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Background: Bloodstains are a prevalent and critical type of forensic evidence at crime scenes. Accurate
determination of bloodstain age is essential for crime resolution, and non-destructive spectral methods
are instrumental in this process. While extensive research has established the practicality of hyperspectral
imaging (HSI) in specific forensic contexts, limited studies have explored near-infrared (NIR)
spectroscopy. Owing to its superior penetration capabilities and high sensitivity, NIR holds promise in
addressing certain limitations of HSI. This study aims to assess the applicability of NIR spectroscopy for
bloodstain age estimation in forensic contexts and to compare its efficacy with HSI. Results: Bloodstains
were aged on various substrates over a 60 day period, with periodic analyses conducted using both
spectral methods. Chemometric analysis of the spectral data was performed following SNV
preprocessing and application of different regression algorithms. First, linear regression analysis was
utilized to determine the effect of material on bloodstain deposition. Under the premise of distinguishing
materials, partial least squares (PLS) regression was employed to extract eight latent variables from HSI
and NIR spectral data for regression prediction. However, the prediction performance was suboptimal.
To address this, polynomial features were introduced into the PLS regression algorithm to capture the
nonlinear relationships in the spectral data, and the improved model significantly enhanced the
prediction performance. Furthermore, PLS polynomial regression was applied to predict homologous
data, and the results also demonstrated favorable performance. Finally, to optimize the prediction
accuracy of multimodal data, a multilayer perceptron (MLP) was introduced for regression prediction
through multimodal data fusion, further improving the overall performance of the model. Finally,
predictive performance was evaluated across models, emphasizing their specific strengths. For
homologous data fusion, comparable root mean square errors of prediction (RMSEP) were achieved for
HSI and NIR spectra, at 835 and 8.15 days, respectively. Similar RMSEP values were observed in
multimodal data fusion, and the accuracy of both low-level and intermediate-level fusion methods was
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identification.”> In particular, determining the bloodstain
deposition time is valuable in establishing the timing of a crime
and assessing whether a bloodstain may be linked to individ-

1 Introduction

The rapid identification of human bloodstains is critically

important in criminal investigations, as bloodstains represent
one of the most objective and stable types of evidence available
at a crime scene.' Blood evidence offers crucial forensic infor-
mation and is considered indispensable in forensic
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uals involved in the incident. However, bloodstains are highly
susceptible to environmental influences, complicating their
analysis. Hemoglobin (HbO,) in blood quickly reacts with
atmospheric oxygen and undergoes auto-oxidation to methe-
moglobin (metHb) within 48 h. Once formed, metHb progres-
sively denatures into hemichrome (HC) over hours or days,
depending on humidity and temperature. This complex trans-
formation makes it challenging for forensic analysts to precisely
determine the time of an incident, underscoring the need for
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rapid, accurate, and non-destructive methods to estimate
bloodstain age.

In forensic practice, conventional blood detection methods
include direct observation, reagent-based approaches, DNA
analysis,® the tetramethylbenzidine (TMB) test,* and the lumi-
nol test (LT).> Direct observation relies heavily on subjective
judgment and experience, while reagent-based techniques often
damage blood components, thereby compromising subsequent
DNA profiling and reducing the available DNA quantity for
analysis.®® Many chemical reagents used in these tests produce
visible color changes,' fluorescence,' or luminescence® when
in contact with blood. However, DNA analysis methods are
time-intensive and costly, and none of these approaches
provide precise timing based solely on the bloodstain itself." To
overcome these limitations, researchers have explored non-
destructive techniques for identifying and analyzing blood-
stains, including ultraviolet-visible (UV-vis) spectroscopy,*
Raman spectroscopy,** Fourier-transform infrared (FTIR) spec-
troscopy,'® hyperspectral imaging (HSI),'* and near-infrared
(NIR) spectroscopy.” These methods offer several advantages,
such as being non-destructive, rapid, convenient, and
contamination-free, while also demonstrating high sensitivity
and adaptability to various environmental conditions.
Following plasma water evaporation, blood degradation
predominantly involves the breakdown of iron-containing
proteins and hemoglobin in red blood cells, which gradually
convert into methemoglobin, heme, and hemochromes.*®*
This transformation is distinctly captured in HSI spectra. NIR
spectroscopy, on the other hand, is effective for observing
bloodstain dehydration and methemoglobin formation during
later stages of aging.*® Given the complementary information
derived from these different spectroscopic methods, combining
HSI and NIR spectroscopy may yield a more accurate estimation
of blood stain deposition time (TSD) by focusing on distinct
aspects of blood degradation. However, no studies to date have
attempted to integrate these two approaches.

