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In this study, we developed a machine learning interatomic potential based on artificial neural networks
(ANN) to model carbon—hydrogen (C—H) systems. The ANN potential was trained on a dataset of C-H
clusters obtained through density functional theory (DFT) calculations. Through comprehensive evalua-
tions against DFT results, including predictions of geometries and formation energies across 0D-3D sys-
tems comprising C and C-H, as well as modeling various chemical processes, the ANN potential
demonstrated exceptional accuracy and transferability. Its capability to accurately predict lattice
dynamics, crucial for stability assessment in crystal structure prediction, was also verified through pho-
non dispersion analysis. Notably, its accuracy and computational efficiency in calculating force constants
facilitated the exploration of complex energy landscapes, leading to the discovery of a novel C poly-
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morph. These results underscore the robustness and versatility of the ANN potential, highlighting its
efficacy in advancing computational materials science by conducting precise atomistic simulations on a
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1. Introduction

Carbon (C), one of the most abundant elements in nature,
displays various types of hybridized bonds, contributing to a
rich energy landscape and a diverse range of properties across
different structural phases.'” This inherent versatility, com-
bined with boundless possibilities of its combination with
hydrogen (H) leads to a plethora of structures and chemical
environments, ranging from simple hydrocarbons like CH, to
complex organic molecules like carotenes (C4oHsg)."® The
investigation of the hydrocarbons and other C-H systems at
atomistic level is crucial for understanding chemical inter-
actions and advancing materials design, thereby, attracting
significant attention from researchers. For instance, the
advancements in C-based materials have revolutionized fields
like hydrogen storage'®™"® and the capture of polycyclic aro-
matic hydrocarbons pollutants.*®™*#

Recent advancements in theoretical and computational
methodologies, particularly those based on quantum mecha-
nics (QM), such as density functional theory (DFT)"**° have
significantly enhanced our ability to study and explore materials
at the atomic scale. While QM methods provide accurate under-
standing into material behavior, the computational cost of them
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increases with the system size,>"** hindering their applications for
exploring extensive energy landscapes or large-scale simulations.
Therefore, we need a trade-off between accuracy and computa-
tional cost in modeling materials at atomic scale. Machine learn-
ing interatomic potentials (MLIPs), as computationally efficient
alternatives to QM-based methods, have gained attention for their
ability to capture complex atomic interactions and predict material
properties with remarkable precision, enabling the exploration of
extensive chemical spaces and previously inaccessible molecular
dynamics (MD). There have been numerous efforts to develop
MLIPs specifically for pure C.>** These studies aim to improve
the accuracy and transferability of the potential by training on
dataset covering a broad spectrum of atomic environments and
configurations, such as MD trajectories at different temperatures
and pressures®?>* or including 0D-3D systems to have diverse
boundary conditions>>*® to capture the bond diversity. Based on
specific applications, ongoing efforts aim to improve MLIPs by
presenting different versions. For instance, the Gaussian approxi-
mation potential (GAP)*>*' was first developed to study the
behavior of liquid and amorphous C,** later improved to encom-
pass van der Waals corrections for Cg fullerene and nanoporous C
structures,”>* and later ordered graphite configurations with
different stacking patterns were added to its training dataset for
exploring the graphitic energy landscape of C.*°

The existence of MLIPs specifically tailored for pure C
highlights the difficulty and challenges in modeling such
systems. Pure C itself presents significant training challenges;
incorporating H to develop accurate MLIPs for C-H systems
adds further complexity. This includes effectively capturing
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bond variations and intramolecular interactions, such as
hydrogen bonding. Achieving transferability of the MLIP across
systems with various C/H ratios and different boundary condi-
tions is more demanding than for pure C systems. This is due
to the greater complexity and diversity of C-H compounds,
necessitating the generation of a larger and more diverse
training dataset. Efforts have been made to train MLIPs that
include C and H for specific applications, such as predicting
CH stretching modes in small molecules,*® bond dissociation
energy prediction in drug-like molecules,*® C-C bond breaking
in small molecules,”” C-H bond activation of CH, on Pt(111),®
and constructing the potential energy surface (PES) of CH, and
study its vibrational levels.** Some other efforts have aimed to
go beyond specific system and provide a general descriptions
for all organic molecules, rather than for specific system.*’™*>
However, these methods are trained for specific applications
and/or lack sufficient accuracy for different systems that are not
essentially close to their equilibrium state.*®

The complexities and challenges in developing accurate
MLIPs for pure C, compounded by the additional difficulties
when H is incorporated into the system, highlight the lack of
sufficiently accurate and transferable potentials for C-H sys-
tems. Motivated to address this gap in the current research
landscape, we focused on creating an MLIP specifically tailored
for C-H systems. Therefore, in this study, we present an MLIP
based on artificial neural networks (ANNs) for C-H systems. To
enhance the diversity of the training dataset to represent the
complexities of the systems, we train the ANN potential on
cluster systems, rather than including different boundary con-
ditions. This approach provides a broader representation of the
system’s behavior. We demonstrate that our trained potential,
solely based on cluster C-H systems, can be applied not only to
C-H systems but also to pure C systems under various bound-
ary conditions. Furthermore, our potential’s accuracy and
versatility enable it to be used in diverse contexts, including
reactivity and lattice dynamics. The trained ANN potential is
also utilized for crystal structure prediction (CSP) and has
identified a novel C polymorph, showcasing the potential’s
practical applications.

