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PepMSND: Integrating Multi-level Feature Engineering and 
Comprehensive Databases to Enhance in vitro/in vivo Peptide 
Blood Stability Prediction
Haomeng Hu ‡, a, Chengyun Zhang ‡,b, Zhenyu Xu‡,b, Jingjing Guoc, An Sua, Chengxi Lid, Hongliang 
Duan*,c

Deep learning has emerged as a transformative tool for peptide drug discovery, yet predicting peptide blood stability—a 
critical determinant of bioavailability and therapeutic efficacy—remains a major challenge. While such a task can be 
accomplished by experiments, it requires much time and cost. Here, to address this challenge, we collect extensive 
experimental data on peptide stability in blood from public databases and literature, and construct a database of peptide 
blood stability that includes 635 samples. Based on this database, we develop a novel model called PepMSND, integrating 
KAN, Transformer, GAT, and SE(3)-Transformer to make multi-level feature engineering for peptide blood stability 
prediction. Our model can achieve the ACC of 0.867 and the AUC of 0.912 on average and outperforms the baseline models. 
We also develop a user-friendly web for the PepMSND model, which is freely available at 
http://model.highslab.com/pepmsnd. This research is crucial for the development of novel peptides with strong blood 
stability, as the stability of peptide drugs directly determines their effectiveness and reliability in clinical applications.

Introduction
Peptides and proteins have gradually become a popular 
modality in the pharmaceutical industry. To date, over 120 
peptide-based drugs have received regulatory approval 
worldwide, playing a crucial role in the treatment of cancers, 
metabolic disorders, cardiovascular diseases, and 
autoimmune conditions.1 However, despite their growing 
clinical success, the broader application of peptide 
therapeutics is still limited. The limitations of peptide-based 
drugs can be attributed to multiple factors, among which 
instability remains a major hurdle.2 Peptides are highly 
susceptible to enzymatic hydrolysis by proteases in the body, 
including those found in the plasma, gastrointestinal tract, 
liver, and immune cells. This often results in a very short half-
life, severely limiting their oral bioavailability and overall 
therapeutic efficacy.3–5 In addition to instability, challenges 
such as potential toxicity, high manufacturing costs, and 
reliance on intravenous administration further hinder their 
broader clinical translation.1 To improve their stability, many 
modification strategies have been proposed: D-form or 
unnatural amino acid residues, N-methylation or forming 
cyclic peptides, and conjugating with macromolecular carriers 
like proteins, lipids, and polymers.6–8

Considering the importance of the blood stability of 
peptides in their clinical application, how to measure/predict 
this property becomes an appealing issue.9 Traditionally, 
experimental methods such as blood stability and enzyme 
degradation tests have been universal methods. These 

methods allow for more accurate identification and 
assessment of the blood stability of peptides in different 
experimental settings. However, they necessitate high costs 
and long time, which cannot satisfy the recommendation for 
high-throughput screening or large-scale study.10 To address 
such a problem, people turn to computational methods, which 
have attracted much attention in other fields. Take ProtParam 
as an example, this technique explores half-life and N-terminal 
residues based on the N-end rule,11–14, and combines with the 
experimental statistics-based rule15 to measure the peptide 
stability. Additionally, a multi-variable regression model is also 
implemented to predict the half-life of peptides in blood.16 
With the advancement of deep learning in peptide 
development, Mathur et. al 17 predict this property of peptides 
by using an SVM model that was trained on a database 
consisting of the half-life of 261 peptides in mammalian blood. 

Nevertheless, peptide blood stability prediction still faces 
essential challenges despite related developments in the past 
decades. For example, in the blood stability test, the SUPR 
peptide showed a very different half-life when facing different 
experimental conditions: this peptide is susceptible to 
hydrolysis in mouse plasma, whereas more than 50% of the 
peptide remains unhydrolyzed in human plasma within 24 
hours. However, such peptide blood stability differences 
usually be neglected due to the individual and fragmented 
data availability, which may lead to the model’s 
misclassifications. Additionally, many methods prefer to adopt 
relatively simple low-dimensional representation to illustrate 
the peptide feature, which usually neglects their conformation 
that is vital for distinguishing the stability difference.18,19 
Actually, linear and cyclic peptides share the same amino acid 
sequences but have entirely different blood stability.20 To 
address the problem above, comprehensive systematized 
experimental data on peptide blood stability is necessary, 
which can accelerate the development of related research. 
Therefore, in this study, we collect experimental data from 
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public databases and literature as much as possible to build a 
specific peptide blood stability database. Furthermore, we 
make a comprehensive peptide feature engineering including 
basic molecular descriptors, SMILES, molecular structure and 
complex 3D conformations to illustrate the intrinsic characters 
of peptides, thereby developing a novel model called 
PepMSND tailored for predicting peptide stability in various 
blood environments, see Fig. 1. The combination of our 
database and multimodal model offers an opportunity to 
identify potential peptide candidates with strong blood 
stability, improving the peptide drug development. To 
facilitate the accessibility of PepMSND for a broader audience, 
particularly researchers without a deep learning background, 
we integrate it into a server environment and developed an 
intuitive online web service platform: 
http://model.highslab.com/pepmsnd.

