolites for which simulations predicted kH = 0.
These materials were excluded from the supervised learning
Fig. 7 MSE and r2 values as a function of training set size for the best
ResNet18 model and hyperparameters (circles), MLP (squares), and
XGBoost (triangles). Each model was trained from scratch but evalu-
ated on the same test set that consists of 10 000 samples.

J. Mater. Chem. A, 2023, 11, 17570–17580 | 17577
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Fig. 8 Saliency maps based on the best ResNet18 model, showing
three slices of the MFI zeolite at z = 0, 2.58, and 4.97 Å. The top row
shows the distance grids and the bottom row shows the corre-
sponding saliencymaps. The right side illustrates the structure with the
solvent accessible surface shown in white.
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process as our loss function uses ln kH. For these zeolites, our
ResNet18 model correctly predicted very small values of kH and
a similar small positive bias. As noted earlier, the dataset was
generated from stochastic simulations of a nite length (9× 104

MC steps; see ref. 8), where the Widom insertion MC moves
used to compute Henry's constants37 becomes much more
difficult in weakly adsorbing zeolites, thus leading to larger
uncertainties and potential under-predictions. To test this
hypothesis, two zeolites with the largest ResNet18 over-
predictions were selected, AEN-1 and PCOD-8314562, which
had kH = 0 and 3 × 10−15 mol kg−1 MPa−1 from previous MC
simulations. Extending the simulations to 9 × 105 MC steps
yielded kH = (5 ± 45) × 10−84 and (7 ± 14) × 10−13 mol kg−1

MPa−1. The new MC results indeed moved in the positive
direction, although still much smaller than the ResNet18
Fig. 9 Feature visualization showing (a) a random input and (b)–(f) input g
of the best ResNet18 model. In each subplot, the top, center, and bottom

17578 | J. Mater. Chem. A, 2023, 11, 17570–17580
predictions of kH = 3 × 10−5 and 9 × 10−8 mol kg−1 MPa−1.
Examining these zeolites with the worst-case errors suggests
that their pore diameters are barely large enough to t linear
alkanes (e.g., AEN-1 has PLD = 3 and LCD = 3.93 Å) and
increasing the pore sizes even slightly may lead to signicant
increases in kH (within the rigid-zeolite assumption). We thus
speculate that the spatial resolution of the ResNet18 model,
while optimized for the prediction accuracy and efficiency over
the entire dataset, may not be adequate to resolve the cutoff
pore diameters.

3.4.2 Effect of training set size. To investigate how many
training samples are needed to achieve good model perfor-
mance, the best ResNet18 model was retrained from scratch
using the optimal hyperparameters but with decreasing
amounts of training data. These tests maintained the 7 : 2
training/validation split and used the same test set that consists
of 10 000 samples. As summarized in Fig. 7, the model perfor-
mance remains relatively unchanged as the number of training
samples decreases from 70 416 to 17 500. Empirically, the
minimum training set size for this adsorption system to achieve
optimal results appears to be 10 000, below which the model
performance degrades sharply. With 1050 training samples, the
MSE in ln kH increases to above 15 and r2 drops below 0.93.
Nonetheless, these values are still better than the best perfor-
mance of the MLP and XGBoost models. Fig. 7 also shows the
effect of training set size on the MLP and XGBoost models
trained on high-level geometric features. r2 decreases from
0.783 to about 0.7 (MLP) and from 0.841 to 0.76 (XGBoost),
while MSE increases from 35.7 to above 45 (MLP) and from 26.2
to nearly 40 (XGBoost).

3.4.3 Feature visualization and attribution. To probe what
is learned by a 3D ConvNet, one may ask two types of questions:
rids that strongly activate a particular feature map in the last Conv layer
rows show 2D slices at x, y, and z = 1 (left), 25 (middle), and 50 (right).