2. Methods
2.1. Feed-forward ANN

In this study, we utilized high-dimensional ANN proposed by
Behler"*** for potential training. Such ANNs commonly operate
in a feed-forward manner, transmitting signals in one direction
through the layers. The ANN structure consists of intercon-
nected nodes linked by weights, arranged in layers including
input, hidden, and output layers. Firstly, atomic coordinate
representations are fed into the input layer by converting each
atomic position into a set of atomic symmetry functions {G,
describing the chemical environment of the atom. We
employed radial (G®) and angular (G®) symmetry functions,*’
totaling 70 symmetry functions (16 radial and 54 angular),
as parameterized in previous work.’® For these symmetry
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functions, we chose a cutoff radius of 6 A based on testing
different values conducted in our work. Secondly, the appro-
priate level of network complexity to accurately represent the
underlying physics without overfitting the data was determined
by testing various number of hidden layers and node counts in
each of them. In this work, we explored ANN models with two
and three hidden layers, each with varying numbers of nodes.
We omitted single hidden layer models due to their inadequacy
in learning such a complex problem. Additionally, we did not
go beyond three hidden layers due to the computational cost as
well as the increased risk of overfitting. After training the ANN
models, it is crucial to evaluate their performance on an unseen
dataset. This helps assess their generalization capability and
performance across various scenarios. Based on our evalua-
tions, it was found that a network configuration with two
hidden layers, each containing 17 nodes, reduced the root
mean square error (RMSE) to below 22 meV/atom. Finally, the
output layer, comprising a single node, yields the energy of
atom in the system. For our ANN with two hidden layers and 17
nodes in each hidden layer and 70 symmetry function in the
input layer, the total energy of the atom is obtained as

17 17 70

E —f(b? —0—;%? .f(b,% —0—241},3 -f(b} + ZG,— .agl)))
=1 Jj= i=
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where f'is the activation function, Vi are the bias weights. Each
node i in each layer k is connected to the nodes j in the next
layer [ = k + 1 by weights aj.*> The total energy (E) of the
system is the collective sum of these atomic energies, each
computed via an individual ANN process. The force F acting on
each atom is subsequently computed from the negative gradi-
ents of the total energy with respect to its atomic coordinates
according to F,, = —V,,Eio (2 = X, ¥, 2). In this scenario, a direct
relationship is absent, attributed to the conversion of atomic
Cartesian coordinates into the symmetry functions. Conse-
quently, to compute the force components acting on each atom,
the chain rule must be employed.*

2.2. Training dataset preparation

The training dataset used for constructing the ANN potential
consisted of C-H cluster structures, varying in size from 10 to
71 atoms. Employing cluster structures allowed for a broad
sampling of atomic configurations within C-H systems, thereby
enhancing the transferability of the ANN potential. The initial
dataset was constructed by about 7000 fully optimized defective
graphene nanoflakes obtained from our local database (initial
training data generation in Fig. 1). These structures were
generated by introducing 1-24 C vacancies in a zigzag graphene
flake.*” The original pristine graphene flake contains 54 C
atoms, with 18H atoms passivating the edges. The geometries
of these defective structures underwent optimization using DFT
implemented in the Gaussian 16 package.’® Generally, the
creation of vacancies induces structural instability, leading
to a transition toward amorphization at higher vacancy
concentrations.**® Consequently, these defective structures
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Fig.1 A schematic workflow for training the ANN potential for C-H
materials. It is divided into six blocks: initial training data generation, data
processing, model training, model evaluation, data augmentation, and
applications. To improve the RMSE in last training iteration, data elimina-
tion was applied.

exhibited significant structural reconstructions after geometry
optimization, resembling amorphous phases. Given the possi-
bility of similarities among structures for specific number of
vacancies, we screened the initial dataset to ensure the struc-
tural diversity. To achieve this, we employed distances of
atomic environment descriptors®'”** to identify and eliminate
configurations that were similar to each other. This initial data-
filtering process results in an initial dataset comprising 4629
optimized defective flake structures. Given our interest in
applying the ANN potential to systems with diverse boundary
conditions, the energy and forces of these structures were
recalculated by employing Vienna Ab initio Simulation Package
(VASP version 6.4.1)>*7* as described in Section 2.4.

Training potential on well-optimized structures generally
limits its comprehension of non-equilibrium behavior, imped-
ing its ability to precisely predict non-zero forces as atoms
deviate from their ideal positions. In order to capture non-zero
forces, the training dataset was gradually augmented by ran-
domly selection of structures from the initial dataset and were
subjected to random atomic position displacements, each with
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an amplitude of 0.05 A, in subsequent training cycles. Addi-
tional structures were randomly generated and optimized using
DFT to expand the dataset (data augmentation in Fig. 1). This
was necessary because the initial generation of the ANN
potential failed in geometry optimization, resulting in widely
dispersed or collapsed structures. After improving the ANN
potential to handle reasonable geometry optimization without
such issues, additional structures were generated and used as
initial guesses to explore low-energy regions of the energy
landscape. This exploration was carried out using the minima
hopping global geometry optimization method (MHM) and the
enhanced ANN potential.®>*” The resulting structures were
filtered based on the fingerprint method discussed in the
previous paragraph. This filtering ensured the diversity of the
training data. Then, single point (SP) calculations with DFT was
done for the selected structures to get the energy (E) and forces
(F). In this way, we generated a dataset consisting of 26731
structures, from which 14664 structures were included in
training the final ANN potential due to the energy filtering that
will be discussed in Section 2.3. Fig. 2 displays some structures
from our dataset, revealing their disordered nature similar to
amorphous solids.

2.3. Training process

The training process was conducted iteratively, starting from
the well-optimized structures of defective graphene nanoflakes
from DFT. After structural filtering, the FLAME code®® was
utilized to train the ANN potential. The code incorporates tools
to convert geometries into symmetry functions fed into the
ANN, along with the extended Kalman filter algorithm®® to train
the feed-forward ANNs. During training, the entire dataset
was randomly partitioned into training and validation sets,

CizH7 C2oHs

CaoH2o

CxHig CaoHs

Fig. 2 Representative C—H cluster structures used as training data points.
The gray and white spheres represent C and H atoms, respectively.
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constituting 70% and 30% of the data, respectively. To test the
potentials during the training, we also prepared a small test
dataset containing C-H flakes with various edge types (the first
condition in Model Evaluation block of Fig. 1). Starting with
4629 data points, we found that the obtained potentials had
RMSE less than 3 meV per atom for training and validation
data. However, the error in our tests was large. The accuracy of
the potential improved after six iterations of training, increas-
ing the dataset size, and capturing non-zero forces.

