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Nondestructive and Rapid Identification of Stamp Pad Ink Based 
on Hyperspectral Imaging and Extreme Learning Machine 
Lu Xiaoquan,a Zhang Jianqiang,b Wu Jiaquana,a Zhang Xinyu,a  Ren Huihui,a Chen Hang,a Ma Kun*a 

and LI Fan*b 

The examination of stamp pad ink in questioned documents serves as a crucial scientific basis for forensic authentication. 
This study presents a novel rapid classification framework integrating Hyperspectral Imaging (HSI) and Extreme Learning 
Machine (ELM) to address the challenges of timeliness and accuracy in nondestructive ink detection. A total of 24 
photosensitive ink samples from 21 brands were collected, generating 72 standardized stamped impressions. Spectral-
spatial data were acquired using an HSI system (400-1000 nm, 5 nm spectral resolution). preprocessed by Multiplicative 
Scatter Correction (MSC) to mitigate substrate interference.  Experimental results demonstrate that the HSI-MSC-ELM 
framework achieved an accuracy of 98.38% on the test set  without feature dimensionality reduction (full 121 spectral bands)
, outperforming Random Forest (RF) by 4.63% and Backpropagation Neural Network (BPNN) by 6.34%. Crucially, the 
detection time was only 1.59 seconds – 28× faster than RF (45.90 s) and 285× faster than BPNN (453.36 s). This approach 
provides a simple, nondestructive, and efficient solution for forensic document examination, with potential to replace 
traditional destructive techniques.

Introduction
In the field of forensic science, stamp impressions serve as 
critical physical evidence in document authentication, and their 
examination directly affects the legitimacy and reliability of the 
chain of evidence. Advances in forgery techniques and materials 
science have necessitated a shift in stamp impression analysis 
from traditional morphological comparison to a comprehensive 
technological framework that integrates physical and chemical 
analysis to improve identification accuracy. In forensic practice, 
beyond verifying stamp consistency based on morphological 
features, forensic examiners must also determine whether the 
impressions in different documents originate from the same 
type of stamp pad ink.

Given the short lifespan of stamp pad ink paste, which fades 
easily and hardens quickly, liquid-based stamp pad ink has 
become the most widely used alternative. Identifying the 
composition and type of stamp pad ink plays a crucial role in 
forensic investigations, aiding both criminal investigations and 
legal proceedings. Commercially available stamp pad inks are 
categorized into three main types based on their manufacturing 
process: ordinary ink, atomic ink, and photosensitive ink.1 The 
primary chemical components of stamp pad ink include 
pigments, resins, and solvents.2 Due to differences in 
manufacturers and production processes, commercially 

available inks contain varying compositions and proportions of 
these components.

To date, numerous studies on stamp pad ink identification 
have been conducted, and the primary technical approaches 
can be categorized into spectroscopic and chromatographic 
analysis. Spectroscopic techniques, including Ultraviolet-Visible 
Spectroscopy (UV-Vis),1 Raman spectroscopy,2,6 fluorescence 
spectroscopy,3 and infrared spectroscopy,4,5 are characterized 
by rapid detection, minimal sample requirements, and 
nondestructive testing. However, these methods still face 
technical limitations in acquiring comprehensive spectral 
information, particularly when attempting to distinguish ink 
samples with similar chemical compositions. In contrast, 
chromatographic techniques, such as High-Performance Liquid 
Chromatography (HPLC),7-9 Thin-Layer Chromatography (TLC),10 
and other chromatographic methods,11 offer high detection 
accuracy but are inherently destructive to the sample.

Hyperspectral Imaging (HSI) is an effective nondestructive ink 
detection technique that integrates spatial imaging and spectral 
analysis. Compared to traditional methods, HSI offers higher 
spectral resolution, broader spectral range, and richer data 
representation. The core principle of HSI involves the 
simultaneous acquisition of spectral information, full-band 
imaging, and radiation intensity data within a specified 
wavelength range, thereby providing multi-dimensional data 
support for ink identification. This technology has been applied 
in multiple fields, including ecological monitoring,12,13 
agricultural and food safety analysis,14,15 medical diagnostics,16 
cultural heritage preservation,17 and forensic investigations.18 
In forensic document examination, Reed et al.19 demonstrated 
that HSI achieved different levels of discrimination accuracy for 
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red (1.00), blue (0.90), and black gel ink (0.40), with an overall 
discrimination accuracy of 0.76. Devassy et al.20 conducted a 
systematic comparison of Principal Component Analysis (PCA) 
and t-Distributed Stochastic Neighbor Embedding (t-SNE) in 
hyperspectral ink data analysis, evaluating their effectiveness in 
dimensionality reduction and visualization, providing key 
methodological insights for the application of HSI in forensic 
science. Wang et al.21 employed HSI for ink data collection and 
utilized One-Dimensional Convolutional Neural Networks (1D-
CNN) and Backpropagation Neural Networks (BPNN) to classify 
20 types of stamp pad ink. Their findings indicate that 1D-CNN 
outperformed BPNN in terms of classification stability and 
efficiency, achieving training and validation loss values of 0.068 
and 0.075, and final classification accuracies of 98.30% and 
97.94%, respectively. Despite these advancements, existing 
hyperspectral ink analysis methods still face several key 
technical challenges: overall classification accuracy remains 
suboptimal and requires further improvement; existing 
methods (e.g., CNN-based models) achieve high accuracy but 
suffer from excessive computational costs (single training 
sessions > 75 min and testing times > 25 min), thereby limiting 
practical forensic applications. 