Experimental
Data collection

In this study, as shown in Fig. 1A(a), we collect peptide blood 
stability data samples manually from various sources such as 
published works, patents, and related databases. Based on the 
universal claim of Cavaco et.al that experimental half-life value 
is a good choice to demonstrate the stability of peptides,21we 
adopt peptide [Title/Abstract] AND half-life[Title/Abstract] as 
the keyword to search associated information the PubMed 
and find 1413 works published in the range 2015~2024 year. 
In addition, we search public databases like PEPlife22, 
DrugBank23 and THPdb24 to explore more data. To ensure the 
quality and quantity of data, we make the following data 
cleaning: 1. Removing peptides that lack or are missing 
stability information. 2. Removing peptides for which no 
explicit sequence information is given. 3. Excluding peptides 
for which experimental conditions are not explicitly given. 4. 
Ignoring peptides that are not experimented on in human or 
murine blood. 5. Excluding peptides with complex 
modifications (e.g., polyethylene glycol modifications). 
Because they are difficult to convert accurately to standard 
SMILES format. Finally, a total of 635 samples are collected.

Since the FASTA format does not allow for a perfect and 
accurate representation of unnatural and modified residues, 
SMILES was used in this study to characterize the dataset in 
one dimension. As shown in Figure 1A(b), for standard 
sequences, an automated conversion tool was developed to 
generate SMILES representations. However, for particularly 
complex or non-standard structures, manual drawing was 
performed using ChemDraw. All SMILES representations were 
subsequently standardized using RDKit.
Peptide structure generation

Traditionally, experimental observations like X-ray crystal 
diffraction, nuclear magnetic resonance spectroscopy, and 
electron microscopy are effective ways to investigate peptide 
structures.25 With the advancement of technology, structure 

prediction models like Alphafold26, RoseTTAFold27, ESM-Fold28 
and HighFold29 can also provide plausible structures with high 
accuracy and efficiency. As displayed in Fig. 1A(c), first, we 
search the PDB database, and for peptides that could not be 
retrieved, we adopt different strategies to predict their 
structure. For the natural linear peptides, AlphaFold2 is 
implemented.30 As for the natural cyclic peptide, we use our 
proposed model HighFold. As for the peptides with complex 
modification, the RDKit (version 2023.3.2) is used. Based on 
this toolkit, 5000 conformations are generated for the peptide 
input and are optimized by the UFF force field. Ultimately, only 
the conformations with the lowest energy are selected for 
further experiments(Detailed information can be found in the 
supporting information of section 7). Given the presence of 
both linear and cyclic peptide structures in these modified 
peptides, we employed RDKit’s ETKDGv3 algorithm31 for 3D 
structure generation. ETKDGv3 extends the applicability of 
previous ETKDG versions and demonstrates reliable 
performance across small molecules, linear peptides, and 
cyclic peptides.
The PepMSND model

Multimodal technology is a method that can efficiently 
integrate and process various data. It not only enhances the 
depth and breadth of data processing but also significantly 
improves the accuracy and generality of the model.32 In this 
study, we apply this technology to make a comprehensive 
feature engineering that takes physicochemical properties, 
sequence information, molecular structure, and 3D 
conformation into consideration (Fig. 1B). Specifically, 1. 
molecular descriptors input as the 0D feature is processed by 
the Kolmogorov-Arnold Networks (KAN)33 to capture the 
physical and chemical properties of peptides; 2. SMILES input 
as the 1D feature is processed by the Transformer34 to absorb 
the sequence relationship; 3. molecular structure as the 2D 
feature is processed by Graph Attention Networks (GAT)35 to 
learn the atoms and bonds interaction; 4. Predicted 3D 
structure as the 3D feature is processed by SE(3)-
Transformer36 to provide additional information. 
Subsequently, a series of learnable weights is employed to 
integrate these features, generating a joint feature vector. This 
vector is then fed into a shared layer for further dimensionality 
reduction. Notably, within this process, we explicitly encode 
the experimental conditions—including testing species and in 
vivo/in vitro environment—using a two-dimensional binary 
vector, which is then concatenated with the output of the 
main representation layers immediately before the final 
prediction layer. For example, [1, 0] denotes an in vitro 
measurement in human blood, while [0, 0] denotes an in vivo 
measurement in human blood. This design ensures that critical 
contextual information is preserved with high 
representational weight and not diluted during earlier stages 
of representation learning. By incorporating these features 
near the output layer, the model can directly utilize them in its 
decision-making process. Further details regarding this 
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Fig. 1 The workflow of our database and PepMSND model. (A) The illustration of the database. (B) The architecture of the Pep-
MSND model. This model includes four modules: the SE(3)-transformer for the 3D peptide structure feature, the GAT model for 
the 2D peptide molecular structure, the Transformer for 1D peptide SMILES, and the KAN model for 0D peptide physicochemical 
properties.
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encoding scheme and its implementation are provided in the 
following sections.
KAN model