Despite increasing the training dataset size, we observed
minimal improvement in the accuracy of the trained potential
during the last training cycle. We hypothesized that this could
be attributed to the complexity and significant diversity in
energy among the data points (Fig. S1, ESIf), which varied
widely across a range of 4.52 eV per atom. After conducting
multiple training sessions at different energy range values (as
explained in Section S1 and shown in Fig. S2 and S3, ESIt), we
identified the optimal dataset with an energy range of 2.0 eV
per atom. Narrowing our attention to this energy range and
further refining the data, we eliminated training data with a
final dataset size of 14664. The detailed analysis of this
dataset’s composition, illustrating the distribution of data
across various C/H ratios and the count of C atoms, is summar-
ized in Fig. 3 and Fig. S4, S5 (ESIt). The Fig. 3(a) also highlights
the absence of pure C systems and systems with a C/H ratio less
than 1, as well as an uneven distribution across the available
ratios. By training ANN potentials with this data, we noticed an
improvement in the accuracy (Fig. S4, ESIT) and transferability
of the candidate potentials when applied to test cases. Based on
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Fig. 3 The configuration analysis of data within the energy range of
2.0 eV per atom. (a) The frequency of structures for distinct C—H ratios,
depicted by a colormap (color intensity) representing the count of struc-
tures within each ratio. (b) The distribution of structures vs. the C/H ratio.
The inset plot illustrates the distribution of data based on the count of
C atoms.
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Fig. 4 The reference formation energies obtained from DFT calculations
versus the predicted values by ANN potential are shown in panel (a),
alongside probability density plots in panels (b) and (c), which illustrate
the distribution of configurations in the training and validation datasets
across different energy values. Pink and blue colors represent the training
and validation datasets, respectively.

their accuracy in test cases, we identified a potential with an
RMSE of 0.0216 and 0.0214 eV per atom in energy for the
training and validation sets, respectively. Fig. 4 exhibits the
DFT total energies versus the ANN potential predicted values.
The figure also provides energy distribution of the structures
within training and validation datasets. Both histograms exhi-
bit similar distributions and have consistency in peaks and
tails, demonstrating that the potential is not suffering from
overfitting.

2.4. DFT calculations

The DFT calculations in this study were performed by employ-
ing VASP version 6.4.1. The Perdew-Burke-Ernzerhof (PBE)®’
functional within the generalized gradient approximation
(GGA) was adopted to treat the exchange-correlation interac-
tions and the projector-augmented wave basis set with a 500 eV
cutoff was used. The convergence thresholds for energy and
force during structural relaxation were set to 10 * eV and
0.01 eV A™", respectively. All the calculations were performed
in a non-spin-polarized manner. As our training dataset consists
of both closed- and open-shell clusters, we show in the detailed
discussion in Section S2 of the ESIf that ignoring spin in open-
shell calculations results in negligible errors in energies and
forces. For non-periodic systems, a Monkhorst-Pack mesh of
1 x 1 x 1 k-points was used to sample the Brillouin zone. For
periodic systems, the smallest allowed spacing between
k-points was set to 0.40 A~ To prevent interactions between
images, a vacuum of 10 A was selected for the aperiodic directions
of the systems.
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3. Result and discussion

3.1. Geometry and energy comparison of 0D-3D systems

We first examine the transferability of the trained ANN
potential, which was exclusively trained on a dataset of C-H
clusters. We apply this trained potential to C-H systems across
various dimensions: 0D, 1D, 2D, and 3D. This comprehensive
analysis elucidates the accuracy and transferability of our ANN
potential in predicting the energetics and structural character-
istics of diverse systems. Notably, our test cases here encom-
pass pure C systems as well as the structures where the number
of H atoms exceeds the number of C atoms, a distinctive
inclusion given that the training dataset lacked pure C config-
urations and those with C/H < 1. These intentional inclusions
allow us to assess the extrapolative capability of the ANN
potential in scenarios absent from its original training data.

3.1.1. OD systems. We studied 87 non-periodic systems,
spanning five chemical groups: alkanes, alkenes, alkynes, aro-
matic rings, and fullerenes, detailed in Table S2 (ESIt). Each
structure underwent geometry optimization using both DFT
and the ANN potential. In the following, we compare the
optimized geometries and then formation energies (Ef).

The geometry comparison was conducted using V_sim soft-
ware.®® Color-coded representations of bonds were employed,
reflecting the varying bond lengths within the molecules, as shown
in Fig. S7-S26 (ESIT). By visualization, we found that except three
cases (cyclooctatetraene, propadiene-12, and Cy;-008), the pre-
dicted geometries by ANN potential are similar to DFT, however,
some bond lengths are not identical. To quantify the discrepancy
in bond and angles, we did bond and angle analysis by employing
cheminformatics library RDKit.*" Based on this analysis, we found
that the C-C-C and C-C-H angles and C-C bond lengths obtained
from the ANN potential are generally in agreement, and the C-C
bonds are slightly underestimated by the ANN potential. However,
for H-C-H angles and C-H bonds, no correlation is observed
despite similar geometries from DFT and the ANN potential
(Fig. S27, ESIT). This may be due to the sensitivity of bond lengths
and angles to small deviations in atomic positions. This validation
underscores the robustness and reliability of the ANN potential in
representing the intricate bonding patterns exhibited by such
molecular structures.