To address these challenges, this study proposed a novel 
rapid and nondestructive ink identification framework by 
integrating HSI, Multiplicative Scatter Correction (MSC), and 
Extreme Learning Machine (ELM). The goal is to enhance 
classification accuracy while significantly reducing 
computational complexity. Experimental results demonstrate 
that compared to BPNN and Random Forest (RF) models, the 
ELM model achieves superior performance, allowing for fast, 
nondestructive, and highly accurate identification of stamp pad 
ink types.

Experiment and Methods
Experimental Materials 

This study collected 24 photosensitive stamp pad ink samples 
from 21 different brands, covering 24 models (Table 1). A total 
of 24 new, uninked stamps (diameter: 38 mm) were used, each 
uniformly engraved with the phrase “Experimental Sample 
Seal”. The printing medium was M&G A4 copy paper 
(manufactured by Shanghai M&G Stationery Co., Ltd.; Model: 
APYVQ958; dimensions = 210 mm × 297 mm; weight = 80 g/m²). 
Before acquiring HSI data, each stamp pad ink sample was 
individually injected into its corresponding pre-numbered 
stamp (No.1-24). Each stamp was then pressed three times 
consecutively, generating a total of 72 standardized stamp 
impressions. To ensure the stability and reliability of 
subsequent analyses, all stamp samples were left at room 
temperature for two weeks to allow the ink to fully cure and 
settle.

Table 1 Photosensitive ink brands and models

ID Brand and model ID Brand and model

1 Deyin 16 Deli NO.9040

2 Zeyuan 17 Jingyi
3 Noch 18 WZ-3630
4 Caiyou 19 Aosheng
5 Hachidai 20 Mingchuang
6 Guancheng 21 Qixin B3722
7 Shengbei 22 M&G AYZ97508
8 Qixin 23 DuPont
9 Baiyiyuan 24 Print Up

10 Shachihata
11 Kingdee
12 Yaxin
13 Arxin
14 Deli NO.9879
15 M&G 97509

Image Acquisition and Processing

This study utilized the SHIS-N220 hyperspectral imaging system 
(Shenzhen Zhongda Ruihe Technology Co., Ltd.) for data 
acquisition, with system configuration and parameter settings 
strictly adhering to spectral analysis standards. The imaging unit 
was equipped with a 2048 × 2046 pixel area-array Charge-
Coupled Device (CCD) detector, covering a spectral response 
range of 400-1000 nm in the Visible to Near-Infrared (VNIR) 
region, with a spectral resolution of 1 nm and a sampling 
interval of 5 nm, capturing 121 continuous spectral bands. The 
system employed a four-light-source symmetrical setup (50 W 
halogen lamps at a 45° incident angle) with a vertical imaging 
optical path to ensure uniform illumination across the sample 
surface (Fig. 1).

The data acquisition process consisted of three key steps: 
environmental control, equipment calibration, and 
standardized scanning. Firstly, the HSI system was preheated 
for 10 min in a darkroom environment to ensure stable 
radiation intensity; Secondly, full-band radiometric calibration 
was performed using a Spectralon® 99% reflectance standard 
panel to eliminate environmental light scattering and detector 
dark current noise; Thirdly, a high-resolution hyperspectral 
cube dataset was acquired at a constant scanning speed of 0.5 
mm/s, achieving a spatial resolution of 30 μm/pixel.

For dataset development, the ENVI 5.3 software platform 
was used to execute standardized data processing. In the 
densely pigmented area of each stamp impression (excluding 
edge diffusion regions), 50 independent Regions of Interest 
(ROI) were manually selected (20 × 20 pixels each, with spatial 
distribution and selection dimensions in Fig. 2a-b). The spectral 
reflectance mean values of all pixels within the ROI for the 400-
1000 nm wavelength range were extracted in batch mode, 
forming a structured dataset of 3,600 feature vectors (2,600 for 
training, 1,300 for testing). 30 regions of interest from the 
hyperspectral images of the unused unprinted paper were 
selected as baseline references. A strict dataset partitioning 
strategy was implemented to ensure that training and testing 
samples remained physically isolated.
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Fig. 1 HSI system configuration schematic.

Fig. 2 Schematic of samples and their spectral selection: (a) 
Schematic of ROI for print selection; (b) Sample of (a).

Model Development

BPNN. BPNN is a multi-layer feedforward neural network 
designed for training nonlinear differentiable function 
weights.22 It consists of two primary processes: forward 

propagation of information and backpropagation of errors. A 
typical BPNN comprises several interconnected layers, including 
an input layer, multiple hidden layers, and an output layer. The 
dataset is fed into the input layer, where the hidden layers 
compute the inner product of the weight matrix and bias 
coefficients. The Rectified Linear Unit (ReLU) function is 
employed as the activation function, and a dropout layer is 
incorporated to prevent overfitting. Finally, the SoftMax 
function is applied at the output layer for classification of stamp 
pad ink types.