In recent years, single spectroscopic techniques have been
applied to predict blood TSD. For example, in 2012, Gerda
Edelman et al* evaluated the utility of NIR technology for
bloodstain identification and age estimation on dark back-
grounds. Using partial least squares (PLS) regression, they
successfully estimated the age of month-old bloodstains,
achieving a root mean square error of 8.9%. In a subsequent
study, E. Gerda et al.** combined HSI with cluster analysis to
determine the absolute age of bloodstains. In 2013, L. Bo et al.*®
utilized visible HSI technology along with Linear Discriminant
Analysis (LDA) to age bloodstains up to 30 days. However, many
current approaches adopt a strictly analytical perspective rather
than addressing forensic applications. Models for bloodstain
deposition time estimation aim to provide a general chrono-
logical framework that also considers the specific environ-
mental conditions of the crime scene. Such conditions impart
distinct characteristics to each case, substantially influencing
the rate and nature of blood degradation and, consequently, the
timing conclusions derived from these models.

Crime scenes often present complex and varied environ-
ments, where bloodstain samples may originate from
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individuals of differing biological profiles and deposit on
a range of substrates. Moreover, environmental contaminants
frequently affect bloodstains, complicating both their extrac-
tion and analysis. To address these challenges, this study inte-
grates HSI and NIR spectroscopic techniques to deepen the
understanding of the transformation processes in bloodstains
as they age. This study assessed both the individual capabilities
of HSI and NIR methods and their combined potential to
monitor blood degradation and estimate bloodstain age. For
model development, optimal prediction models were incre-
mentally refined under various conditions. Initially, a basic PLS
model was developed for each substrate to create spectral
prediction frameworks. Polynomial extensions were incorpo-
rated to capture more complex nonlinear relationships to
enhance prediction accuracy.

2 Materials and methods
2.1 Sample

All experiments were conducted in accordance with relevant
Chinese laws and the guidelines of the Chinese Forensic
Medicine Association. Ethical approval was obtained from the
Medical Ethics Committee of Kunming University of Science
and Technology, and informed consent was acquired from all
volunteers. In the experiment, blood samples were prepared on
three different substrates: cement board, gypsum board, and
iron board. Further details are provided in ESI Fig. S1.}

2.2 Spectral acquisition equipment

An HSI system was established in the laboratory to capture
bloodstain images, The HSI system is provided by Shenzhen
Zhongda Ruihe Technology Co. This setup consisted of
a sample stage, a hyperspectral camera, and four halogen-based
broadband white light sources. The system used a liquid crystal
tunable filter (LCTF) connected to a complementary metal-
oxide-semiconductor (CMOS) camera with a resolution of
2048 x 2046 pixels. The LCTF featured a 35 nm aperture. To
eliminate external light interference during data acquisition,
the entire system was enclosed. Before acquisition, the light
source was calibrated using a light intensity calibration func-
tion. The HSI system covered a spectral range of 400-1000 nm
with a spectral sampling interval of 5 nm and an exposure time
of 40 ms.

The MicroNIR handheld NIR spectrometer is produced by
VIAVI Solutions in Beijing, China, the NIR system employed
a 128-pixel detector array to capture spectral data. It was
equipped with two tungsten filament lamps as radiation sour-
ces and a linear variable filter (LVF) connected directly to an
Indium Gallium Arsenide (InGaAs) linear array detector. This
system operated within a wavelength range of 908-1676 nm,
offering a spectral resolution of 4 nm with a data sampling
interval of 6 nm. The integration time was fixed at 9.6 ps. To
enhance measurement accuracy, a 99% diffuse reflectance
whiteboard was used as a reference, and the entire acquisition
was conducted under dark conditions to minimize light
interference.

This journal is © The Royal Society of Chemistry 2025
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2.3 Spectral data acquisition

The steps from sample preparation to spectral data acquisition
are illustrated in ESI Fig. S2.1 Data were collected across 102
time intervals, with both HSI and NIR spectra recorded at each
interval. For each collection, three spectra were captured at each
sample point, and the mean of the three measurements was
used as the final spectral data for that time point. NIR spectral
data were exported using MicroNIR 1.5.7 software, while HSI
data were processed and exported using ENVI software. HSI
spectral data acquisition involved selecting a region of interest
(ROI) in each sample, with details on ROI selection provided in
the ESI (Fig S3t).

As summarized in Table 1, spectral data were collected from
five sample points, where sample points 1, 2, and 3 corre-
sponded to male blood samples, and points 4 and 5 to female
blood samples. Data were acquired over 102 intervals spanning
a 60 day period, yielding a total of 510 HSI and NIR spectra for
each substrate, or 1530 HSI and 1530 NIR spectra in total.
Subsequent preprocessing and analysis of spectral data were
conducted using MATLAB® 2022a software.