For each 0D group, we conducted an energy analysis by
obtaining the E¢ values. The reference energy of H was taken as
1/2 of the H, molecule energy in the gas phase from DFT, and
the reference energy of a C atom was taken as the C atom in
cubic diamond from DFT. The RMSE, maximum absolute error
(MAE), and mean percentage error (MPE) of E¢ were obtained,
as presented in Fig. 5. Based on these three metrics, alkynes
showed the largest deviation from the DFT results, with an
RMSE of 0.126 eV per atom for Ef and an MPE of 0.62%. The
MAE, primarily from C,H,, is 0.25 eV per atom. The results
suggest that the model performs relatively well in predicting
energy for these groups. Another notable point is that the
MPEs are positive, indicating that the Ef predicted by the
ANN potential tend to be overestimated, albeit by less than
1% on average.
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In summary, our analysis of 0D systems evaluated by both
DFT and the ANN potential demonstrates the effectiveness of
the ANN potential in providing reasonable predictions for
molecular geometries, capturing intricate bonding patterns,
and predicting energies that are close to DFT results with errors
of less than 1%. However, there are a few cases where the
optimized geometries from DFT and the ANN potential differ,
e.g. cyclooctateraene and propadiene-12. Additionally, the
RMSE of E; for all the studied systems is 0.057 eV per atom,
which, while slightly larger than chemical accuracy, is also not
unreasonably large. It is worth noting that the majority of
compositions in this test set were not included in our ANN
potential training dataset, particularly those with H/C larger
than 1 and pure C systems. Despite this, applying the ANN
potential on them did not result in unreasonable results.

3.1.2. 1D and 2D systems. To assess the transferability of
the trained ANN potential to boundary conditions that were not
included during training, we examined 11 1D and 2D systems,
as depicted in Fig. S28 (ESIT). The 1D systems with periodicity
along the z-direction comprise three 10-atom C-chains includ-
ing the pure C-chain and its one- and two-side H-saturated
configurations, two pristine and two fully H-saturated single-
wall carbon nanotubes (SWCNT) with chiralities (4,4) and (8,0).
The four 2D systems include graphene and graphyne-X (X =1, 2, 3)
with periodicity in the xy-plane.

Firstly, we compared the optimized lattice (a) constants and
C-C bond lengths (dc_c) from DFT and the ANN potential, as
summarized in Table 1. This comparison revealed that the ANN
potential generally underestimates the lattice constants and
bond lengths compared to DFT results. Quantitatively, the MAE
of SWCNT’s diameter (D), a, and d¢_c in the SWCNTs are 0.63 A,
0.17 A, and 0.10 A, respectively. For 10-atom C chains, the
H-saturated configurations were obtained by adding the 10 H
atoms in two ways: either by placing all of them on one side of
the chain or by alternating their placement on both sides in a
repeating up-and-down sequence. The geometry analysis of the
periodic 10-atom C chains shows that when H atoms are added
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Tablel Geometrical and E¢ results obtained by DFT and the ANN potential for the 1D and 2D systems. For SWCNT, D is the diameter of the tube and the
entries written in parentheses next to the D values are the lattice constant of the SWCNT's unit cell along the nanotube (z-axis). For 10-atom C-chains,

graphene, and graphyne, a is the optimized lattice constant of the unit cell along the periodic directions (z-axis). dc_c is the bond length between C (for
graphynes, r indicates the C—C bond in the ring and c indicates the C—C bond along chains). All the D, a, and d values are in A and the energies are in eV

per atom

System Dppr (aDFT) Dann (aANN) AD dC—C,DFT dC—C,ANN Etprr Ef ann AE¢
SWCNT(4,4) 5.55 (2.46) 5.48 (2.37) 0.07 (0.09) 1.43, 1.44 1.39, 1.40 0.138 0.039 0.099
SWCNT(8,0) 6.37 (4.27) 6.30 (4.10) 0.07 (0.17) 1.43 1.40 0.073 —0.012 0.085
H-SWCNT(4,4) 6.28 (2.59) 5.90 (2.43) 0.38 (0.16) 1.56, 1.58 1.46, 1.49 0.135 0.102 0.033
H-SWCNT(8,0) 7.36 (4.43) 6.73 (4.47) 0.63 (—0.04) 1.57 1.52 0.181 0.154 0.027
System Aaprr AANN Aa dC—C,DFT dC—C,ANN E¢prr E¢ann AE¢
C-chain 12.84 12.45 0.39 1.28 1.24 0.914 0.712 0.202
H-C chain (one-side) 15.09 13.79 1.30 1.51 1.38 1.094 1.157 —0.063
H-C chain (two-side) 12.36 12.12 0.24 1.40 1.37 —0.033 —0.006 —0.027
Graphene 2.44 2.39 0.05 1.41 1.38 —0.123 —0.119 —0.004
Graphyne-1 6.89 6.72 0.17 1.43r, 1.35¢ 1.42r, 1.34c¢ 0.503 0.502 0.001
Graphyne-2 9.46 9.18 0.28 1.43r, 1.43r 0.647 0.586 0.061

1.40c, 1.23c 1.32¢, 1.21c
Graphyne-3 12.03 11.67 0.36 1.43r, 1.40c, 1.43r, 1.32¢ 0.701 0.619 0.082

1.23c, 1.34c 1.21c, 1.25¢

1.24c 1.23¢

to one side, all C atoms align in a straight line with H atoms
oriented perpendicularly to the chain. In contrast, the distribu-
tion of atoms on both sides, result in a zigzag structure (similar
to trans-polyacetylene). Both the ANN potential and DFT give
similar H-saturated C-chains patterns. The comparison of d¢_¢
obtained from DFT and the ANN potential for both H-saturated
chains show that the C-C bonds are underestimated by the
ANN potential. For 2D systems, the MAE of lattice constant a
and d¢_c is 0.36 A and 0.09 A, respectively, smaller than those in
1D systems. Despite these geometrical differences in 1D and 2D
systems, the ANN potential predictions remain qualitatively
consistent with DFT results. For instance, in 1D systems, both
the ANN potential and DFT results show that adding H atoms
to the SWCNTs increases D and d¢_c. In 2D graphyne-X, the C-C
bond lengths obtained by the ANN potential exhibit a similar
trend compared to DFT when X increases from 1 to 3: the d¢_¢
in the hexagonal ring are larger than those along the chains
and the presence of the C-C bond lengths alternations along
these chains. The presence of various bond lengths denote
different bond hybridization in hexagonal ring and in connect-
ing chains (acetylenic linkages) as discussed in details in
literature.®*%?

