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Analysis of Paper Types Based on Three Dimensional 

Fluorescence Spectroscopy Combined with Resnet34
Yinni Lv, Xin Lin, Peng Wang , Hongda Li*

E-mail: lhd870821@163.com

Department of Forensic Chemistry, Criminal Investigation Police University of China, 

Shenyang 110035, China.

Abstract Printing paper represents one of the most prevalent forms of physical evidence in 

document forensics, where accurate brand and model identification provides critical 

investigative leads. To enable rapid, precise identification of commercial printing paper 

brands, we propose a novel method combining 3D fluorescence spectroscopy with an 

enhanced ResNet34 network. First, 3D fluorescence contour maps of diverse paper brands 

were acquired across excitation (280–420 nm) and emission (300–592 nm) wavelengths. 

These data were augmented via random flipping, scaling, and cropping to generate an 

expanded dataset of 6,398 samples. Subsequently, the ResNet34 backbone was streamlined 

by removing redundant intermediate layers to improve efficiency. Feature extraction 

capabilities—particularly for central regions of fluorescence contour images—were 

strengthened by integrating the CBAM attention mechanism, with training dynamics 

visualized for optimization. Comparative experiments identified optimal training strategies 

and hyperparameters. The highest-performing model achieved 97.27% accuracy on the test 

set, significantly outperforming conventional methods. The proposed system demonstrates 

strong robustness with a per-image inference time of 0.82 seconds, confirming its practical 

utility for forensic paper analysis.

Keywords: 3D fluorescence, Resnet 34 model, paper evidence, nondestructive testing
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1. Introduction

In recent years, documents and physical evidence carried on printed paper have 

frequently appeared in cases. How to extract relevant information from the paper used 

has become a research focus. The ability to accurately identify the brand and model of 

the paper is crucial for the correctness of document examination. Current analytical 

approaches to paper characterization include Fourier Transform Infrared Spectroscopy 

(FTIR)1–3, Raman2, inductively coupled plasma mass spectrometry (ICP ‐ MS)4, 

pyrolysis Gas Chromatography-Mass Spectrometry (py-GC/MS)5. However, current 

analysis methods can only ensure the approximate brand range. The identification 

process may damage the document evidence, affecting its legal validity. The 

fundamental reason for these problems is the lack of a precise and efficient 

classification method for types of printing paper. Spectroscopic methods can extract 

effective characteristic parameters from samples 6–11. In the inspection of printing 

paper, due to the relatively fixed manufacturing processes of paper from various 

brands and the stable optical properties of paper, spectroscopic methods have become 

reliable techniques for paper inspection and are widely applied in various fields of 

forensic science. Sun et al.12 used confocal 3D X-ray fluorescence spectroscopy to 

examine the composition and distribution of metal elements inside the paper, in order 

to identify the textual information on the surface of the paper that has been masked or 

covered. Khei et al.13 used ATR-FTIR spectrum and PLS-DA model to classify nail 

polish with 6 different substrates. Kikkawa et al.14 developed a semi-automated 

method using scanning electron microscopy and energy-dispersive X-ray 

spectroscopy (SEM-EDS) for quantitative analysis of soil particles sourced from soil. 

They demonstrated that this method successfully identified the majority of soil 

samples with different parent populations and could be used in forensic cases.

Deep learning classification algorithms combined with statistical methods are 

widely used for the identification of various types of spectroscopic images. 

Ntakatsane et al.15 developed qualitative and quantitative calibration models using 

multidimensional fluorescence spectroscopy (3D and 2D) combined with 
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chemometrics tools to predict antibiotic residues. R. Facci et al.16 proposed a 

classification method for different vodka samples based on synchronous fluorescence 

combined with chemometrics tools. In the experiment, 18 authentic vodka and 6 

counterfeit vodka samples were used. Chemometrics methods included partial least 

squares-discriminant analysis (PLS-DA), k-nearest neighbors (KNN), and support 

vector machine (SVM). Experimental results showed that SVM based on radial basis 

function could correctly classify all brands of vodka samples using synchronous 

fluorescence spectroscopy. Chen et al.17 proposed a method based on second 

derivative laser-induced fluorescence spectroscopy (SD-LIF) and its derivative 

intrinsic ratio laser-induced fluorescence spectroscopy (IR-LIF) to identify adulterated 

camellia oil, and combined with partial least squares regression to determine the 

adulteration concentration. Showkat et al.18 proposed a classification method of chest 

X-ray images for COVID-19 pneumonia based on transfer learning. Experimental 

results showed that a custom Resnet model combined with transfer learning achieved 

a 95% overall accuracy and 95.65% precision, enabling reliable analysis of chest 

X-ray images for pneumonia. Yang et al.19 used a novel GAN-based data 

augmentation method, RAHC_GAN, for tomato leaf disease recognition. Results 

showed that the recognition performance of four classification networks, AlexNet, 

VGGNet, GoogLeNet, and Resnet, was improved by 1.8%, 2.2%, 2.7%, and 

0.4%,using the RAHC_GAN method.