3 Data processing methods

Fig. 1 illustrates the process of spectral data processing in this
study, which is primarily divided into three parts. First, the raw
data undergoes preprocessing. Then, homologous data from
HIS and NIR are fused separately. Finally, multimodal data
fusion is performed.

3.1 Data structure

The collected HSI and NIR data were processed using MATLAB®
2022a. The HSI and NIR datasets were organized as indepen-
dent matrices, formatted as row vectors, where each row rep-
resented a sample spectrum, and variables were stored as
column vectors. The HSI dataset comprised 121 wavelengths
with 4590 sample spectra, while the NIR dataset included 125
wavelengths with 4590 sample spectra. After averaging the
spectral data across three measurements, the HSI matrix
dimensions were 1530 x 121, and the NIR matrix dimensions
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were 1530 x 125. MATLAB® 2022a was employed for data pre-
processing, dimensionality reduction, and multivariate regres-
sion analysis.>® For regression analysis, the data were
partitioned into training and test sets in a 7 : 3 ratio, and K-fold
cross-validation was applied to the training set for validation.

3.2 Preprocessing methods

Three substrates—cement board, gypsum board (permeable
materials), and iron plate (non-permeable material)—were used
in the experiment. All samples were collected using HSI and NIR
spectroscopy in reflectance mode to assess changes in blood-
stain deposition on different surfaces. Principal Component
Analysis (PCA)* was applied to the pre-processed data to eval-
uate the dependence of sample distribution on variables such
as gender, substrate material, and time.

To eliminate variables unrelated to bloodstain deposition
time (e.g., gender, substrate material), raw HSI and NIR data
were preprocessed using methods such as Multiplicative Scatter
Correction (MSC),*® Savitzky-Golay (SG) smoothing, First
Derivative (1D), Standard Normal Variate (SNV),*” and
a combined First Derivative and Savitzky-Golay (1DSG)
approach. These preprocessing methods were used to focus the
analysis on the actual chemical changes within the bloodstains,
thereby enhancing the accuracy of deposition time predictions.
Additionally, these techniques reduced variations due to
differences in physical properties among samples, improved
spectral comparability across different samples, and better
highlighted the chemical characteristics of blood.

3.3 Linear regression analysis

Linear regression analysis was performed on the HSI and NIR
spectral data, incorporating time variables, material feature
matrices, and material types. The time variable represented
different intervals following bloodstain deposition, while the
material feature matrix contained spectral feature values for
each substrate, categorized by permeable and non-permeable
materials. To simplify material feature dimensions, PCA was
first applied to the material feature matrix, with the first prin-
cipal component (PC1) selected as the representative material

Table 1 Spectral data sampling intervals and number of spectra for bloodstain samples on different substrates

Substrate Time interval/days

Samples number

Cement board
Gypsum board
Iron board

0.02, 0.04, 0.08, 0.13, 0.17, 0.21, 0.25, 0.33, 0.42, 1530
0.50, 0.88, 0.92, 1.00, 1.08, 1.17, 1.25, 1.33, 1.96,
2.00, 2.08, 2.17, 2.25, 2.33, 3.00, 3.17, 4.00, 4.17,

5.00, 5.17, 6.00, 6.17, 8.00, 8.17, 9.00, 9.17, 9.96,
10.13, 11.00, 11.17, 12.00, 12.17, 13.00, 13.17,
14.00, 14.17, 15.00, 15.17, 16.00, 16.17, 17.00,
17.17, 18.00, 18.17, 19.00, 19.17, 20.00, 20.17,
21.00, 21.17, 22.00, 22.17, 23.00, 23.17, 24.00,
24.17, 25.00, 25.17, 26.00, 26.13, 27.00, 27.17,
28.00, 28.17, 29.17, 30.00, 30.17, 31.00, 31.17,
32.00, 33.00, 34.00, 35.00, 36.00, 37.00, 38.00,
39.00, 40.00, 41.00, 42.00, 43.00, 44.00, 45.00,
48.00, 49.00, 50.00, 51.00, 54.00, 55.00, 56.00,

57.00, 58.00, 60.00

This journal is © The Royal Society of Chemistry 2025
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Fig. 1 Data processing flowchart.

feature. To investigate the relationship between time and
material features, a simple linear regression model was estab-
lished as follows:

Y= 60 + 61'time

where Y represents the material feature (PC1) extracted through
PCA, B, is the intercept, and (; is the regression coefficient
reflecting the relationship between time and the material
feature. Regression coefficients were estimated using the least
squares method, and predicted values and residuals were
subsequently calculated.

Residuals from the regression model were grouped by
material type, with permeable materials coded as 1 and
impermeable materials coded as 0. An independent samples ¢-
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test was performed to compare the residual distributions
between permeable and impermeable materials using P-values.
P < 0.05 indicated a significant effect of material type on
bloodstain deposition time, whereas P > 0.05 indicated a negli-
gible effect.