(1) Output of hidden layer jH                   

1

n

j ij i j
i

H g w x a


   
 
                                  (1)

where aj is the bias vector from the input layer to the hidden 
layer; wij is the weight matrix from the input layer to the hidden 
layer; and g is the activation function.

(2) Output of output layer

1

l

k j jk k
j

O H w b


                                      (2)

where wjk is the weight matrix connecting the hidden layer to 
the output layer; bk is the bias vector of the output layer; and l 
is the hidden layer output.

(3) Error calculation

m
2

1

1 ( )
2 K K

k
E Y O



                                (3)

where m is the number of neurons in the input layer; YK is the 
expected output; and k = 1, ..., m.

The BPNN model architecture is designed by selecting key 
hyperparameters, including the number of fully connected 
layers, learning rate, and the number of hidden layer neurons. 
To ensure comparability of training results and enhance 
experimental efficiency, the number of training iterations for 
BPNN was fixed at 1,000 epochs in this study.

RF. Since its introduction by Breiman in 2001,23 the RF 
algorithm has become one of the most representative 
ensemble learning techniques in the field of machine learning. 
RF constructs models by integrating multiple weak classifiers,24 
typically Classification and Regression Trees (CART), which 
significantly enhance prediction accuracy and generalization 
performance. When the dependent variable in a dataset is 
categorical, RF applies CART decision trees as classifiers, 
effectively handling classification tasks.

The RF algorithm employs two key criteria for decision-
making: information gain and Gini index.

(1) Information gain: The information gain g(X, A) of a feature 
A in a training dataset X is defined as the difference between 
the empirical entropy H(X) of the dataset X and the empirical 
conditional entropy H(X | A) of the dataset given a specific 
feature A. g(X, A) can be expressed as follows:
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( , ) ( ) ( | )g X A H X H X A                          (4)

(2) Gini index: The RF algorithm utilizes the Gini Index to 
determine the optimal splitting attribute during decision tree 
development. The Gini index measures the impurity of a 
dataset, where a lower Gini Index indicates higher dataset 
purity after a split.

2

1
( ) 1

i

i
i

Gini P P


                                       (5)

where i is the number of sample classes and Pi is the 
probability of a sample belonging to class i.

The RF algorithm architecture is primarily optimized by 
tuning two key hyperparameters: the number of decision trees 
in the ensemble learning framework and the minimum number 
of samples per leaf node, which controls tree depth and model 
complexity. To establish a reproducible model evaluation 
framework, the experiment fixed the number of decision trees 
at 50 as a baseline configuration, with a Bootstrap sampling rate 
of 0.8. Additionally, a grid search strategy was employed to 
explore the effect of varying the minimum sample size per leaf 
node (1-20) on model performance.

ELM. The ELM algorithm was proposed by Huang et al.25 One 
of its key characteristics is that the weights of the hidden layer 
nodes are either randomly assigned or manually set and do not 
require iterative updates. Theoretically, this approach enables 
extremely fast learning while maintaining strong generalization 
performance. Compared to conventional neural networks, ELM 
can perform classification and regression tasks more efficiently 
and stably.26

Let X represents the input layer dataset, containing elements 
x1, …, xd, H represents the hidden layer dataset, containing 
elements h1, h2, …, hL, and Y represents the output layer 
dataset, containing elements y1, …, yk, the relationship among 
these datasets can be expressed as follows:

H X b                                           (6)

Y H                                               (7)

where ω is the weight vector connecting the input layer to 
the hidden layer nodes; b is the bias vector for the hidden layer 
nodes; and β is the weight vector connecting the hidden layer 
to the output layer. 

The ELM primarily selects the training set randomly. It does 
not require knowledge of the intermediate hidden layer dataset; 
it only needs to establish the corresponding relationships to 
obtain the output dataset.27,28 This approach eliminates the 
need for iterative weight updates, significantly reducing 
computational complexity. Therefore, ELM is faster and more 
accurate than traditional neural network methods. 

( )Y g X b                                       (8)

where g(x) is the activation function in the hidden layer; g(ΩX 
+ b) is the output of the hidden layer, where xis the input layer 

dataset; Y is the output layer dataset; Ω is the weight vector 
from the input layer to the hidden layer; b is the bias vector for 
the hidden layer; and β is the weight vector from the hidden 
layer to the output layer (Fig. 3). 

In the hyperparameter optimization of the ELM algorithm, 
this study focused on tuning the key structural parameter—the 
number of hidden layer nodes. To establish a standardized 
evaluation framework, the experiment adopted a fixed 
architecture using the Sigmoid activation function, where 
weights between the input and output layers were orthogonally 
initialized. A five-fold cross-validation strategy was employed to 
investigate the effect of varying the number of hidden nodes 
(10-600 with a step size of 20) on the generalization 
performance of the model.

Fig. 3 ELM network structure diagram.