 In this study, we incorporate the Kolmogorov-Arnold 
Network (KAN), a recently proposed alternative to traditional 
Multi-Layer Perceptrons (MLPs) that has shown promising 
performance in modeling complex nonlinear relationships 
while maintaining parameter efficiency. Unlike conventional 
neural networks that use fixed activation functions on 
neurons, KAN replaces linear weights with learnable univariate 
functions parametrized via splines, enabling greater flexibility 
and adaptability in function approximation.

Recent studies have demonstrated KAN’s superior 
performance across various domains. For example, Vaca-
Rubio et al.37 applied KAN to satellite traffic forecasting tasks 
and achieved higher accuracy than traditional MLPs. 
Abdulkadir et al.38 utilized a quasi-Newton optimized KAN to 
predict wind power output and observed substantial error 
reduction. In the field of genomics, Cherednichenko and 
Poptsova39 successfully integrated Linear KAN (LKAN) and 
Convolutional KAN (CKAN) layers into DNA sequence 
classification networks, outperforming traditional fully 
connected and CNN architectures on multiple benchmark 
datasets.

In this work, we apply the KAN model to learn 
representations of peptide physicochemical properties 
encoded by molecular descriptors. The use of KAN facilitates 
flexible functional mappings, which are particularly important 
given the heterogeneous and nonlinear nature of such 
molecular features. Specifically, we use the RDKit (version 
2023.3.2) to calculate the associated property values and 
remove the descriptors including constant values to avoid 
information redundancy. Then, these selected descriptors are 
evaluated by a random forest model, and the top 140 
important features are retained as the input for the KAN 
model (Detailed information can be found in the supporting 
information of section 1). Additionally, we introduce two 
features: species and experimental environment. By utilizing 
one-hot encoding, these features are incorporated as 
additional 0D features into the set of molecular descriptors, 
thereby enriching the input information for the model. The 
function of this technology is as follows:

𝑓(𝑥) =
2𝑛+1

𝑞=1
𝛷𝑞 (

𝑛

𝑝=1
𝜙𝑞,𝑝 (𝑥𝑝))

Transformer Model

Compared to the SMILES representations of typical small-
molecule compounds commonly found in molecular property 
prediction datasets, peptide SMILES are not only significantly 
longer in sequence length but also more structurally and 
syntactically complex. Peptides often contain cyclic structures, 
disulfide bonds, and extensive stereochemical information, 
leading to richer and more intricate SMILES encodings. To 
effectively capture the intrinsic correlation with such a 
sequence, we adopt the Transformer. This model consists of 
three key layers: the embedding layer, attention layers and 
feed-forward neural network (FNN). In the embedding layer, a 
positional encoder is introduced for precisely fusing the 
position information of each character in its sequence into the 

corresponding embedding vector. The function of this 
technology is as follows: 

PE(pos,2i) = sin 𝑝𝑜𝑠/100002𝑖/𝑑𝑚𝑜𝑑𝑒𝑙

𝑃𝐸(pos,2i+1) = cos 𝑝𝑜𝑠/100002𝑖/𝑑𝑚𝑜𝑑𝑒𝑙

Where pos is position, i is Embedding vector dimension and 
dmodel is model dimension.

The attention mechanism is the core of Transformer, it 
can focus on the significant information among a vast amount 
of data and mitigate the impact of redundant information. Its 
calculation is shown in the following:

attention(Q, K, V) =  softmax
𝑄𝐾𝑇

𝑑𝑘
V

Where Q is the query, K is the key, and V is the value, all are 
calculated based on inputted sequences.
GAT Model

Graph Attention Networks (GATs) are neural networks 
specifically designed to handle graph data. During the 
message-passing process. GATs leverage the attention 
mechanism to dynamically learn the importance of neighbor 
nodes for each node. This allows the network to pay attention 
to the most relevant information while ignoring less important 
or redundant information. In our task, the atoms are 
represented by nodes, and bonds are represented by edges. 
With the implementation of GAT, the 2D feature can be 
absorbed. With its inherent ability to integrate graph structure 
information, GAT can comprehensively and deeply analyze the 
interrelationships and patterns among the atoms in the 
polypeptide. This feature enables us to extract meaningful 
features that provide strong support for subsequent 
classification tasks. Its calculation is shown below:

eij =a(Whi, Whj)

αij=softmaxj(eij)= 
exp(eij)

∑k∈𝑁𝑖
exp(eik)

Where W is a weight matrix. Whi and Whj are the feature 
vectors of nodes i and j after linear translation.𝑁𝑖 is the 
neighbourhood set of node i, αij is the attention coefficient 
normalized by the softmax function.