3.4 Regression analysis and homologous data fusion

3.4.1 Regression analysis by material type. Following the
approach in Section 3.3, analysis of the HSI and NIR spectral
data revealed that material type influenced bloodstain deposi-
tion time. Based on this finding, polynomial partial least
squares (PLS) regression was applied to the SNV-preprocessed
HSI and NIR spectral data, aiming to extract key features from
the high-dimensional spectral data and capture nonlinear

Reflectance

- " " NIR-Cement board
0.26
025 N\

1000 1100 1200 1300 1400 1500 1600
Wavelength (nm)

1000 1100 1200 1300 1400 1500 1600
wavelength (nm)

Reflectance
Reflectance

0.6 NIR-Gypsum board

1000 1100 1200 1300 1400 1500 1600

1000 1100 1200 1300 1400 1500 1600 W i .
wavelength (nm) avelength (nm)

055

Reflectance
Reflectance

IR-Iron board

1000 1100 1200 1300 1400 1500 1600

1000 1100 1200 1300 1400 1500 1600

wavelength (nm) Wavelength (nm)

Fig. 2 Raw spectra and time-interval spectra: (A)—(C) represent the raw spectral data of HS| obtained from bloodstains on cement board,
gypsum board and iron board, respectively, while (a)—(c) are the average spectra calculated for every 10 day interval (D)—-(F) show the raw spectra
data of NIR obtained from bloodstains on cement board, gypsum board and iron board, respectively, with (d)-(f) representing the average spectra

calculated for every 10 day interval.
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relationships between independent and dependent variables.
Polynomial feature expansion was first applied to the original
spectral matrix X for each material, generating a polynomial
expansion matrix X', i.e., X = [X, X°], where X* represents the
squared term for each spectral feature. This feature expansion
was designed to capture potential quadratic nonlinear patterns
in the independent variables, thereby improving the model's
capability to represent complex spectral changes. To ensure

data stability and enhance model robustness, the expanded
feature matrix was standardized before applying PLS regression
to model the data for each material type.*®*** By projecting both
the independent variables X’ and the dependent variable Y (i.e.,
bloodstain deposition time), the analysis extracted the most
relevant latent variables. K-Fold cross-validation was used to
select the optimal number of latent variables, and the root
mean square error of cross-validation (RMSECV) was calculated
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Fig.4 PCA loading plots after SNV preprocessing. (A) shows the loadings of PC1 and PC2 for the HSI spectrum PCA, and (B) shows the loadings

of PC1 and PC2 for the NIR spectrum PCA.
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Fig. 5 Box plot of residuals divided by material type, where (A) is HSI
spectral data and (B) is NIR spectral data.

to assess model accuracy. This process was repeated across all
bloodstain samples, and the average RMSECV was calculated to
obtain the final RMSECV value for the model.

According to the method described in Section 3.3, analysis of
the HSI and NIR spectral data indicated that material type
influences bloodstain deposition time. To address this, PLS
regression was applied to the SNV-preprocessed HSI and NIR
spectral data, aiming to extract essential features from high-
dimensional spectral data while capturing the nonlinear rela-
tionships between independent and dependent variables. First,
polynomial feature expansion was applied to the original
spectral matrix X for each material, generating a polynomial
expansion matrix where X represents the squared term for each
spectral feature. This expansion captures potential quadratic
nonlinear patterns in the independent variables, enhancing the
model's capacity to represent complex spectral changes. The
expanded feature matrix was standardized to ensure data
stability and model robustness, followed by PLS regression
modeling for each material. By projecting both independent
variables and the dependent variable Y (i.e., bloodstain depo-
sition time), the analysis extracted the most relevant latent
variables. K-Fold cross-validation was employed to determine
the optimal number of latent variables, with root mean square
error of cross-validation (RMSECV) calculated as the model
evaluation metric. This process was repeated for all bloodstain
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samples, and the average RMSECV served as the final model
evaluation criterion.

3.4.2 Homologous data fusion. The HSI and NIR spectral
data, preprocessed by SNV, were integrated into a single feature
matrix to minimize the material's effect on bloodstain deposi-
tion time prediction. First, polynomial feature expansion was
applied to the preprocessed HSI and NIR spectral data to
capture quadratic nonlinear features. The expanded feature
matrix was then standardized, and PLS regression was used to
construct the predictive model, achieving dimensionality
reduction by extracting latent variables strongly correlated with
the target variable. K-Fold cross-validation was conducted to
select the optimal number of latent variables, with RMSECV
calculated at each fold. The average RMSECYV across all samples
served as the model's performance indicator. This homologous
data fusion approach effectively extracted key spectral features
related to deposition time while reducing material-induced
variability, thereby enhancing the model's generalization
ability across different material substrates.