Measures of classification performance 

As a visualization tool, the confusion matrix is not only used to 
evaluate the accuracy of supervised learning but also serves as 
an assessment metric for unsupervised learning. Additionally, 
the confusion matrix provides a detailed breakdown of 
classification performance, highlighting the accuracy of 
predictions for each category. Fig. 4 illustrates the basic 
structure of a confusion matrix. This study employed key 
evaluation metrics, including Accuracy (Acc), Precision (PC), 
Sensitivity (SN), Specificity (SP), and F1-score, with the 
corresponding calculations defined as follows:

               

TP TN
TP TN FP FN

Acc 


                               (9)

  

TPPC
TP FP


                                       (10)

TP
TP FN

SN 
                                       (11)

TNSP
TN FP


                                       (12)
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2 Precision Sensitivity1
Precision Sensitivity

F score ´ ´
 


                   (13)

where True Positive (TP) is the number of correctly classified 
positive samples; True Negative (TN) is the number of correctly 
classified negative samples; False Positive (FP) is the number of 
negative samples incorrectly classified as positive; and False 
Negative (FN) is the number of positive samples incorrectly 
classified as negative.29

Fig. 4 Basic form of confusion matrix.

Results and Discussion
Hyperspectral Spectral Analysis

The raw reflectance spectrum of each pixel in the hyperspectral 
stamp pad ink image is shown in Figure 5. As evidenced by the 
spectral graph, the uppermost curve characterizes the high-
reflectance properties of the paper substrate. Within the 400–
650 nm waveband, a pronounced spectral distinction emerges 
between the paper and forensic stamp ink. At approximately 
550 nm, the paper's reflectance exhibits a sharp surge to near-
unity levels (≈1.0), this reflectance persisting at near-saturation 
stability throughout longer wavelengths. In contrast, The 
reflectance spectra of the 24 stamp pad inks showed a rapid 
downward trend in the wavelength range of 450-550 nm, with 
a small absorption peak at 450 nm. In the range of 550-670 nm, 
the absorption peaks increase dramatically, while after 670 nm, 
the spectral curve remains relatively flat with minimal variation. 
These results show that the chemical composition of different 
brands of stamp pad inks is highly similar, resulting in a highly 
consistent reflectance spectral pattern. Given the paper's 
forensically-significant reflectance in the 400-650 nm spectrum 
– establishing a non-bridgeable divergence in optical responses 
from stamp ink – this study's methodology applies spectral 
substrate filtration to enable exclusive focus on forensic ink 
spectral modeling. This similarity presents a significant 
challenge for direct visual classification, hence the need for 
hyperspectral data analysis using machine learning.

Preprocessing

The raw spectral data contain both sample-specific information 
and noise components. Preprocessing operations are essential 
to reduce noise impacts and enhance model accuracy. This 
study employed multiple spectral preprocessing techniques to 
construct the stamp pad ink classification model, using raw 
spectral data (NO processing) as the control group. The study 
integrated four preprocessing techniques: Savitzky-Golay first 
derivative (SG+1D), Savitzky-Golay second derivative (SG+2D), 
Standard Normal Variate (SNV), and MSC. Among these, MSC 
effectively corrects the scattering effects in individual sample 
spectra, eliminating baseline shifts and intensity distortions 
while significantly improving the resolution of absorption 
features. SNV applies mean centering and standard deviation 
normalization (z=(x−μ)/σ)，which suppresses systematic errors 
caused by sample-to-sample scattering differences. Derivative-
based methods employ a 15 nm window width and a second-
order polynomial fit, where first- and second-order derivatives 
help in baseline drift suppression and overlapping peak 
resolution enhancement. These preprocessing techniques 
remove non-chemical spectral variations induced by light 
scattering, laying the foundation for building high-precision 
classification models.

To establish the optimal preprocessing method, various 
preprocessing techniques were tested before developing the 
quantitative classification models. The BPNN model validation 
results for different preprocessing methods are summarized in 
Table 2, where the BPNN algorithm parameters were 
maintained as follows: training iterations = 1000, hidden 
neurons = 30, learning rate = 0.001, and a three-layer fully 
connected architecture with 121 neurons in the first layer, 30 
neurons in the second layer, and 24 neurons in the final output 
layer. In Table 2, when using MSC preprocessing, the training 
and test set accuracies reached 97.58% and 92.04%, 
respectively (runtime = 453.36s), achieving the highest test set 
accuracy among all preprocessing techniques. Consequently, 
MSC preprocessing was selected as the standard preprocessing 
operation for all subsequent model training procedures. Fig. 6 
illustrates the MSC-preprocessed spectral results.

Fig. 5 Original data Spectral Curve Graph.
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Fig. 6 MSC-preprocessed data Spectral Curve Graph. 