For energy analysis by comparing Ef values, except graphene
and H-saturated C-chains, there is a slight overestimation with
the ANN potential, i.e., the absolute values of the ANN poten-
tial’s results are smaller than DFT values. However, the trends
of stability are successfully captured by the ANN potential. For
example, the SWCNT with chirality (8,0) is relatively more
stable than that with chirality (4,4), however, this stability order
changes after adding H. For C chains, two-side H-saturated is more
stable than pure and one-side H-saturated chains. Similarly, for 2D
systems, both the ANN potential and DFT consistently rank the
structures, with graphene being more stable than all graphyne-X
structures. Among the graphynes, graphyne-1 is the most stable,
followed by graphyne-2 and then graphyne-3.

This journal is © the Owner Societies 2024

In summary, our analysis of 1D and 2D systems indicates
that the trained ANN potential can effectively address boundary
conditions that were not encountered during training. Our ANN
potential overall underestimates the geometrical parameters
and slightly overestimates the energies. Nonetheless, it demon-
strates promising performance in predicting these properties of
1D and 2D systems.

3.1.3. 3D systems. Materials with 3D periodicity represent
a significant increase in complexity compared to the lower
dimensions previously discussed, necessitating a more intri-
cate geometry optimization process.’® In these materials, the
geometry optimization extends to include the stress tensor,
requiring the simultaneous optimization of lattice constants,
lattice angles, and atomic positions. Here we have considered
53 bulk materials, including 8 structures with C-H and 45
structures with only C. The 45 pure C systems can be categor-
ized into four groups: molecular crystals composed of either
flakes/clusters (group I), fullerenes bulks (group II), layered
structures (group III), and normal crystal (group IV). The
geometries and details such as chemical formula, space group,
energy and geometric parameters, for the 53 systems, are
summarized in Fig. S$29-S31 and Tables S3, S4 (ESIY).

Geometrical analysis of the optimized structures from the
ANN potential and comparison with DFT revealed several key
findings. Notably, from the 53 bulk phases, only the layered
C-H system optimized to an unreasonable structure using the
ANN potential, with C-C atoms too close together and desorbed
H atoms. Specifically, the ANN potential optimization of this
structure resulted in significantly smaller C-C bond lengths
compared to DFT counterparts (dc_cann = 0.95 Aand dc_c,prr =
1.54 A). Due to this discrepancy and its significant impact on
geometric properties and energy comparisons, this C-H layered
system was excluded from subsequent analysis. Furthermore,
errors in lattice constants for C-H systems were found to be
smaller than those for pure C structures: the maximum RMSE
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Table 2 Maximum absolute error (MAE, in A), and RMSE (in A) of lattice
constants a, b, and c in the 3D systems. The metrics for C—H* are after
excluding the layered system. The RMSE values of E; are in eV per atom

C-H C-H* CI CII C-II CIv
MAE, 0.760  0.430  1.156  1.494  1.876  2.352
MAE, 0.760  0.430  1.605  1.444  1.876  0.593
MAE, 0.540 0540  1.013  0.515  0.079  9.219
RMSE, 0.340 0222 0516  0.855  0.557  0.782
RMSE, 0.365 0264  0.744  0.890  0.547  0.192
RMSE, 0.301 0318  0.446  0.288  0.026  2.078
MAE;, 18.524  0.060  0.199  0.046  0.520  0.761
RMSE;, 6.549  0.032  0.097  0.027  0.231  0.236

and maximum MAE in lattice constants for C-H systems were
0.318 A and 0.540 A; in contrast, for C systems, the corres-
ponding maximum RMSEs and maximum MAEs were 2.078 A
and 9.219 A, respectively, for groups II-IV. Table 2 summarized
the MAE and RMSE of geometrical parameters. The MPE values
can be found in Table S5 (ESIf).

Based on the E; analysis, summarized in Table 2, we found
that the RMSE and MAE of C-H systems and C-II systems are
notably smaller than other 3D systems. In contrast, the largest
errors are identified for the C-IIT and C-IV groups in the pure C
systems. Additionally, within each group, the comparison of E¢
values reveals that the ANN potential correctly predicts the energy
ordering of various structures for C-H, C groups I and II. However,
for groups III and 1V, the ANN potential fails to provide accurate
energy ordering, particularly for the layered C systems (group III)
which the values are identical as documented in Table S3 (ESIT),
which could be a consequence of inaccuracy of the ANN potential
for lattice parameters in these systems.

In summary, despite being trained on C-H cluster systems,
the ANN potential demonstrates applicability to periodic C-H
systems, successfully identifying the energy ordering and cap-
turing correct morphologies, except for layered structures. For
pure C molecular crystals (group I and II), the potential can give
the right energy ordering for the stability of the configurations
based on Ef analysis. However, for the other systems, especially
for the layered ones and the low-symmetry C systems with space
group P1, the accuracy of the potential needs to be improved.

3.1.4. Overall evaluation across dimensions. Based on the
evaluations of 0D-3D C-H and pure C materials using the ANN
potential trained on C-H clusters, we identified notable
strengths and areas for improvement in the ANN potential.

Firstly, geometry optimization using the ANN potential
generally provided reasonable geometries for 0D-3D systems,
in terms of having similar patterns, bond angles/lengths, and
lattice constants close to DFT results. The comparison with DFT
values indicates an overall underestimation of geometrical
parameters. Furthermore, while the ANN potential works for
most of these systems, there were some discrepancies. For
instance, it provided planar geometry for non-planar cycloocta-
teraene (CgHg) and propadiene-12 (C3H,4) molecules and yielded
an unreasonable layered C-H structure (C,H,) in 3D systems,
where the C-C bonds were approximately 0.9 A smaller than
DFT values with desorbed H atoms.
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Secondly, the energy investigations show a slight overesti-
mation, meaning Er from the ANN potential are more negative
than DFT values. The comparison of Ef values shows that the
largest MAE belongs to 3D pure C systems, particularly for
group III (layered systems) and those from group IV with lower
structural symmetries (i.e. space group P1).