Drawing inspiration from the above example, this paper proposed a method for 

classifying paper brands based on 3D fluorescence spectra combined with an 

improved ResNet34 model. First, a dataset of 3D fluorescence spectral images of 

different brands of printing paper was constructed based on the fluorescence 

characteristics of printing paper. A collection of data augmentation methods suitable 

for 3D fluorescence contour images of printing paper was then built. Subsequently, an 

improved model for classifying 3D fluorescence contour maps of printing paper used 

the ResNet34 network, named Improved-Resnet34, was proposed. This model 

removed certain intermediate layers of the traditional ResNet34 model to reduce 

training parameters and introduced the CBAM attention mechanism to enhance 
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feature extraction capabilities in the central main information area of 3D fluorescence 

contour images. Finally, multiple comparative experiments were conducted on the 

constructed dataset to determine the optimal training parameters for the 

Improved-Resnet34 model. Comparison with other models demonstrates that the 

Improved-Resnet34 model achieves higher accuracy in the task of printing paper 

brand classification, providing new insights for document inspection tasks.

2. Materials and methods

2.1 Sample collection

This study collected 50 models of A4 printing paper samples, all with a weight 

of 70g/m2, covering 27 common brands including M&G, Deli, and Asia Symbol & 

Paper. The paper samples were all purchased from the JD e-commerce platform in 

March 2023. From each category, 18-20 sheets of printing paper were randomly 

selected, with each sheet treated as an individual sample, resulting in a total of 914 

samples. Table S1 summarizes the number of models for each brand of printing paper. 

All printing paper samples were stored in a light-avoiding place at room temperature 

before use.

2.2 3D fluorescence spectroscopy measurement

The 3D fluorescence spectrum of the printing paper was measured at room 

temperature using an Agilent Cary Eclipse spectrophotometer. A single sheet of 

printing paper was cut into a 10cm × 10cm square, fixed onto a solid support, with the 

support positioned at a 45-degree angle to both the excitation and emission 

wavelength paths, forming a 90-degree overall optical path, and directly inserted into 

the fluorescence spectrometer for analysis. Each Excitation-Emission Matrix (EEM) 

was comprised of excitation wavelengths measured at 10 nm intervals from 280 to 

420 nm and emission wavelengths measured at 10 nm intervals from 300 to 600 nm. 

The scan speed was set to 12000 nm/min, with slit widths of 10 nm/10 nm.

2.3 Resnet 34 model optimization method

ResNet34 was a member of the family of deep residual networks, which 

employed the concept of residual connections20–22. It addresses the vanishing gradient 

and exploding gradient problems in deep networks by directly connecting across 
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layers.

The fluorescence intensity of printed paper was concentrated in the central 

region of the 3D fluorescence spectral contour image. This region’s information 

serves as the primary basis for distinguishing different brands of printed paper. The 

feature map changes during the training process of the traditional ResNet34 model 

were depicted in Figure S1. It had observed that the traditional ResNet34 model lacks 

sufficient feature extraction for the main information region in the center of the 

image. 

Therefore, the CBAM attention mechanism23–25 had been introduced to enhance 

feature extraction capabilities specifically within the central information region of the 

images. Since excessive convolutional layers had been found to consume significant 

memory resources – and given that grassroots public security units typically lacked 

high-performance computing hardware – model deployment had posed substantial 

challenges. Consequently, streamlining the traditional ResNet34 architecture had 

become necessary. We removed 4 of the 6 BasicBlock modules in Layer 3 (retaining 

only 2) to reduce parameters. The resulting Improved-ResNet34 (I-ResNet34) 

structure is shown in Figure S2.

2.4 Comparison method for 3D fluorescence contour images

The highest-accuracy model on the test set was saved as Best-Model, based on 

the I-ResNet34 architecture. We removed its fully connected layer while retaining 

convolutional parameters, converting it into a feature extractor for 3D fluorescence 

contour images. This process yielded 512-dimensional feature vectors (denoted as 

feat) from the final global pooling layer.