Table 2 Accuracy of different preprocessing methods based on BP algorithm

Algorithm
Preprocessing 

method
Training set 
accuracy/%

Testing set 
accuracy /%

NO 92.94% 79.07%

SG+1D 72.42% 58.80%

SG+2D 78.61% 65.56%

SNV 91.39% 85.09%

BP

MSC 97.58% 92.04%

RF Training Model Results

Experimental results indicate that the number of leaf nodes 
significantly impacts model complexity and generalization 
ability (Fig. 7). As the number of leaf nodes increases from 1 to 
7, the testing set accuracy slightly decreases from 96.04% to 
95.71% (Δ = 0.33 percentage points), while the training accuracy 
drops from 100% to 98.92%, demonstrating that moderately 
limiting node splitting can effectively suppress overfitting. 
However, when the leaf node count further increases to 20, the 
testing set accuracy declines to 93.60% (a reduction of 2.11%), 
and the training accuracy simultaneously drops to 97.35%, 
indicating that an excessive number of leaf nodes leads to 
model performance degradation. These results confirm that the 
number of leaf nodes plays a crucial role in controlling decision 
boundary complexity. Specifically, setting the leaf node count 
to 7 achieves an optimal balance between model sensitivity and 
robustness.

Fig. 7 Effect of number of leaf nodes on model accuracy.

Fig. 8 illustrates the effect of decision tree count on Out-of-Bag 
(OOB) error with leaf node size fixed at 7 samples (minleaf=7). 
The out-of-bag error is the average error for each training 
sample calculated using predictions from the trees that do not 
contain it in their bootstrap sample. This constrained leaf node 
configuration demonstrates that the number of decision trees 
has a significant nonlinear effect on model convergence. As the 
number of trees increases from 1 to 15,  the OOB error 
decreases exponentially from 0.6310 to 0.05223, representing 
a 91.72% reduction, which highlights the improvement in 
prediction consistency achieved through ensemble learning 
under fixed leaf node conditions.  However, once the number 
of trees exceeds 15, the error fluctuation range narrows to 
±0.005, with the OOB error decreasing slightly from 0.05223 to 
0.04353 between 15 and 30 trees, confirming the marginal 
benefit saturation effect of RF with minleaf=7. These results 
indicate that setting the number of decision trees to 
15  combined with leaf node control (minleaf=7) ensures an 
optimal trade-off between computational efficiency (training 
time = 45.90s) and generalization performance (OOB error = 
0.0435), achieving Pareto optimality.

Fig. 8 Randomized forest out-of-bag error versus number of trees 
curve.
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Feature importance scores were calculated based on the 
mean decrease in Gini impurity.30 For each decision tree in the 
Random Forest, the Gini impurity reduction induced by splitting 
at a specific feature (wavelength) was recorded. The final 
importance score for feature i is the averaged reduction across 
all trees:

1

1Im tan ( , )
treesN

i
ttrees

por ce Gini i t
N 

 D
            (14)

where ΔGini(i,t) is the Gini decrease by feature i in tree t, 
and Ntrees = 15. Scores were normalized to a -1–4 scale for 
visualization in Fig. 9. Each feature index maps to a discrete 
spectral sampling point across the 400-1000 nm spectral range, 
with a uniform spectral resolution of 5 nm, generating 121 
wavelength-specific channels. Fig. 9 depicts the feature 
importance scores, revealing that the 400-600 nm wavelength 
range (feature indices 1, 3, 36, etc.) significantly contributes to 
classification. Among them, index 1 (3.62), index 3 (1.76), and 
index 36 (1.74) correspond to absorption peaks near 400 nm, 
500 nm, and 575 nm, respectively, aligning with the electronic 
transition characteristics of benzotriazole based photosensitie-
rs. Additionally, the 800-1000 nm wavelength range (indices 90 
and 107) also exhibits relatively high scores (0.70, 0.78), 
correlating with the synergistic absorption of phthalocyanine-
based dyes. In contrast, the 640-765 nm range has an average 
importance score of only 0.018, with over 70% of its feature 
scores being zero, and index 80 even showing a negative score 
(-0.27), indicating that this spectral range contributes little to 
classification and may introduce noise. By applying a feature 
importance threshold of >0.40, the top 36 most informative 
features were selected, reducing the data dimensionality by 
70.2% (121 → 36). Despite this reduction, the testing set 
accuracy decreased by 2.02 percentage points (94.87% → 
92.85%), while model inference speed improved by 
approximately 1.5 times (45.90 s → 30.21 s). These results 
underscore the dual value of focusing on key spectral regions, 
facilitating both efficient dimensionality reduction and 
performance optimization in hyperspectral ink classification.

Fig. 9 Feature importance distribution over 400-1000 nm spectral 
range.

After parameter optimization, the RF model configuration 
was set to 7 leaf nodes, 15 decision trees, and a feature 
selection threshold of 36. On the 3,600-sample dataset under 
identical 36-feature subspace constraints, RF achieved training 
accuracy of 96.27% and test accuracy of 92.85%, significantly 
outperforming BPNN (testing set accuracy = 88.61%).The 
performance advantage is attributed to the dual randomness 
mechanism (Bootstrap sampling and feature subspace 
selection), which effectively suppresses overfitting, and the 
high-discriminability feature focus, which enhances spectral 
difference capture capability. Compared to the BPNN model, 
the RF model demonstrated superior training efficiency 
(68.02%reduction in computation time) and test classification 
accuracy (4.24% improvement).