3.5 Multi-modal data fusion

Data fusion integrates variables by matrix juxtaposition,*
enabling the integration of HSI and NIR spectral data derived
from different materials and equipment. This process aims to
mitigate material-induced effects on bloodstain deposition
time, enhance the model's generalizability, and reduce material
variability by combining both spectral datasets within a unified
sample set.

For spectral measurements, each time point corresponds to
six samples, with three spectral measurements taken per
sample. The average of these measurements is then calculated
toyield a representative spectrum for each material at each time
point. This approach ensures that each material is associated
with a unique spectrum per time point, consolidating multiple
measurements into a single result. In this study, the spectral
data for the first five samples were selected, and the averaged
spectral data from HSI and NIR were integrated for each
material. During the fusion process, the HSI and NIR spectral
data were concatenated by columns, forming a fusion matrix
that contains spectral information from both techniques. The
rows of the fusion matrix correspond to the material samples,
while the columns represent the combined HSI and NIR wave-
length variables, yielding a total of n + m = 246. This data fusion
method enables comprehensive integration of spectral infor-
mation for each material across time points, providing a robust
data foundation for further analysis and modeling.

Table 2 Summary of figs of merit for the polynomial PLS regression models

Data Material Preprocessing Latent variable RMSEC RMSEP R RMSECV Bias
HSI Permeation SNV 8 5.95 6.56 0.80 5.08 0.92

Impermeable 8 5.97 6.24 0.85 5.23 1.35
NIR Permeation 8 5.00 6.25 0.84 5.45 1.07

Impermeable 8 5.98 6.11 0.88 5.21 0.96
HSI No distinction 8 7.93 8.35 0.76 7.17 2.98
NIR No distinction 8 7.60 8.15 0.79 7.98 2.23
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Table 3 Prediction results of low-level and intermediate-level data fusion models

Data fusion Data Preprocessing Latent variable RMSEC RMSEP R? RMSECV Bias
Low-level HSI + NIR SNV 8 2.97 3.12 0.87 3.24 0.24
Mid-level HSI + NIR 8 2.21 2.59 0.95 2.61 0.20

Before data fusion, SNV preprocessing was performed sepa-
rately on HSI and NIR data. During modeling, data standardi-
zation was applied to eliminate dimensional differences across
wavelengths. PLS regression was then employed to reduce the
dimensionality of the fused features and extract latent variables.
Through PLS, both the fused spectral features (independent
variables) and time labels (dependent variables) were dimen-
sionally reduced, extracting the latent variables most relevant to
regression predictions. Subsequently, a multilayer perceptron
(MLP) neural network model was constructed with a two-
hidden-layer structure, comprising 10 and 5 hidden units in
the respective layers. This model, optimized for capturing
nonlinear data relationships, employed the Levenberg-Mar-
quardt (trainlm) algorithm for parameter optimization, set to
a maximum of 1000 iterations, with a regularization parameter
of 0.1 and a learning rate of 0.1 to ensure thorough training.
Five-fold cross-validation was used to validate the model,
calculating error metrics such as root mean square error (RMSE)
and prediction bias (Bias) at each fold. The average values of
these error metrics were then used to assess the model's overall
performance.

In the final stage, intermediate data fusion was applied by
combining significant latent variables from independent
regression models built with each spectral technique on the
same samples.** To ensure sample comparability, both spectral
datasets used identical samples, adhering to the same strategy
as in low-level data fusion. Initially, separate PLS regression
models were developed for each spectral dataset, extracting the
respective significant latent variables. These significant latent
variables were then combined, and a PLS model was applied to
the resulting latent variable matrix for further regression anal-
ysis. The remaining modeling steps and algorithm parameters
remained consistent with those applied in low-level data fusion.