SE(3)-Transformer Model
The SE(3)-Transformer is a self-attention module variant for 
3D point clouds and graphs. Under continuous 3D 
rototranslations, this model can remain equivariant. In the 
model, each atom is represented by its 3D coordinates (x, y, z). 
This model consists of three components. These are (1) edge-
wise attention weight αij that SE(3) on each edge is unchanged, 
(2) edge-wise SE(3)-equivariant value messages which 
propagate information between nodes, (3) a linear/attentive 
self-interaction layer. The Attention for each structural node is 
calculated as follows:
𝒇𝓵

𝒐𝒖𝒕,𝒊 = 𝑾𝓵𝓵
𝑽 𝒇𝓵

𝒊𝒏,𝒊
⏟

(𝟑) 𝒔𝒆𝒍𝒇 ― 𝒊𝒏𝒕𝒆𝒓𝒂𝒄𝒕𝒊𝒐𝒏

+ ∑
𝒌 ≥ 𝟎

∑
𝒋 ∈ 𝑵𝒊 ∖ {𝒊}

𝜶𝒊𝒋
⏟

(𝟏) 𝒂𝒕𝒕𝒆𝒏𝒕𝒊𝒐𝒏

𝑾𝓵𝒌
𝑽 (𝒙𝒋 ― 𝒙𝒊)𝒇(𝒌)

𝒊𝒏,𝒋
⏟

(𝟐) 𝒗𝒂𝒍𝒖𝒆 𝒎𝒆𝒔𝒔𝒂𝒈𝒆

Where 𝑊𝓁𝓁
𝑉 𝑓𝓁

𝑖𝑛,𝑖is the self-interaction term, showing the result 
of the input feature𝑓𝓁

𝑖𝑛,𝑖 of node i after undergoing a linear 
transformation. αij is the attention weight, representing the 
degree to which node i pays attention to or attends to its 
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neighboring node j. 𝑊𝓁𝑘
𝑉 (𝑥𝑗 ― 𝑥𝑖)𝑓(𝑘)

𝑖𝑛,𝑗 is the value message 
term, including the message sent from node j to node i. This 
includes the positional difference between nodes (xj−xi) and 
the input feature 𝑓(𝑘)

𝑖𝑛,𝑗 of node j.
It should be noted that a simplified version of the SE(3)-

Transformer model that contains equilateral layers and 3D 
coordinates is adopted in our study to deal with the peptide 
structure.
Baseline models

A comprehensive evaluation of PepMSND is conducted using a 
diverse set of baseline models that are commonly applied in 
both peptide-specific and general molecular property 
prediction tasks. These baselines include traditional machine 
learning methods such as Support Vector Machine (SVM), 
Random Forest (RF), and K-Nearest Neighbors (KNN), all of 
which rely on 0D physicochemical descriptors as input. To 
enable a systematic comparison across different molecular 
representation paradigms, we also incorporate deep learning 
models: RNN for 1D SMILES sequences, GIN for 2D molecular 
graph representations, and KAN for 0D descriptors. These 
models are widely used in studies on cyclic peptide membrane 
permeability 40and peptide toxicity prediction.41 
Support Vector Machines (SVMs)

SVM42 is a powerful and widely utilized machine learning 
model for classification and regression tasks. In the 
classification tasks, its target is to determine an optimal 
hyperplane that separates data points belonging to different 
classes in the feature space. To achieve this goal, SVM relies 
on specific training samples, known as support vectors, which 
are the points nearest to the decision boundary.
Random Forest（RF）

RF43 is a prominent ensemble learning method for tasks such 
as classification, regression, and feature selection. It achieves 
prediction accuracy and robustness by constructing multiple 
decision tree models and aggregating their prediction results. 
In this model, each decision tree is independently generated 
based on a random subset of the training data, and 
randomness is considered when selecting the features for 
splitting. This effectively reduces the risk of overfitting.
Extreme Gradient Boosting (XGBoost)

XGBoost44 is a machine learning algorithm based on the 
Gradient Boosting framework, capable of efficiently handling 
various machine learning tasks such as regression, 
classification and ranking. Its goal is to achieve efficient, 
flexible, and portable distributed gradient boosting.
K-Nearest Neighbors(KNNs)

KNN45 is generally implemented in the data mining and image 
classification tasks. This model classifies data points by 
majority voting based on the nearest neighbors in the feature 
space.
Graph Isomorphism Network（GIN）