This journal is © The Royal Society of Chemistry 2023
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(1) given a zeolite structure, what role different regions of the
material play in directing the ConvNet to make its prediction;
and (2) what features the ConvNet activates most in order to
make predictions. Fig. 8 shows the saliency maps for the MFI
zeolite based on the best ResNet18 model. Saliency maps are
a feature attribution technique that assigns an importance
value to each grid location as the gradient of the model output
with respect to the input grid value.38 The resulting 3D gradient
elds thus characterize how much local changes of each grid
inuence the model prediction. By comparing with the corre-
sponding distance grids, we found that, interestingly, the
ResNet18 identies the accessible pore volume and primarily
relies on those regions to make its predictions. To answer the
second question, one can look for the types of input structures
that strongly activate a specied feature map, which can be
obtained by solving an optimization problem starting from
a random input (Fig. 9a). Here, we focus on feature maps in the
last Conv layer of the best ResNet18 model as they represent
higher-level features that may be more relatable. As shown in
Fig. 9, the ConvNet appears to rely mostly on channels of
different sizes and shapes (cylindrical vs. rectangular) to char-
acterize zeolite structures. Finally, it is also worth noting that
these visualizations are for structures that activate strongly, but
not maximally the given feature map, as we found that pushing
the optimization to convergence oen yield unrealistic struc-
tures, i.e., those with rapidly changing or even nearly discon-
tinuous distance values, which may be due to strided
convolutions and pooling operations.

4 Conclusions

In this work, we developed the ZeoNet representation learning
framework to predict the adsorption of long-chain hydrocarbon
molecules in all-silica zeolites using 3D ConvNets with volu-
metric representations. Using the logarithms of Henry's
constants, ln kH, for n-octadecane adsorption as the target
property, we performed a comprehensive evaluation of different
ConvNet architectures and optimization of the grid represen-
tations and training hyperparameters. With almost all ConvNet
models, it was found that distance grids, which contain the
distances from each grid point to the nearest solvent accessible
surface formed by zeolite framework atoms, outperformed
binary occupancy grids that were used successfully for adsorp-
tion of small molecules (Table 4). Using the distance grid
representation, we compared 3D variants of four popular Con-
vNet architectures: AlexNet, VGG16, ResNet18, and Dense-
Net121 (Table 1). These models all outperform a benchmark
multi-layer perceptron trained on common geometric descrip-
tors including pore-limiting diameters, largest-cavity diameters,
surface areas, pore volume, and framework atom densities,
which achieved a mean-squared error (MSE) of 35.7 and
a correlation coefficient of r2 = 0.783. The best prediction
accuracy was obtained using DenseNet121, which reached r2 =
0.977 and MSE = 3.8, corresponding to an error of 9.3 kJ mol−1

in adsorption free energy. AlexNet consistently under-
performed modern ConvNets, with r2 = 0.944 and MSE = 9.2.
ResNet18 was found to provide the best balance between
This journal is © The Royal Society of Chemistry 2023
expressiveness and efficiency, reaching an accuracy of r2= 0.973
and MSE = 4.4 but with a 70% faster training speed and a 75%
reduction in memory requirements than DenseNet121. All 3D
ConvNet models require a minimum input volume to obtain
good performance, with AlexNet and VGG16 reaching a perfor-
mance plateau at a linear dimension L > 45 Å and ResNet18 and
DenseNet121 relatively stable between L = 30 and 100 Å (Fig. 4).
The performance depends less sensitively on grid resolution,
with a small benet at Dd = 0.30–0.45 Å.

Analysis of the model performance (Fig. 5 and 6) reveals that
ZeoNet is exceptionally accurate for zeolites with strong
adsorption (kH > 1 mol kg−1 MPa−1) and slightly over-predicts
compared to simulation results for weakly-adsorbing zeolites,
which we argue may in fact be partly due to inadequate
sampling by the grand-canonical Monte Carlo simulations for
the more challenging adsorption systems. In addition, saliency
maps suggest that the ConvNets mostly rely on the accessible
pore volume to make predictions (Fig. 8) and visualization of
feature maps further indicates that geometric primitives such
as channels of different sizes and shapes are features learned by
the ConvNets (Fig. 9). Finally, experiments with different
training set and test set sizes suggest that a minimum of 10 000
samples are needed to reach peak accuracy and a minimum of
5000 – 10 000 samples are needed to obtain a precise estimate of
performance metrics (three decimal digits in r2 and one in
MSE). These results provide benchmark quality data and
comprehensive guidelines for using 3D ConvNets to model
porous materials. ZeoNet and the associated dataset and so-
ware code provide a foundation for developing and comparing
methods in future research efforts.
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