These geometrical and energy investigations demonstrate
overall robust performance of the ANN potential across various
boundary conditions, despite being trained on clusters. How-
ever, according to the deviations encountered in analyses of
different 0D-3D systems, refinement is required to improve its
accuracy. This refinement necessitates the incorporation of
training data points consisting of pure C, layered flakes, and
clusters with other C/H ratios, particularly those <1. Addition-
ally, it is important to highlight that our training dataset
included open-shell systems, while all the 0D-3D test cases
were closed-shell systems. Due to potential issues with using
the PBE functional and ignoring spin during our data prepara-
tion, the current version of the ANN potential may not be
accurate for open-shell systems. In the later improved version,
we will consider using hybrid functionals and including spin in
preparing the training datasets.

3.2. Reactivity comparison

In this section, we assess the performance of the ANN potential
in modeling various chemical processes. We evaluate potential
energy curves for C-C bond dissociation in a carbon dimer and
three hydrocarbons, comparing the results to DFT calculations
to determine how well the ANN potential captures the PES
across different bond lengths. Then, we explore the adsorption
of CHx(X = 1-4) and H atom on graphene, analyzing the
accuracy of the ANN potential in predicting adsorption sites
and adsorption energies. Finally, we study the fully hydrogena-
tion of both periodic and non-periodic 10-atom C-chains to
assess the ability of our ANN potential in capturing the favor-
able hydrogenated configuration and energies.

3.2.1. C-C PES. Capturing the PES is crucial for obtaining
reasonable structure during geometry optimization because the
PES represents the energy landscape of the system, mapping
out how energy changes with variations in atomic positions.
The inability of a trained MLIP to accurately capture the PES
could result in missing low-energy configurations of the system
or giving the structures that are physically not meaningful.
Capturing correct PES across various regions is not an easy
task. For instance, a recent study on the performance of MLIPs
in capturing the PES of C dimer (C,) revealed that despite
correct representation around the equilibrium region, they
encountered problems at C-C distances smaller/larger than
equilibrium, resulting in overstabilized collapsed/dissociated
structures.® To evaluate how our ANN potential behaves across
various regions of PES, we examined the potential energy curves
associated with the C-C bond dissociation process in C,, ethyne
(C,H,), ethene (C,H,), and ethane (C,H¢) and compared the
results with DFT calculations.

Comparison of the potential energy curves obtained from
our ANN potential and DFT reveals a close resemblance in curve
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Fig. 6 Potential energy curves for (a) C dimer, (b) ethyne, (c) ethene, and
(d) ethane calculated by DFT and ANN potential. The equilibrium bond
lengths from the ANN potential and DFT are shown by arrows and the
values (in A) are written in blue and pink, respectively.

shape and energy variation across all four molecules (Fig. 6).
This suggests that the ANN potential accurately captures the
overall trend of the PES, performing well in predicting reason-
able structures at near- and far-equilibrium regions. Addition-
ally, analyzing energy values indicates that the ANN potential
predicts energies for the C, dimer that are higher than DFT
across various bond lengths. However, the discrepancy
improves as the H content increases, likely because breaking
unsaturated C-C bonds in C,, C,H,, and C,H, introduces
complexities in their electronic structure calculations with
DFT due to the need for more than one Slater determinant,
leading to less accurate predictions. Furthermore, moving from
C-C dimer to C,H,, C,H,, and then to C,Hg, both the ANN
potential and DFT consistently show an increase in equilibrium
bond lengths. This trend and the obtained values (Fig. 6) also
align with the recent values proposed from bond orders and
populations (BEBOP) model.*®

To conclude, our evaluation of C-C PES shows consistent
trends across C,H,x (X = 0, 1, 2, 3), suggesting that the ANN
potential captures the general behavior of the energy vs. bond
length relationship well. The discrepancy between the ANN
potential and DFT results are primarily observed in the C-C
dimer system. This can be attributed to the fact that our
training dataset does not include pure C systems.

3.2.2. Surface adsorption. We next evaluate the accuracy of
the ANN potential by predicting the configuration and surface
adsorption energy of CHx (X = 1-4) and H atom on graphene.
The 5 x 5 graphene supercell, consisting of 50 C atoms, was
constructed from the DFT and the ANN potential optimized
primitive cells of graphene. The in-plane lattice parameters are
12.33 A and 11.96 A from DFT and the ANN potential, respec-
tively. This large lattice size, combined with a vacuum of 25 A
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perpendicular to the graphene plane (z direction), prevent
interactions between periodic images. For each adsorbate, we
examined different adsorption sites, including the top of a C
atom (top), the midpoint of a C-C bond (bridge), and the center
of a hexagonal C ring (hollow), as shown in Fig. 7(a).

Based on the total energies obtained after geometry optimi-
zations, we found that the adsorption sites predicted by the
ANN potential agreed with DFT results. Geometrical analysis
revealed that most adsorbates exhibited similar molecular
orientations, with the exception of CH adsorption. In the case
of CH adsorption, the ANN potential predicted CH to be
perpendicular to graphene, resulting in a H-C-C bond angle
of 180°, while DFT indicated a tilted CH orientation toward the
substrate with a H-C-C bond angle of 120° (Fig. 7(e)). The
values of C-C bond lengths (d) between the C atom in CH, and
the C atom in the graphene substrate to which CH, is bonded,
calculated from both DFT and the ANN potential were in close
agreement. The maximum deviation 0.11 A of d was observed
for the CH case, while the others were smaller than 0.06 A. For
the case of H adsorption, d is the C-H bond length between the
adsorbed H and the C atom in graphene obtained from the
ANN potential is close to DFT value. The obtained d values of
the adsorbed CHy and H atom on graphene, along with the
reported DFT values in literature, are summarized in Table 3.
Comparing our results with other reported values in literature
shows there is agreement between our findings and those
values.