4 Results and discussion
4.1 Comparative analysis of HSI and NIR spectroscopy

Exposure of human blood to air initiates a series of chemical
changes. The original and averaged HSI and NIR spectra ob-
tained from bloodstains on various surfaces are illustrated in
Fig. 2. The original HSI spectra (Fig. 2A-C) include individual
spectra of bloodstain samples across all analyzed objects, while
the corresponding averaged spectra (Fig. 2a-c) display signals
recorded at specific time points, with colors indicating different
times. In the HSI spectra, time-dependent changes were
particularly prominent in the Soret band around 415 nm, visible
in the purple region. As samples aged, a blue shift occurred,
with wavelengths moving from 415 nm to shorter values,
primarily due to changes in the spin state of iron ions within
hemoglobin.*” In the blue region, spanning 500-650 nm, spec-
tral distortion was evident. Fresh bloodstains, characterized by
high oxyhemoglobin content, exhibited distinct Q bands**—
specifically, the o and B bands—peaking at 542 nm and 576 nm,
respectively. Over time, these peaks progressively weakened,
broadened, and eventually merged into a single band, signi-
fying the oxidation of hemoglobin from its oxygenated form to
methemoglobin. This spectral transformation reflects the
blood's chemical evolution as deposition time progresses. The
presence of the Q and Soret bands indicates © — 7* electronic
transitions originating from the delocalized electron configu-
ration on the porphyrin tetrapyrrole ring.** These bands exhibit
high sensitivity to structural changes, especially during ligand
exchange processes involving nitrogen atoms in the pyrrole
ring, leading to band distortions. Additionally, the transition
from oxyhemoglobin to methemoglobin was observed around
630 nm.** The averaged spectra indicated an initial increase in
bloodstain reflectance, followed by a decrease and eventual

Residuals
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Fig. 6 Residual distribution plot of the test set for the low-level model and the mid-level model. Where, (A) shows the residual distribution of the
test set for the low-level model, and (B) shows the residual distribution of the test set for the mid-level model.
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Fig.7 Comparison of experimental values and predicted values under different models. Where, the (A.1) and (A.2) shows the experimental versus
predicted values for the training and testing sets of the low-level fusion model, respectively, while (B.1) and (B.2) shows the experimental versus
predicted values for the training and testing sets of the mid-level fusion model.

stabilization over time. This trend provides further insight into
the degradation and oxidation processes impacting bloodstain
spectral characteristics over various deposition times.

Fig. 2D-F depict the original NIR spectra of bloodstain
samples on cement boards, gypsum boards, and iron plates,
respectively, while Fig. 2a-c present the color-coded average
signals by deposition time. In the 900-1680 nm range, reflec-
tance intensity generally declined with increasing time since
deposition (TSD), primarily due to hemoglobin degradation and
the drying process. Early-stage spectra showed a significant
impact from water, with rapid evaporation leading to notable
decreases in reflectance, particularly within bands associated
with the overtone stretching vibrations of the O-H bond in
water (1000-1400 nm). This absorption was especially
pronounced, as illustrated in Fig. 2d—f. The light orange bands
in these figs highlight the 900-1100 nm region, where absorp-
tion is linked to the N-H bond vibrations in hemoglobin,
marked by an isosbestic point near 1050 nm. Notable degra-
dation was also observed in the early stages within the 1250-
1540 nm range, which corresponds to the first overtone

6186 | Anal. Methods, 2025, 17, 6179-6189

stretching vibration of O-H; this degradation diminished over
time. Reduced spectral variations in this region, as shown in
Fig. 2d-f, partly corresponded to distortions arising from scat-
tering effects and variations in electromagnetic wave path
lengths. These changes are closely related to shifts in sample
geometry, thickness, and physical properties during measure-
ment.*® Spectral alterations are also associated with proteins,
particularly C-H bond stretching vibrations in protein
structures.>

In summary, HSI was limited by its weak penetration
capacity within this wavelength range, rendering it less effective
for detecting changes in water content and degradation prod-
ucts over time, thus confining its utility to early-stage bloodstain
detection. Conversely, while hemoglobin absorption peaks were
less pronounced within the 900-1700 nm range, this wave-
length region captured specific absorption characteristics for
water and hemoglobin degradation products,®” facilitating
analyses of water content and the degradation process in
bloodstains. Additionally, the enhanced penetration and anti-
interference properties of NIR light provided more
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comprehensive physical and chemical information, making it
highly suitable for monitoring bloodstain changes over
extended periods.

4.2 Pattern recognition and PCA dimensionality reduction

Fig. 3 presents the PCA score plots for the preprocessed HSI and
NIR spectral data, shown in panels A and B, respectively, with
classifications color-coded by gender (A.1/B.1), material (A.2/
B.2), and time (A.3/B.3). Analysis of the HSI score plot
revealed no discernible gender-based grouping, indicating that
gender does not influence bloodstain deposition time.
However, distinct groupings by material type (permeable and
impermeable) and time were observed. Similarly, the NIR score
plot (B1-B3) showed clear groupings by material and
a pronounced gradient over time, with no significant separation
by gender. While this study primarily focused on the relation-
ship between bloodstain deposition and time, material influ-
ence was also evident: permeable materials, due to higher
absorbency, accelerated blood drying and amplified spectral
changes. In contrast, blood on impermeable surfaces remained
in a liquid state for longer, exerting less effect on spectral
characteristics. To minimize interference from material effects
on deposition time predictions, subsequent analyses imple-
mented separate modeling and data fusion techniques to
reduce potential material-induced bias.