GIN46 is an efficient graph neural network model processing 
graph-structured data. By combining a flexible neighbor 
information aggregation mechanism with multi-layer 
perceptrons, GIN can not only accurately capture the complex 

relationships between nodes but also progressively construct 
comprehensive local and global structural representations as 
the network depth increases. Especially when dealing with 
heterogeneous graphs containing multiple types of nodes and 
edges, GIN leverages a specific message-passing mechanism 
and type-aware aggregation functions to effectively integrate 
different node information. This significantly enhances the 
model's generality.
Evaluation Metrics

In this study, we adopt several metrics: Accuracy (ACC), 
Precision(Pre), F1 score(F1_Score), Recall, Area Under the 
Curve(AUC) and Matthews correlation coefficient(MCC) to 
evaluate the performance of models in predicting the blood 
stability of peptides:

ACC = 
TP+TN

TP+TN+FP+FN

Pre = 
TP

TP+FP

Recall = 
TP

TP+FN

F1 = 
2TP

2TP+FP+FN

MCC =
TP × TN ― FP × FN

(TP + FP) (TP + FN) (TN + FP) (TN + FN)

t-distributed Stochastic Neighbor Embedding (t-SNE)

t-SNE (t-distributed Stochastic Neighbor Embedding) is an 
efficient nonlinear dimensionality reduction algorithm 
designed to map high-dimensional data points to a two-
dimensional or three-dimensional space while preserving the 
similarities or differences between data points as much as 
possible.

Results and discussion
Database

In our database, there are a total of 635 peptide entries, 
among which the number of cyclic peptides is 107, and the 
number of linear peptides is 528 (Fig. 2C). Among cyclic 
peptides, many of them are cyclized by disulfide bonds. To be 
more stable, most peptides have been modified in different 
ways, including D-residue replacement or introduction of N-
terminal capping. In addition, more complex modifications 
such as N-methylation and reductive amination of amide 
bonds can also be found in this dataset. Fig. 2A displays that 
the lengths of most peptides range from 6 to 50 amino acids, 
accounting for 73% of the total dataset. As shown in Fig. 2D, in 
this dataset, the number of peptides evaluated in in vivo 
human blood is 115, while the number evaluated in in vitro 
human blood is 222. Additionally, the number of peptides 
tested in in vivo mouse blood is 217, and the number 
evaluated in in vitro mouse blood is 81, showing the diversity 
of our data. To more clearly illustrate the peptide blood 
stability distribution, we divide peptides into four categories: 
unstable, stable, highly stable, and non-degradable. 
Specifically, the stability of peptides can be classified according 
to the following criteria: a peptide is considered unstable if the 
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proportion of the original peptide in the blood drops to less 
than 50% after 1 hour; if at least 50% of the original peptide 
remains unhydrolyzed from 1 to 6 hours, the peptide is 

classified as a stable peptide; if the proportion remains above 
50% from 6 to 12 hours, it is regarded as highly stable; and if 
the original peptide remains unhydrolyzed for more than 12 

Fig. 2 (A) Overview of the peptide database. (B) Distribution of peptide stabilities in blood. (C) Structural classification of peptides. (D) The 
number of peptides across different blood environments. (E) Low-dimensional embedding of peptides colored by sequence length. (F) Low-
dimensional embedding of peptides colored by the presence of chemical modifications. (G) Partial display of the database content.

hours, it is classified as a non-degradable peptide. As shown in 
Fig. 2B, the majority of peptides (approximately 57% of the 
dataset) belong to the unstable class. As for the stable 
peptides, they are mostly either cyclic in structure or feature 
certain modifications along the peptide chain, such as the 
substitution of non-natural residues, which contribute to 
enhancing their stability. To provide a richer information 
context, we adopted two-dimensional t-SNE projections of 
peptide molecules based on Morgan fingerprints, with color 
coding according to peptide chain length and modification 
status. These visualizations aim to explore the distribution 
characteristics of peptide molecules in chemical space.

In Fig. 2E, the distribution of peptides shows a clear trend 
of length-based clustering: peptides of similar lengths tend to 
aggregate in similar regions of the t-SNE space, indicating that 
peptide chain length has a significant impact on the structural 
features captured by Morgan fingerprints. This phenomenon 
suggests that even without any supervised model learning, the 
chemical structure information of peptides partially exhibits 
regularities related to sequence length.

Fig. 2F illustrates the influence of modification status on 
structural distribution. It can be observed that unmodified 
peptides typically form relatively compact clusters, whereas 
modified peptides are more often distributed across different 
regions or embedded within clusters of unmodified peptides. 
This distribution discrepancy likely reflects the significant 
alterations that chemical modifications impose on the 
structural characteristics of peptide molecules, thereby 
affecting their similarity expression in fingerprint space.

The above visualization results are based on the original 
Morgan fingerprint representation, without the use of deep 
learning models or supervised embedding extraction. 