Cosine similarity between feature vectors served as the metric for brand 

association. When similarity exceeded the threshold of 0.9, samples were classified as 

originating from the same paper brand. The calculation follows Equation (1):

𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 =
𝑓𝑒𝑎𝑡1 ∙ 𝑓𝑒𝑎𝑡2

‖𝑓𝑒𝑎𝑡1‖2 ∙ ‖𝑓𝑒𝑎𝑡2‖2
(1)

feat1 and feat2 represent the feature vectors of two samples to be tested, denoting 

the inner product of the two vectors; represents the Euclidean norm of a vector.
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3.Results and discussion

Using MATLAB 2018a, 3D fluorescence data had first been plotted into 

800×600-pixel contour maps after scattering removal and saved as PNG files, 

yielding 914 initial images. These had then been augmented through New-Augment 

operations to generate 6,398 contour images. The I-ResNet34 model had subsequently 

been applied to this expanded dataset, where comparative experiments had optimized 

training strategies and hyperparameters. Under the optimal conditions identified, the 

model’s validation accuracy was evaluated and compared against four other deep 

learning architectures. Finally, accuracy and robustness were assessed using 

out-of-dataset samples, with the experimental workflow detailed in Figure S3.

3.1 Data augmentation results and impact on the model

Building upon the original 15 Rand Augment operations, Gaussian noise and 

salt-and-pepper noise had been added, resulting in 18 candidate augmentation 

techniques. When applied to dataset generation and ResNet34 training, these methods 

had yielded the accuracy performance documented in Table 1. Analysis had revealed 

that four techniques—Invert, Rotate, ShearX, and ShearY—had failed to improve 

model accuracy. Consequently, these methods were eliminated, and the remaining 13 

techniques were reconfigured into a new augmentation framework designated 

New_Augment.

Table 1 The best model accuracy for a single method

Serial number Augmentation techniques Best Acc

1 AutoContrast

Brightness Color Cutout Contrast Equalize

79.23%

2 Brightness 84.69%

3 Color 89.07%

4 Cutout 80.87%

5 Contrast 73.22%

6 Equalize 71.03%

7 Posterize 84.15%

8 Rotate 48.08%

9 Shaerpness 66.30%

10 Shear-X 51.91%
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11 Shear-Y 54.10%

12 Translate-X 63.01%

13 Translate-Y 67.21%

14 Invert 52.45%

15 Solarize 76.50%

16 Gasuss 74.86%

17 Salt Noise 84.15%

18 Original 60.86%

The RandAugment operation set had contained two intrinsic parameters, N and 

M, where N represented the number of augmentation methods to apply and M denoted 

their intensity magnitude. For the New_Augment operation set, all intensity 

parameters had been predefined during its construction phase. When we applied these 

augmentation protocols, the resulting transformed images were documented in Figure 

1.

Fig 1 Data enhancement effect pictures by New_Augment. (a)-(l) representing the 

effect of 12 different data augmentation methods on the 3D fluorescence images of 

paper respectively

To optimize generalization capability while balancing computational demands, 

we had conducted comparative experiments to determine the optimal N value for 

New_Augment. Tests had spanned N=3 to 7, aiming to identify the operational sweet 

spot where generalization improved without excessive training time or overfitting 
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risk. Five dataset variants were processed through ResNet34, with resulting accuracy 

and loss profiles documented in Figure 2. Analysis revealed that N=6 achieved 

training time reductions without accuracy loss while preventing overfitting. The final 

New_Augment-enhanced dataset contained 6,398 images, which were split 9:1 

(training:testing) for subsequent model training.

Fig 2 The training results of the Resnet34 model on the validation set under different 

n values. (a) represents the variation in accuracy; (b) represents the variation in loss 

value.

3.2 Model optimization effect

3.2.1 Comparison of Improved-Resnet34 with other models 

A comparative evaluation of 3D fluorescence contour map classification had 

been performed using the I-ResNet34 model alongside four conventional 

architectures: VGG16, AlexNet, ResNet34, and ResNet50. The training regimen had 

been standardized to 100 epochs with a 0.0001 learning rate and batch size of 32, all 

optimized via the Adam algorithm. Experimental outcomes were documented in 

Table 2. The data revealed that VGG16 and AlexNet were unsuitable for this 

classification task, exhibiting no convergence trends. Additionally, VGG16's 

architectural complexity resulted in detection times exceeding those of ResNet 

architectures by several multiples. The ResNet series demonstrated significantly 

superior performance comparatively.
Table 2 Performance comparison of different models
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Figure S4 depicts the training accuracy and loss curves for I-ResNet34, 

ResNet34, and ResNet50. Analysis revealed that the validation accuracy of 

I-ResNet34 was 3.04% and 6.49% higher than ResNet34 and ResNet50, respectively. 