ELM Training Model Results

Following the performance analysis of the RF model, this 
section further explores the classification effectiveness of ELM 
to compare the strengths and weaknesses of different 
algorithms. Fig. 10 illustrates the effect of hidden neuron 
number in the neural network on accuracy. As the number of 
neurons increases, the training accuracy consistently improves, 
indicating that increasing model complexity enhances the 
ability to capture training data patterns. However, the test 
accuracy peaks within the 200-400 neuron range, with the 
highest recorded accuracy at 360 neurons ((testing set accuracy 
= 98.38%). Beyond this point, as the number of neurons 
continues to increase, the test accuracy gradually declines, 
reaching approximately 96.93%, suggesting that overfitting 
becomes more pronounced. The gap between training and test 
accuracy significantly expands beyond 310 neurons, reaching 
95.47% at 600 neurons, highlighting that excessively complex 
network structures impair generalization ability. Therefore, 
limiting the number of hidden neurons to 360 achieves an 
optimal balance between performance and model complexity.

Fig. 10 Effect of hidden neuron number on model performance and 
accuracy trends in training and testing sets.

Model Evaluation
To ensure equitable comparison, as shown in table 3, both ELM 
and BPNN models were retrained on the identical 36-feature 
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subset selected by RF. The test accuracy of ELM decreased 
marginally to 94.72% (from 98.38%), while BPNN suffered a 
substantial drop to 88.61% (from 92.04%). Notwithstanding the 
feature reduction, ELM consistently outperformed both RF and 
BPNN, achieving inference in merely 0.97 seconds 
demonstrating its superior robustness under dimensionality 
constrained conditions.

Table 3 Performance comparison with 36 optimal features

Algorithms Training set 
accuracy/%

Testing set 
accuracy/%

ΔAcc* (%) Computatio
n time (s)

BP 95.32% 88.61% 3.34% 94.47
RF 96.27% 92.85% 2.02% 30.21

ELM 97.77% 94.72% 3.66% 0.97
*ΔAcc: The performance gap between full-feature testing accuracy and 
optimal-36-feature testing accuracy.
Table 4 outlines the modeling accuracy and computational 

efficiency of different algorithms. Under a unified MSC 
preprocessing condition, the study evaluated the modeling 
performance of BPNN, RF, and ELM. Experimental results 
indicate that the ELM algorithm demonstrated significant 
overall advantages, achieving a training accuracy of 99.25% and 
a test accuracy of 98.38%, surpassing RF and BPNN by 2.64 and 
1.67 percentage points in training accuracy, and by 4.63 and 
6.34 percentage points in test accuracy, respectively. 
Additionally, ELM exhibited exceptional computational 
efficiency, requiring only 1.59 s for processing, which is faster 
than RF (45.90 s) and BPNN (453.36 s), respectively, 
demonstrating that ELM not only ensures high predictive 
accuracy but also possesses superior real-time processing 
capabilities. The RF algorithm, benefiting from its ensemble 
learning mechanism, achieved a test accuracy of 93.75%, 
outperforming BPNN by 1.17 percentage points, but its 
computational cost was 285 times higher than ELM, highlighting 
a significant efficiency bottleneck. The BPNN algorithm, 
constrained by the local convergence characteristics of gradient 
descent, achieved a test accuracy of only 92.04%, while 
incurring an extremely high computational cost of 453.36 s, 
revealing its practical limitations in real-world applications.

Table 4 Accuracy comparison of three algorithms

Algorithms Pre-
processin
gmethod

Training set 
accuracy/%

Testing set 
accuracy/%

Computation 
time (s)

BP 97.58% 92.04% 453.36
RF 96.61% 93.75% 45.90

ELM
MSC

99.25% 98.38% 1.59

Critically, the ELM model achieved superior performance 
without relying on feature dimensionality reduction. As 
evidenced in Table 4, ELM attained a test accuracy of 98.38% 
using all 121 spectral bands, surpassing RF (93.75%) by 4.63% 
and BPNN (92.04%) by 6.34%. This result underscores ELM’s 
inherent capability to harness high-dimensional hyperspectral 
data efficiently. Unlike RF, which required meticulous feature 
selection (top 36 bands) to optimize accuracy and speed (Table 

3), ELM delivered higher accuracy (98.38% vs. 92.85%) and 
faster inference (1.59 s vs. 30.21 s) even without such 
preprocessing. The elimination of feature engineering not only 
simplifies the analytical workflow but also enhances practical 
utility in forensic settings where rapid, high-confidence 
decisions are paramount.

To evaluate the model performance of ELM, BPNN, and RF, 
this study employed four evaluation metrics: PC, SN, SP, and F1-
score for systematic analysis. In Tables 5and 6, he BPNN 
algorithm achieved an average F1-score of 0.976 on the training 
set (Table 5) but significantly dropped to 0.923 on the test set 
(Table 6), indicating weak generalization ability. Performance 
fluctuations were particularly evident in complex samples, such 
as test sample 11, where the F1-score plummeted to 0.615 (SN 
= 0.444, PC = 1.000), while samples 8, 9, and10 recorded F1 
scores of 0.789, 0.636, and 0.818, respectively. These results 
suggest that the BPNN model is highly sensitive to noise and 
prone to local optima, making it challenging to handle high-
dimensional data classification tasks reliably.