Therefore, these observations directly reflect the fundamental 
chemical structure features of peptide molecules.
Model performance comparison

We use a dataset comprising 635 peptide entries from our 
database and categorize them into two groups according to 
their stability in blood: those retaining more than 50% of their 
original structure after 1 hour are classified as stable peptides, 
while those that do not meet this criterion are designated as 
unstable peptides. To develop and evaluate predictive models, 
the dataset is partitioned into training and testing sets at a 
ratio of 9:1. Additionally, we employ 10-fold cross-validation 
on the training set to mitigate potential biases and ensure the 
robustness of our models.

Based on this dataset, we develop a novel model called 
PepMSND to predict blood stability. To comprehensively 
evaluate the performance of this model, we compare it to 
several different models(see Methods and supporting 
information of section 2). In this comparison, all models are 
trained on the same datasets and evaluated by the 10-fold 
cross-validation. All results are average values from 10-fold 
cross-validation. Table 1 demonstrates that PepMSND exhibits 
excellent performance in these metrics, showing 0.867, 0.849, 
0.836, 0.841, 0.912, 0.726 in the Accuracy(ACC), 
Precision(Pre), Recall, F1 Score(F1_Score), Area Under the 
Curve (AUC), and Matthews Correlation Coefficient(MCC), 
respectively. Compared to other models, PepMSND 
demonstrates superiority in all metrics. In addition to AUC-
ROC, we assessed PepMSND using AUC-PR, obtaining a score 
of 0.899±0.041. In addition, we observe that the traditional 
descriptor-based models often perform better than the graph-
based models.  These results suggest that physicochemical 
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Table 1. Performances of baseline models based on different peptide representation strategies (0D: physicochemical descriptors; 1D: SMILES sequences; 2D: molecular graphs) and 
the proposed multimodal model, evaluated using various metrics on the test set. All results are average values from 10-fold cross-validation.

Model ACC Pre Recall F1_Score AUC-ROC MCC

RF(0D) 0.784±0.043 0.778±0.061 0.690±0.113 0.726±0.074 0.863±0.054 0.556±0.087

SVM(RBF) (0D) 0.763±0.056 0.788±0.098 0.615±0.116 0.682±0.086 0.836±0.036 0.516±0.112

XGBoost(0D) 0.800±0.047 0.780±0.045 0.736±0.108 0.753±0.071 0.877±0.052 0.587±0.095

KNN(0D) 0.731±0.058 0.721±0.095 0.599±0.104 0.652±0.087 0.799±0.057 0.444±0.124

GIN(2D) 0.777±0.031 0.7850±0.064 0.661±0.088 0.712±0.048 0.786±0.033 0.537±0.059

KAN(0D) 0.823±0.057 0.845±0.056 0.722±0.124 0.771±0.086 0.872±0.057 0.635±0.109

RNN(1D) 0.736±0.060 0.739±0.102 0.6400±0.237 0.639±0.199 0.772±0.085 0.456±0.146

PeptideCLM(1D) 0.759±0.053 0.762±0.080 0.637±0.143 0.682±0.101 0.800±0.064 0.500±0.104

PepMSND 0.867±0.043 0.849±0.071 0.836±0.063 0.841±0.053 0.912±0.037 0.726±0.086

Bold values represent the best.

Fig. 3 The predictive performance of PepMSND for different sequences.

properties provide an informative context that can improve 
performance on this task, and more training samples are 
required for the graph-based models to capture associated 
information. In Fig. 3, sections A1 to A4 demonstrate the 
performance of the model across various peptide chain 
structures. Whether on natural peptide chains or on more 
complex linear or cyclic peptides, the model can maintain 
outstanding performance. This not only validates the broad 
applicability of this model but also highlights its stability and 
accuracy in handling peptide molecules with different 

chemical properties and structural complexities. Furthermore, 
Fig. 3B shows the model's robust discriminative ability. 
Specifically, the two peptide chains presented in Fig. 3B1 and 
3B2 exhibit distinct differences in terms of their three-
dimensional structures and stabilities, despite sharing 
completely the same amino acid sequences. By integrating 
input information from various modules, the model precisely 
captures the subtle feature differences between them and 
achieves accurate discrimination. Similarly, Fig. 3B3 and 3B4 
exhibit only minor differences in amino acid configuration at 
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the sequence level, yet the PepMSND model can realize this 
difference and make correct judgments.
The effect of different blood environments on model performance

We are also interested in the performance of our model in 
different experimental blood environments. Based on 
different species and experimental environments, we divide 
our test dataset into four classes. In most cases, PepMSND 
demonstrates satisfactory ability in predicting the stability of 
peptides. Take the prediction in the in vivo human blood 
condition as an example, the PepMSND achieves 0.919, 0.894, 
0.882, 0.867, 0.905, 0.827 in the ACC, Pre, Recall, F1_score, 
AUC and MCC, which display the great power of this model to 
understand the peptide in this environment. The stable model 
performance indicates that our model delivers high accuracy 
with great generality. But we also notice that the change in the 
experimental environments also affects the model. The ACC 
gaps between Human/In Vivo and Human/In Vitro can reach 
9.19%. However, such a phenomenon is not investigated in the 
experiments with Mouse/In Vivo and Mouse/In Vitro. 
Additionally, the species is also one factor affecting the 
model’s ability. Compared to the ACC of Mouse/In Vitro 
environment, the ACC of Human/In Vitro is lower.