Fig. 4A illustrates the PCA loadings for HSI spectral data
within the 400-1000 nm range following SNV preprocessing.
Here, PC1 demonstrated a high positive contribution in the
Soret band (415 nm), while both PC1 and PC2 showed signifi-
cant contributions within the Q band, reflecting the high
reflectance of ferric hemoglobin in this range—features asso-
ciated with bloodstain aging. Additionally, PC1 displayed
pronounced fluctuations between 600-900 nm, where oxyhe-
moglobin exhibits high reflectance with increasing concentra-
tion, suggesting that this spectral range is indicative of
deposition time. PC2 also exhibited notable fluctuations within
the 500-700 nm and 800-900 nm regions, with positive loadings
indicating greater contributions in these bands.

Fig. 4B shows the PCA loadings for NIR data in the 900-
1680 nm range after SNV preprocessing. Here, PC1 predomi-
nantly reflected water content in bloodstains, remaining stable
from 1000-1200 nm but showing marked changes beyond
1300 nm, especially within the 1500-1600 nm range, where
amide bond vibrations become prominent. These bands are
strongly associated with shifts in water content. Additionally,
combination bands from O-H stretching and bending vibra-
tions appeared around 850 nm. PC2 primarily captured features
of the protein band region, with higher PC2 loadings corre-
sponding to stronger absorption within this region. Significant
fluctuations were noted between 900-1000 nm, 1100-1400 nm,
and 1500-1600 nm, indicative of organic components such as
proteins, lipids, and water. The range from 1300-1500 nm, in
particular, corresponded to combination bands of C-H and
O-H stretching vibrations, likely reflecting compositional
changes in the blood and contributing to bloodstain deposition
time identification.
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4.3 Homogeneous data fusion regression model

A simple linear regression model was employed to evaluate the
effect of material type (permeable vs. impermeable) on pre-
dicting bloodstain deposition time, with significance assessed
using a ¢-test (P < 0.05 denoting a significant effect). As illus-
trated in Fig. 5, the P-values for both HSI and NIR spectra were
below 0.05, indicating a significant influence of material type on
bloodstain deposition time. Analysis of residual box plots
revealed that on permeable materials, NIR residual fluctuations
were markedly larger than those for HSI. This outcome suggests
that the greater penetrative capacity of NIR made it more
susceptible to material-type variations on permeable surfaces,
resulting in a wider residual range. Conversely, on non-
permeable materials, both NIR and HSI exhibited reduced
residual fluctuations, with NIR displaying a narrower residual
range, indicating a more stable response on impermeable
surfaces. These results highlight that combining HSI and NIR
modalities could enhance detection capability across diverse
material types, overcoming the limitations of each individual
technique on specific substrates and improving the stability
and accuracy of detection results.

The PLS algorithm, which extracts latent variables from high-
dimensional data, is particularly advantageous in cases of mul-
ticollinearity between independent and dependent variables,
making it commonly applied in spectral data analysis and
modeling. Here, a simple PLS regression was implemented to
predict bloodstain deposition time (up to 60 days) using HSI and
NIR data. The results, detailed in Table S1,f indicated a signifi-
cant difference between RMSECV and RMSEC, suggesting
underfitting in the test set and reflecting the model's difficulty in
capturing complex nonlinear data features, which led to
substantial prediction errors. To address this, a polynomial
extension was introduced, enhancing the model's capacity to
account for nonlinear variation, significantly improving fitting
performance for extended prediction intervals. In K-fold cross-
validation, the optimal number of latent variables was deter-
mined to be 8 when K = 3, achieving the lowest RMSECV. As
presented in Table 2, R* values exceeded 0.8 for both HSI and NIR,
with minimal difference between RMSEC and RMSECV. R> values
for impermeable materials were higher at 0.85 and 0.88, corrob-
orating that impermeable surfaces retain more blood moisture,
resulting in subtler spectral variations.

To improve model generalizability and stability across
varying material types, the study controlled for material influ-
ence by combining data from different substrates (by directly
concatenating raw data) and applying K = 3 cross-validation to
determine latent variables. Post-fusion prediction performance,
as shown in Table 2, was lower than pre-fusion values. The R*
value for HSI spectral data decreased to 0.76, significantly lower
than pre-fusion values of 0.80 and 0.85. RMSEP values for HSI
and NIR were 8.35 and 8.15 days, respectively, both higher than
results from material-specific models. Furthermore, RMSECV
values for HSI and NIR were 7.17 and 7.98 days, with Bias values
of 2.98 and 2.23, indicating model stability with no signs of
overfitting or underfitting. However, the increased heteroge-
neity from merging data across materials intensified sample
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complexity and nonlinear relationships. Although polynomial
regression captured some nonlinear features, fully addressing
the added complexity proved challenging, resulting in elevated
RMSEP and prediction bias.