Due to its streamlined architecture, I-ResNet34 achieved faster single-image detection 

times than both baseline ResNet variants. The improved model demonstrated 

significantly accelerated convergence speed – stabilizing beyond epoch 20 at >92% 

accuracy – while other models required extended training periods.

3.2.2 The impact of training strategies and model parameters on model 

performance

(1) The impact of CBAM attention mechanism on model performance

Following integration of the CBAM attention mechanism, feature maps extracted 

during training were visualized in Figure 3. Comparative analysis revealed that the 

CBAM-enhanced model demonstrated significantly stronger feature extraction 

capabilities within the central information region of 3D fluorescence contour images 

relative to the baseline ResNet34 architecture.

Fig 3 The impact of CBAM on feature extraction. (a) and (b) show the feature maps 

before and after adding CBAM attention mechanisms, respectively.

Model name Best-Acc/% Modelvolume/mb T/s

VGG16 3.49 510.96 4.45

AlexNet 3.48 217.39 0.56

Resnet34 94.23 83.29 1.15

Resnet50 90.78 316.24 3.14

Improved-Resnet34 97.27 63.51 0.82
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Following comparative experiments, the results were presented in Figure S5, 

where CBAM, CA, and SE attention mechanisms had been independently integrated 

into the model for controlled testing. The CBAM-enhanced model demonstrated 

significantly superior accuracy—exceeding CA and SE implementations by 2.73% 

and 2.58% respectively. It also achieved faster convergence and greater training 

stability than other configurations. These findings collectively confirmed that CBAM 

integration enhanced I-ResNet34 performance.

(2) The impact of transfer learning on model performance

Figure 4 compares accuracy and training loss trajectories of I-ResNet34 with and 

without transfer learning. The transfer learning model demonstrated higher final 

accuracy, while its loss curve revealed significantly improved initial performance due 

to pre-trained weight initialization.

Fig 4 The I-Resnet34 model on the validation set before and after applying the 

transfer learning strategy. (a) represents the variation in accuracy; (b) represents the 

variation in loss value.

(3) The impact of learning rate on model performance

The learning rate determines the step size for model parameter updates26–29. To 

investigate its impact on I-ResNet34 performance, we trained the model at rates of 

0.1, 0.01, 0.001, and 0.0001, with results documented in Figure S6. Analysis revealed 

that performance improved with decreasing learning rates above 0.0001, peaking at 

0.0001. Below this threshold, performance degraded significantly. Consequently, 

0.0001 was selected as the optimal learning rate.
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(4) The impact of activation functions on model performance

ReLU, Leaky ReLU, and Swish were evaluated as activation functions for the 

I-ResNet34 model, with results shown in Figure S7. The ReLU variant outperformed 

the others in both accuracy and loss. This advantage might have occurred because 

Swish employs the sigmoid function—typically more suitable for binary 

classification—while our dataset contained multiple categories. Leaky ReLU also 

proved less effective than ReLU for detailed feature extraction. Consequently, ReLU 

was selected as the final activation function.

3.3 Model performance evaluation

The preceding experiments optimized the I-ResNet34 model's performance 

through training strategy and parameter adjustments. Final model parameters were 

documented in Table 3. When we trained the model under these conditions, the 

highest validation accuracy reached 97.27%. This optimal version was saved as 

Best-Model for subsequent evaluation.
Table 3 I-Resnet34 model final parameters

3.3.1 Model accuracy evaluation

To evaluate the performance of the I-ResNet34 model after combining training 

strategies and optimized parameters, an additional 200 samples of 70g/m2 paper, apart 

from the training set, had been tested using the Best-Model. Each of the 50 categories 

had contained 4 samples for detection, resulting in a confusion matrix as depicted in 

Figure 5. It had been evident from the figure that two samples from category 34 had 

been misclassified, and one sample each from categories 3, 41, and 49 had exhibited 

misclassification. Firstly, the accuracy, precision, recall, and F1 score for each 

category had been calculated, and then the macro accuracy, macro precision, macro 

recall, and macro F1 of the model had been calculated. The specific values of each 

indicator had been 97.5% macro accuracy, 0.98 macro precision, 0.975 macro recall, 

Original 

model

Activation 

function
Learning rate Optimizer

Transfer 

learning

Attention 

mechanism

Resnet34 Relu 0.0001 ADAM Yes CBAM
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and 0.9737 macro F1. This had proven the feasibility of the proposed model based on 

3D fluorescence contour maps for printing paper brand classification.

Fig 5 Confusion matrix
3.3.2 Model robustness evaluation

To evaluate the robustness of the model, another set of 200 samples of 70g/m² 

paper with Local Outlier Factor (LOF)30–32 values greater than 1.3 had been selected. 