After geometrical analysis, we evaluated the adsorption
energies (E,qs) of each species using the equation:

Eaqs = EX/gT - Eg'r — Ex, (2)

where, Exj: is the total energy of the optimized graphene
systems with the X species (H or CH,) adsorbed, E, is the
energy of pristine graphene, and Ex is the energy of the isolated
X species. For H atom, the Ex is the energy of single atom H

Fig. 7 (a) Schematic illustration of various adsorption sites on graphene.
(b)—(f) DFT-predicted top and side views of the most stable configurations
of CH4, CHs, CH», CH4, and H adsorbed on graphene, respectively. C and H
atoms are presented in gray and white, respectively.
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Table 3 The adsorption site, the calculated C~C bond lengths (d in A) of
adsorbed CHy on the graphene, and the calculated adsorption energies
(Eags in eV). For H adsorption, d is the C—-H bond length. The literature
values for d are reported in column five and the corresponding E,4s are in
the last column

NN
Egds Eaas

3.358%”  0.03 0.00 —0.33%7
1.585%7 —0.76 —0.50 —0.46°7
1.515%7 —2.62 —3.22 —2.94%
1.482%7 —2.10 —4.04 —2.20
1.128%7 —0.76 —2.28 —1.52%
1.12%8 —0.82%
—0.69 to —0.87%°
—0.947°
—0.807*
—0.847%

Site dorr dann  d Enie

CH, Top 3.33 3.35
CH; Top 1.59 1.56
CH, Bridge 1.51 1.46
CH,; Bridge 1.48 1.37
H  Top 113 1.08

from DFT with spin-polarized calculations. Our results for CH,
adsorptions show that, except for the case of CH, where the
geometry predicted by the ANN potential is not consistent with
DFT, the ANN potential effectively captures the relative adsorp-
tion strength of CH, species despite differences in E,qs between
DFT and the ANN potential. Both methods indicate an increase
in E,4s as the number of H atoms in CH, decreases which is in
agreement with other DFT studies. However, for H adsorption,
there is a notable discrepancy in the E,q4s predicted by the ANN
potential, which is significantly more exothermic than those
from our DFT calculation and literature values. This discre-
pancy could be due to the low accuracy of the ANN potential for
pure 2D systems and predicting C-H bond lengths, as dis-
cussed in OD systems. Therefore, the accuracy of the ANN
potential needs to be improved to address accurately the
binding strengths of the adsorbed H atom(s). It is also worth
noting that accurately describing the interaction of H with
graphene to obtain its E,q4s is a general challenge in modeling.
As shown in Table 3, the summarized literature values for this
system exhibit variability, ranging from —1.52 eV to —0.69 eV,
depending on different models, DFT functionals, and basis
sets.®””7> This variability indicates inherent challenges in
achieving consistent results for H adsorption on graphene.

These results highlight the robustness and reliability of the
ANN potential in modeling interactions between molecules and
materials, such as the adsorption of CH, and H on graphene.
The ANN potential effectively identifies correct adsorption sites
and predicts the relative adsorption strength which are close to
DFT values. It suggests that the ANN potential is a promising
tool for studying catalysis, which requires identifying correct
adsorption sites and configurations. However, further improve-
ments is needed to enhance the accuracy, particularly in
predicting E,qs and C-H bond lengths.

3.2.3. C chain hydrogenation. We next investigate the
hydrogenation of periodic 10-atom C chains. In Section 3.1.2,
as explained in detail, the hydrogenation process was done by
adding one and two-side H atom to each C atom in the chain.
Our geometry analysis showed the predicted dcc bonds are
underestimated by the ANN potential. Here, we compare the
hydrogenation energy (Epnydro) of the chain which represents the
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energy change associated with adding H atoms to C. Eyyqr, Was
calculated as the total energy difference between the hydro-
genated (saturated) and non-hydrogenated (pristine) states of
the C-chain:

Enyrdo = (Esat — Epr — 10.0 X Eg)/Ng. (3)

Here, Eg, and E,; are the total energies of the chain with and
without 10 H atoms, Ey is half the energy of the H, molecule,
and N¢ is the number of C atoms in the chain. The Eyyaro
obtained by DFT for one- and two-side hydrogenated chains
were 1.273 eV per atom and —0.980 eV per atom, respectively.
These DFT results indicate that two-side hydrogenation is
energetically 2.253 eV per atom more favorable than one-side
saturation. Similarly, the ANN potential results indicate that
the two-side hydrogenated chain is 2.326 eV per atom more
favorable than the one-side configuration, with Eyyq., values of
1.601 eV per atom for the one-side and —0.725 eV per atom for
the two-side configurations, respectively. Therefore, despite
absolute value differences between DFT and the ANN potential
for Epyaro, the physical trends are consistent.

3.3. Lattice dynamics

We further assess the accuracy of the ANN potential by studying
the lattice dynamics, which requires higher order derivatives of
the PES, to build the dynamical matrices in order to obtain
properties such as phonon dispersions. We employed the finite
displacement method as implemented in Phonopy’> package to
obtain the interatomic force constants. These calculations
involve creating supercell structures with an optimal number
of displacements based on the structural symmetry. We con-
sidered the phonon dispersions of two experimentally synthe-
sized crystalline phases of pure C, namely cubic diamond Fd3m
(Cg, mp-66) and hexagonal diamond P6;/mmc (C,, mp-47), and
one C-H system with space group 12,3 (C,H,, mp-1079612) by
making supercells with sizes 4 x 4 x 4,4 x 4 x 2,and 4 x 4 x 4,
respectively. The reason for selecting these structures is that
they are non-molecular crystals which provide non flat curves,
making them suitable for our comparative analysis.