4.4 Multimodal data fusion regression model

HSI and NIR data demonstrated notable complementarity in
predicting bloodstain deposition time, with substrate material
exerting a significant influence on deposition characteristics.
To improve model generalizability across different substrates,
multimodal data fusion was applied to spectral data from
various materials and sources. The resulting multimodal data
fusion regression model, constructed using the PLS algorithm
in combination with a multilayer perceptron (MLP), followed
the fusion methods detailed in Section 3.5. Results from data
fusion are presented in Table 3. For low-level data fusion, five-
fold cross-validation (K = 5) yielded 8 latent variables,
producing an R* value of 0.87, a root mean square error of
prediction (RMSEP) of 3.12 days, and a difference of 0.73
between RMSECV and RMSEC, indicating reliable model fit
across both training and test sets. In intermediate-level data
fusion, the model again employed 8 latent variables, achieving
an improved R® of 0.95, a reduced RMSEP of 2.59 days, and
a smaller RMSECV-RMSEC difference of 0.4. Prediction biases
were measured at 0.24 for low-level fusion and 0.20 for
intermediate-level fusion, confirming that data fusion enhances
prediction accuracy, with intermediate-level fusion exhibiting
superior performance.

Fig. 6 displays residual plots for the test sets of both low-level
and intermediate-level data fusion. Residuals were distributed
evenly around the zero line, with low-level fusion residuals
ranging from —15 to 10 and intermediate-level fusion residuals
from —10 to 10. In the first 20 days, residuals clustered more
closely, especially in the intermediate-level fusion model. The
residual distribution of intermediate-level fusion also exhibited
greater symmetry than that of low-level fusion. Fig. 7 compares
experimental and predicted values for the low-level and
intermediate-level models, with 10% of data from both training
and test sets selected for plotting. In the training set (Fig. 7A.1),
the low-level fusion model showed a strong overall fit, with most
data points aligned closely with the reference line (y = x).
However, in the high-value range (>40), deviations emerged. In
the test set (Fig. 7A.2), model performance weakened in this high-
value range, as evidenced by sparse data point distribution, sug-
gesting limitations in capturing complex multimodal features
and reduced model stability. In the training set for intermediate-
level fusion (Fig. 7B.1), results showed a dense distribution of data
points around the reference line, particularly in the high-value
range (>40), with minimal deviation, indicating robust extrac-
tion of nonlinear features. In the test set (Fig. 7B.2), the model
exhibited high accuracy in the low-to-medium range (0-40), with
only minor deviations in the high-value range (>50). Overall,
predictions aligned more closely with experimental values,
affirming the model's generalization capability and robustness
over the low-level fusion approach, thus underscoring the effec-
tiveness of intermediate-level data fusion.
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5 Conclusion

This study leverages two complementary spectroscopic tech-
niques—HSI and NIR spectroscopy—to determine bloodstain
deposition time (TSD) in forensic science. HSI is capable of
effectively identifying early-stage bloodstains through the
detection of hemoglobin structural changes, whereas NIR offers
a more comprehensive analysis by monitoring moisture loss
and utilizing its deep penetration properties. The integration of
these two techniques facilitates more precise TSD assessment in
complex environments. Both HSI and NIR spectra demonstrate
considerable robustness, and the use of SNV preprocessing
effectively removes spectral noise. Polynomial PLS regression
and MLP models were employed to address nonlinear charac-
teristics, thereby enhancing predictive performance. In cross-
material data fusion results, the predictive accuracy of the
model was higher for NIR spectra (RMSEP = 8.15 days)
compared to HSI spectra (RMSEP = 8.35 days). Multimodal data
fusion achieved RMSEP values of 3.12 days for low-level fusion
and 2.59 days for intermediate-level fusion, yielding robust
results for TSD prediction up to 60 days. Although this study
successfully minimized the influence of material types on TSD,
practical applications may still face challenges from variables
such as contaminants (e.g., coffee and lipstick) and a wider
diversity of materials. While HSI and NIR spectroscopy exhibit
complementary capabilities and adaptability, more complex
models may be required to provide comprehensive predictions
in these scenarios. Additionally, as bloodstains age, spectral
features become increasingly difficult to detect, leading to
reduced prediction accuracy over time, an issue warranting
further investigation.

This study highlights the potential for longer, more precise
TSD determination through the synergistic application of
different spectroscopic techniques and advanced chemometric
methods. The multidimensional analytical approach outlined
here enhances forensic science's capacity for temporal infer-
ence in criminal investigations and sets the groundwork for
future research aimed at bridging laboratory findings with
practical forensic applications.
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