The RF model outperformed BPNN overall, achieving an 
average F1-score of 0.947 on the test set. However, its stability 
remained insufficient, as evidenced by a 4.1% performance gap 
(0.988→0.947). Particularly in class-imbalanced scenarios, RF 
struggled to recognize minority class samples effectively, such 
as test sample 21 (SN = 0.877, F1-score = 0.851) and test sample 
22 (SN = 0.795, F1-score = 0.823). These results suggest that RF 
requires feature weighting or sampling strategies to enhance 
classification robustness.

ELM exhibited significant advantages in both the training and 
test sets, demonstrating superior performance across all 
metrics. The PC values reached 1.000 in 16 samples (e.g., 
samples 1-7 and 14-16), while the SP values consistently 
exceeded 0.992. The average F1-score of 0.983 on the test set 
represented a 6.00% and 3.60% improvement over BPNN and 
RF, respectively. Its single-hidden-layer feedforward structure, 
combined with randomly generated hidden layer parameters 
and a generalized inverse matrix solution, eliminated iterative 
parameter tuning, achieving a training efficiency over 200 times 
faster than BPNN, while maintaining high accuracy at a 
significantly lower computational cost.

The comparative analysis in this study highlights ELM as the 
most effective method for hyperspectral stamp pad ink 
classification, demonstrating both stability (training-testing F1-
score difference of only 0.017) and computational efficiency, far 
exceeding traditional models. The generalization limitations of 
BPNN and the class imbalance sensitivity of RF underscore the 
shortcomings of conventional approaches, whereas ELM, with 
its unique network structure and analytical learning 
mechanism, offers a highly reliable solution for forensic 
document authentication. Although ELM demonstrates 
remarkable performance in controlled laboratory settings, its 
adaptability to deteriorated samples (e.g., faded/contaminated 
impressions) requires further validation. Nevertheless, the 
model's exceptional efficiency  enables rapid recalibration for 
complex scenarios.
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Table 5 Performance comparison of BPNN, RF, and ELM training models

brochure BPNN (PC/SN/SP/ F1-score) RF (PC/SN/SP/ F1-score) ELM (PC/SN/SP/ F1-score)
1 1.000 /1.000/1.000/1.000 1.000/1.000/1.000/1.000 1.000/1.000/1.000/1.000
2 1.000/1.000/1.000/1.000 1.000/1.000/1.000/1.000 1.000/1.000/1.000/1.000
3 1.000 /1.000/1.000/1.000 1.000/1.000/1.000/1.000 1.000/1.000/1.000/1.000
4 1.000 /0.990/1.000/0.995 1.000/1.000/1.000/1.000 1.000/1.000/1.000/1.000
5 1.000/0.990/1.000/0.995 0.990/0.990/0.999/0.990 1.000/1.000/1.000/1.000
6 1.000/1.000/1.000/1.000 0.990/0.990/0.999/0.990 1.000/1.000/1.000/1.000
7 1.000/1.000/1.000/1.000 1.000/1.000/1.000/1.000 1.000/1.000/1.000/1.000
8 0.895/0.981/0.995/0.936 0.977/0.977/1.000/0.988 0.960/0.950/0.998/0.955
9 0.978/0.885/0.999/0.930 1.000/1.000/0.999/0.990 0.951/0.960/0.997/0.955

10 0.913/1.000/0.995/0.954 1.000/1.000/0.999/0.995 1.000/0.982/1.000/0.990
11 1.000/0.666/1.000/0.800 0.951/0.95610.998/.956 1.000/0.990/1.000/0.995
12 0.859/0.995/0.993/0.920 0.961/0961/0.997/0.956 0.990/0.990/0.999/0.990
13 0.990/1.000/0.999/0.995 0.976/0.979/1.000/0.987 0.980/1.000/0.999/0.990
14 0.918/0.971/0.996/0.944 1.000/1.000/0.999/0.990 0.990/0.990/0.999/0.990
15 1.000/1.000/1.000/1.000 1.000/1.000/1.000/1.000 1.000/1.000/1.000/1.000
16 0.990/1.000/0.999/0.995 1.000/1.000/1.000/1.000 1.000/1.000/1.000/1.000
17 0.972/1.000/0.998/0.985 0.959/0.959/0.999/0.974 0.990/1.000/0.999/0.995
18 1.000/0.961/1.000/0.980 0.980/0.980/0.998/0.976 1.000/0.990/1.000/0.995
19 0.963/1.000/0.998/0.981 0.989/0.989/0.999/0.984 0.990/1.000/0.999/0.995
20 1.000/1.000/1.000/1.000 1.000/1.000/1.000/1.000 1.000/0.990/1.000/0.995
21 0.970/0.923/0.998/0.946 0.950/0.950/0.999/0.964 0.990/0.990/0.999/0.990
22 0.927/0.971/0.996/0.948 0.981/0.981/0.997/0.967 0.980/0.990/0.999/0.985
23 1.000 /1.000/1.000/1.000 1.000/1.000/1.000/1.000 1.000/1.000/1.000/1.000
24 1.000/1.000/1.000/1.000 1.000/1.000/1.000/1.000 1.000/1.000/1.000/1.000