A prevalent issue in previous research practices is the 
frequent oversight by many researchers of the potential 
impact of species differences and experimental conditions on 
model predictive performance. While most peptides exhibit 
similar stability across different species and in both in vivo and 
in vitro blood stability tests, it cannot be overlooked that 
certain peptides demonstrate significant variations in blood 
stability under specific species and experimental conditions. 

This discrepancy often leads to the erroneous neglect of 
potentially promising peptides. Therefore, during the 
construction of the PepMSND model, we incorporated both as 
important features into the model and assigned them 
significant weights. To demonstrate the importance of these 
two pieces of information, we explore the model's 
performance when removing them. The results are displayed 
in Fig. 4. After the removal of these two conditions, significant 
drops appear in all evaluation indicators.  The decrease in ACC, 
Recall, F1_Score, AUC, and MCC is 2.19%, 5.76%, 3.54%, 
2.38%, and 4.32%, respectively, indicating that information 
about species and experimental conditions is beneficial to 
model performance.
The effect of peptide length on model performance

We are also interested in the influence of peptide length on 
the model performance. Therefore, in this section, we make a

Fig. 4 Comparison of model performance before and after removing 
species and experimental environment information.

Table2. Performances of different species and experimental environments with different metrics on the test set.

ACC Pre Recall F1_Score AUC MCC

Human/In Vivo 0.919 0.894 0.882 0.867 0.905 0.827

Human/In Vitro 0.827 0.858 0.783 0.811 0.867 0.648

Mouse/ In Vivo 0.888 0.835 0.863 0.846 0.930 0.757

Mouse/ In Vitro 0.894 0.875 0.936 0.901 0.946 0.797

PepMSND 0.867 0.849 0.836 0.841 0.912 0.726

Bold values represent the optimal results.

Table3. Performances of different lengths with different metrics on the test set.

ACC Pre Recall F1_Score AUC MCC

5~25 0.818 0.812 0.808 0.806 0.865 0.638

26~40 0.935 0.930 0.860 0.880 0.970 0.845

5~40 0.857 0.838 0.831 0.833 0.905 0.706

PepMSND 0.867 0.849 0.836 0.841 0.912 0.726

Bold values represent the optimal results.

deep analysis of the model performance in peptides with 
different lengths. As shown in Table 3, the PepMSND model 
demonstrates its generality in these different subsets, 

achieving all ACC exceeding 0.800. Especially in predicting the 
stability of peptides with lengths of 26~40, the ACC of our 
model can reach 0.935, demonstrating great predictive ability. 
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In other metrics, this model also gains satisfactory results: 
0.930 of Pre, 0.860 of Recall, 0.880 of F1_Score, 0.970 of AUC 
and 0.845 of MCC. This superior performance on peptides of 
length 26~40 may be partially attributed to their higher 
representation in the training dataset. However, such a trend 
could also be influenced by potential data leakage or sequence 
redundancy between training and test sets..
Ablation Experiment

In this study, we use different modules to focus on different 
peptide features. Here, we conducted an ablation study to 
explore the effect of these different modules. Under the same 
experimental setup, we implement several variants of the 
PepMSND model for predicting peptide stability. These include 
the following:
(1) PepMSND_w/o_GAT: only containing Transformer, KAN 
and SE(3)-Transformer,
(2) PepMSND_w/o_Transformer: only containing GAT, KAN 
and SE(3)-Transformer,
(3) PepMSND_w/o_SE(3)-Transformer: only containing 
Transformer, GAT and KAN,
(4) PepMSND_w/o_KAN: only containing Transformer, GAT 
and SE(3)-Transformer.
Fig. 5A shows the performance comparisons of PepMSND and 
its variants. No surprise, the lack of one module can lead to a 
decline in PepMSND's performance. Compared to the 
PepMSND_w/o_GAT, PepMSND_w/o_Transformer, 
PepMSND_w/o_SE(3)-Transformer, PepMSND_w/o_KAN, our 
model displays a deeper understanding of this task, achieving 
the F1-Score improvement of 1.70%, 1.52%, 2.10%, 11.72%, 
respectively. Such improvement can also be observed in the 
ACC metric, where our model reaches increases of 1.25%, 
1.10%, 1.72%, and 9.53%. Furthermore, we make a deep 
analysis to explore the effect of these modules on our model. 
As demonstrated in the figure, both the PepMSND_w/o_GAT 
and PepMSND_w/o_Transformer exhibit comparable 
performance in predicting the blood stability of peptides. This 
indicates that both the Transformers and GAT architectures 
play equally significant roles in our model. It should be noted 
that Transformer focuses on the sequence feature, which is 
rather different from the graph-based GAT. The former 
contributes to finding the correlation between tokens in a 
sequence, and the latter captures the explicit information 
about atoms and bonds. Namely, the text feature (1D feature) 
is as same as the graph feature (2D feature). We also observed 
that the PepMSND model without the SE(3)-Transformer 
module (PepMSND_w/o_SE(3)-Transformer) performs less 
effectively than the two previously mentioned models, with an 
achieved accuracy (ACC) of 0.850 and an F1 score of 0.820. This 
underscores the significance of the 3D structure of peptides in 
our model. When the KAN module is removed from our model, 
we observe a more significant performance decline across all 
metrics, with a decrease of more than 0.100. This decrease is 
most pronounced in the MCC metric, which drops from 0.726 
to 0.537. This suggests that the model without the KAN 
module has a worse ability to predict peptide blood stability. 
The inclusion of the KAN module appears to be crucial for the 