The LOF algorithm had been commonly used for detecting inlier outliers within a 

class, with samples having LOF values significantly greater than 1 being more likely 

to be outliers. These samples had then been tested using the Best-Model. The 

resulting confusion matrix had been depicted in Figure 13. After computation, the 

model had achieved a Macro-Accuracy of 92.5%, Macro-Precision of 0.9459, 

Macro-Recall of 0.925, and Macro-F1 of 0.935. This had further confirmed the 

feasibility of the proposed model, based on 3D fluorescent contour maps, for 

classifying printing paper brands.

This study proposes a paper brand classification method based on 3D 

fluorescence spectroscopy and an improved ResNet34 model, achieving an accuracy 

of 97.27% . To validate the advantages of this approach, we compared it with other 

commonly used methods reported in the literature1–6, as shown in the table S2. The 

results show that the proposed method achieves significantly higher accuracy than 

traditional spectral analysis methods (such as PCA and SIMCA). Furthermore, it 

offers distinct advantages in non-destructive testing and processing speed. 
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Additionally, by incorporating the CBAM attention mechanism and optimizing the 

network architecture, the improved ResNet34 model demonstrates superior feature 

extraction efficiency and robustness compared to other methods.

3.4 Real sample analysis

3.4.1 Simulated samples

To verify the practical applicability of the I-ResNet34 model, an analysis of 

simulated samples was conducted. Samples of M&G APYVQ959 and Deli C4774 

were randomly selected for 3D fluorescence spectral testing and analysis. After 

removing scattering effects, 3D fluorescence contour maps were generated using 

MATLAB software (pixel dimensions 800*600). Subsequently, these maps were 

input into the model for prediction. The model’s predictions matched the actual 

brands. Utilizing the pre-trained parameters of the Best-Model, feature vectors were 

extracted from the detected samples and compared with those in the database, 

yielding cosine similarities above 0.9 in all cases. This validated the accuracy of using 

the I-ResNet34 model to analyze A4 printing paper results.The analysis results were 

shown in Table 4.
Table 4 Sample analysis results

Simulated sample 

number
Known brands

Model prediction of 

brand

Cosine similarities 

average

1 M&G APYVQ959 M&G APYVQ959 0.963

2 Deli 7400 Deli 7400 0.976

3.4.2 Analysis of real case samples

During the analysis of actual paper samples involved in cases, samples are often 

not among the aforementioned 50 brands of paper. A study was conducted on the 

applicability of the I-ResNet34 model using a case involving paper samples of 

unknown brands. On March X, 2023, the suspect provided a contract (2 pages of 

paper, packaged in evidence bags, labeled JC1 and JC2 respectively). The police 

suspected that the first page of the document might have been replaced. The 

established Best-Model was used to analyze JC1 and JC2. The analysis results, as 

shown in Table 5, indicate that JC1 and JC2 do not belong to the samples in the 
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database. Comparing the feature vectors extracted from JC1 and JC2 with those in the 

sample library yielded cosine similarity maximum values of 0.46 and 0.55, 

respectively. Furthermore, comparing the feature vectors of JC1 and JC2 revealed 

significant differences (cosine similarity of 0.56). Therefore, JC1 and JC2 do not 

belong to the same category of paper samples, indicating suspicion that the first page 

of the document was replaced.
Table 5 Sample analysis results

Sample Model prediction of brand Feature similarity average

Qixin C4774 0.46

Huxin 7001 0.42JC1

Deli bailinghai 0.36

Kingdee KB-A4 0.55

Deli huibo 0.49JC2

M&G APYVSG36 0.45

JC1 JC2 0.56

4. Conclusion

A modified I-ResNet34 model based on the ResNet architecture was proposed, 

which combined the CBAM attention mechanism and simplified interlayer 

connections to improve prediction accuracy while reducing computation time. Other 

classic ResNet models in the same series were compared, and multiple comparative 

experiments were conducted with different training strategies and parameter settings 

to determine optimal parameters. Results show that combining transfer learning with 

N-Augment operations, setting the learning rate to 0.0001, and using the ReLU 

activation function enabled the I-ResNet34 model to achieve 97.27% accuracy on the 

test set. Validation with out-of-test samples demonstrates the model's robustness and 

interpretability. Compared to existing paper brand classification methods, this 

approach enables non-destructive testing with higher recognition accuracy and faster 

processing speeds, providing valuable support for document examination. However, 

this study included only common commercial paper brands, limiting identification 

capability for out-of-dataset samples. Future research should therefore expand the 
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sample library's brand coverage.
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This study did not generate any new datasets. All data analyzed are from publicly 
available sources, as cited in the manuscript.
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