Average 0.975/0.953/0.996/0.976 0.988/0.988/0.995/0.988 0.992/0.992/0.999/0.992

Table 6 Performance comparison of BPNN, RF, and ELM testing models

brochure BPNN (PC/SN/SP/ F1-score) RF (PC/SN/SP/ F1-score) ELM (PC/SN/SP/ F1-score)
1 1.000 /1.000/1.000/1.000 1.000 /1.000/1.000/1.000 1.000/0.979/1.000/0.989
2 1.000/1.000/1.000/1.000 1.000/1.000/1.000/1.000 1.000/1.000/1.000/1.000
3 1.000 /1.000/1.000/1.000 1.000 /1.000/1.000/1.000 1.000/1.000/1.000/1.000
4 1.000 /0.977/1.000/0.988 1.000 /1.000/1.000/1.000 1.000/1.000/1.000/1.000
5 0.978 /1.000/0.999/0.989 0.975/0.975/0.999/0.975 1.000/1.000/1.000/1.000
6 1.000 /1.000/1.000/1.000 0.977/0.977/0.999/0.977 1.000/1.000/1.000/1.000
7 1.000 /1.000/1.000/1.000 1.000/1.000/0.999/0.989 1.000/1.000/1.000/1.000
8 0.652/1.000/0.976/0.789 0.919/0.919/1.000/0.958 0.976/0.836/0.999/0.911
9 1.000/0.466/1.000/0.636 0.912/1.000/0.995/0.954 0.859/1.000/0.992/0.924

10 0.873/0.800/0.993/0.818 1.000/1.000/0.996/0.961 1.000/0.959/1.000/0.979
11 1.000/0.444/1.000/0.615 0.934/0.934/0.993/0.895 0.979/0.959/0.999/0.969
12 0.882/1.000/0.994/0.937 0.913/0.913/0.998/0.933 0.960/0.979/0.998/0.969
13 0.771/0.977/0.987/0.862 0.865/0.865/0.999/0.918 0.960/1.000/0.998/0.980
14 0.756/0.622/0.991/0.682 0.978/0.978/0.992/0.900 1.000/0.979/1.000/0.989
15 1.000/1.000/1.000/1.000 1.000/1.000/0.996/0.966 1.000/1.000/1.000/1.000
16 1.000/1.000/1.000/1.000 1.000/1.000/0.996/0.952 1.000/1.000/1.000/1.000
17 0.725/1.000/0.983/0.841 0.903/0.903/1.000/0.949 0.980/1.000/0.999/0.989
18 1.000/0.933/1.000/0.965 0.804/0.804/0.999/0.881 1.000/1.000/1.000/1.000
19 0.937/1.000/0.997/0.967 0.961/0.961/0.991/0.892 1.000/1.000/1.000/1.000
20 1.000/0.977/1.000/0.988 0.932/0.932/1.000/0.964 1.000/1.000/1.000/1.000
21 0.907/0.866/0.996/0.886 0.877/0.877/0.992/0.851 0.959/0.959/0.998/0.959
22 0.854/0.911/0.993/0.881 0.795/0.795/0.994/0.823 0.959/0.959/0.998/0.959
23 1.000 /1.000/1.000/1.000 1.000 /1.000/1.000/1.000 1.000 /1.000/1.000/1.000
24 1.000/1.000/1.000/1.000 1.000/1.000/1.000/1.000 1.000/1.000/1.000/1.000

Average 0.920/0.953/0.990/0.923 0.948/0.9483/0.997/0.947 0.984/0.983/0.999/0.983
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Conclusion
To address the challenges of timeliness and accuracy in 
nondestructive stamp pad ink detection for forensic 
identification, this study proposed a rapid classification 
framework integrating HSI and ELM. Experimental results 
demonstrated that the proposed framework achieved a 
classification accuracy of 98.38% across 24 photosensitive ink 
samples, with a detection time of only 1.59 s. Critically, even 
without feature dimensionality reduction (i.e., using full 121 
spectral bands), the ELM model outperformed both RF and 
BPNN by significant margins. ELM achieved a test accuracy of 
98.38%, surpassing RF (93.75%) by 4.63% and BPNN (92.04%) by 
6.34%. More importantly, ELM accomplished this with a 
computational time of merely 1.59 seconds—28 times faster 
than RF (45.90 s) and 285 times faster than BPNN (453.36 s). 
This dual advantage of superior accuracy and extreme efficiency 
underscores ELM’s unique suitability for real-time forensic 
applications where rapid, high-confidence analysis is 
paramount.

However, the potential application for analyzing ink aging—
while acknowledged—was not experimentally explored. 
Further assessment is needed to determine the reliability of the 
ELM model when analyzing deteriorated samples or operating 
under heterogeneous environmental conditions. Future work 
should also validate the model under realistic forensic scenarios 
involving diverse substrates and variable lighting conditions to 
strengthen ecological validity.
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