The phonon dispersions along different high-symmetry
points in the Brillouin zone were obtained using DFT and the
ANN potential. The comparison between DFT and the ANN
potential results revealed a clear similarity in the overall emer-
ging patterns, as depicted in Fig. 8. The ANN potential accu-
rately captures the essential features of the phonon spectra,
particularly in the case of acoustic modes, where frequency
discrepancies are minimal. However, a more pronounced devia-
tion is observed for optical modes, indicating a higher error in
reproducing their frequencies. This observed discrepancy
may arise from the inherently challenging nature of capturing
intricate details associated with higher-energy optical vibra-
tions.”*”® To assess the magnitude of errors in comparison
with experimental data, we specifically consider cubic dia-
mond’s longitudinal optical (LO) modes for which reliable
experimental measurements are available. The experimentally
measured LO frequencies at I' and L points are reported as
1314.69 cm™' and 1250.17 em™', respectively.”® Our DFT
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Fig. 8 The comparison of phonon band dispersions obtained from the ANN potential (blue lines) and DFT (orange dotted lines) is conducted for three

structures: (a) mp-66 (diamond) (b) mp-47 (c) mp-1079612.

calculations closely align with these values, yielding 1292.69 cm ™"

and 1244.81 cm ™. However, the ANN potential predictions exhibit
a slight deviation, with LO frequencies of 1345.79 cm " at I’
and 1291.20 cm ! at L. Given these differences, it is noteworthy
that the absolute discrepancies of 31.10 cm™ ' and 41.03 cm ™"
from ANN potential are relatively small. Despite quantitative
disparities, the qualitative agreement in the phonon disper-
sions underscores the reliability of the ANN potential in cap-
turing the fundamental characteristics of lattice vibrations.
Additionally, in practical applications, it is important to high-
light that acoustic modes play a crucial role in influencing
thermal properties due to their lower energies and significant
contributions to heat conduction. Consequently, the accurate
representation of acoustic modes by the ANN potential under-
scores its reliability in predicting key material properties.

3.4. Uncovering a novel C polymorph through ANN-guided
structural exploration

Phonon dispersion serves as a theoretical tool for assessing the
stability of structures by confirming the absence of imaginary
frequencies, an important aspect of CSP. However, for larger
systems, phonon dispersion calculations for candidate struc-
tures can be demanding using DFT. These calculations typically
require creating a supercell, densely sampling the Brillouin
zone with k-points to accurately capture phonon modes, and
calculating force constants by solving the dynamical matrix
equations for each atom pair and phonon mode. Taking
advantage of fast energy and force evaluations via the ANN
potential, we assessed the efficiency and applicability of our
trained ANN potential for CSP. Employing the MHM at zero
pressure with our ANN potential and utilizing the cubic dia-
mond structure as the initial configuration, several structures
within the energy range of 1.0 eV per atom above the cubic
diamond were revealed. Comparing them with the known
phases in SACADA database collected by Hoffman et al.,”® we
confirmed that one of the structures is a new C polymoprh. In
the following, we provide some DFT-calculated properties of the
discovered C polymorph.

This novel monoclinic polymorph of C with the space group
C2/m (No. 12) contains eight C atoms in its primitive cell, as
shown in Fig. S32 (ESIf). The atomic positions and lattice
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Fig. 9 The phonon band dispersion of the novel C polymorph.

constants are summarized in Table S6 (ESIt). The bond lengths
are within 1.50-1.69 A and the atoms are three- and four-
coordinated, reflecting sp>-sp® bonded hybridization, and con-
tains only 6-member C rings. Its dynamic stability was con-
firmed by the absence of negative frequency modes through the
entire Brillouin zone as depicted in Fig. 9. The thermodynamic
stability was examined by taking the energy of C atom in
diamond structure as reference energy. The calculated Ef of
C2/mis 0.203 eV per atom which is energetically more favorable
than experimentally synthesized T-carbon”””® (space group Fd3m)
and other carbon allotropes such as orthorhobmic carbon 0€207°
(space group Cmcm) which have been reported.”®®° Its mechanical
stability has also been validated by twelve mechanical stability
criteria for orthorhombic structures.® Other properties, such as
mechanical properties as well as thermal and electronic band
structure are summarized in Table S7 (ESIT) and represented in
Fig. S33 and S34 (ESIY).

4. Conclusion

In this study, we developed a MLIP based on ANN for modeling
C-H systems, achieving an impressive RMSE in energy less than
22 meV per atom. The potential was trained on a diverse dataset
of C-H clusters ranging in size from 10 to 71 atoms and C/H >
1. Extensive evaluations against DFT results demonstrated
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its accuracy and transferability across a range of scenarios. We
examined its performance in geometry optimizations and for-
mation energy predictions across 0D to 3D C-H structures,
including systems with C/H ratios excluded in training. While
deviations were most pronounced in pure C systems, particu-
larly 3D layered structures, as well as C-H systems with C/H <
1, the overall performance was robust. We further assessed the
reactivity accuracy of the ANN potential through investigations
of potential energy curves for C-C bond dissociation in C,
dimer and other small hydrocarbons, as well as predictions of
adsorption sites and adsorption energies, and C chain hydro-
genation. The results indicated its ability to accurately capture
the PESs, adsorption sites, and hydrogenation energies. All
these evaluations highlight that training on clusters provided
diverse environment, resulting in the ANN potential’s versatility
in addressing diverse system properties. Furthermore, we eval-
uated the potential’s accuracy in lattice dynamics for both pure
C and C-H systems. Despite quantitative differences in optical
modes, the phonon dispersions exhibited qualitative agree-
ment with DFT results. Finally, by taking advantage of the
computational efficiency and accuracy of the ANN potential
in predicting energy, forces, and obtaining phonon disper-
sions, we conducted a rapid structural search, leading to the
discovery of a novel C polymorph that is energetically more
favorable than other experimentally reported C allotropes.
To enhance the accuracy of the current version of the ANN
potential and address identified limitations in layered and 2D
systems, particularly in pure C and H-rich clusters, additional
data points should be incorporated. This includes data encom-
passing pure C and C/H ratio less than or equal to 1, as well as
layered flakes. These efforts constitute the scope of our forth-
coming research endeavors.
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