model's performance, likely due to its ability to capture 
important features and relationships involving different 
physicochemical properties. In other words, these peptide 
properties can assist the model in establishing a correlation 
between peptides and their blood stability. By incorporating 
these properties into the model, our model can better 
understand and predict how different peptides will behave in 
the blood, which is important for various applications such as 
drug design and peptide-based therapies. Fig. 5B shows that 
the absence of any one module not only reduces the 
confidence of our model but also leads to prediction errors. 
For instance, in Fig. 5B1, when the SE(3)-Transformer module 
is removed, it becomes difficult for this model to effectively 
distinguish linear and cyclic peptides based on low-
dimensional feature information. It may be attributed to the 
absence of spatial structural information.
Feature Visualization Analysis

To comprehensively evaluate the effectiveness of the 
PepMSND, we employ the t-SNE method for intuitive 
visualization analysis. Specifically, we first utilize t-SNE to 
visualize the embedding features before training. As shown in 
Fig. 6A, the pre-training data exhibits a disordered and random 
distribution in the feature space. Subsequently, after model 
training, we extract the embedding features from the last 
multi-source feature fusion module and use t-SNE to map 
them into a two-dimensional space for cluster analysis. As 
depicted in Fig. 6B, between positive and negative samples, a 
relatively clear boundary emerges after training. This indicates 
that the multimodal architecture of PepMSND successfully 
learns effective knowledge capable of distinguishing different 
samples.
The web server for PepMSND

To easily access to PepMSND model, we provide a user-
friendly web. This web server is free and open to all users. This 
website does acquire cookies and collect any personal 
information. It is compatible with most web browsers, 
including Microsoft Edge, Google Chrome, Apple Safari, and 
Mozilla Firefox on major operating systems such as Windows, 
macOS, and Linux.

Fig. 7A shows the homepage of the web, where users can click 
‘Services’ and ‘Database’ to access the functional interface and 
database. Fig. 7C shows the interactive interface for predicting the 
stability of peptides in blood. Users can provide a peptide chain 
containing only natural amino acids in the Input Sequence input 
box, and then fill in and choose the remaining boxes for providing 
experimental information and Binding sites for disulfide bonds. To 
further enhance the user experience, we have added ‘Check’ and 
‘Example’ buttons. In this way, users can not only quickly grasp the 
input requirements of the web page, but also intuitively judge the 
correctness of the input through the examples. Upon completion of 
the prediction, the web page will display the percentage of the 
input peptide chain accounted for by each amino acid in the peptide 
chain, the confidence level and the blood stability classification in 
the results section. In addition, we offer the option to download 
HighFold to predict the structure of the input peptide.
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Fig. 5 The results of the ablation experiment. (A) The results in metrics. (B) Representative examples of test datasets for the confidence of 
PepMSND in predicting blood stability of peptides with various feature combinations.

Page 10 of 14Digital Discovery

D
ig

ita
lD

is
co

ve
ry

A
cc

ep
te

d
M

an
us

cr
ip

t

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

9 
Ju

ly
 2

02
5.

 D
ow

nl
oa

de
d 

on
 8

/4
/2

02
5 

5:
50

:5
0 

A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
DOI: 10.1039/D5DD00118H

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5dd00118h


ARTICLE Journal Name

Please do not adjust margins

Please do not adjust margins

Please do not adjust margins

Please do not adjust margins

Fig. 6 Visualization of features. (A) t-SNE distribution of features before training. (B) t-SNE distribution of features after training.

Due to the limitations of the FASTA representation for 
peptides, many peptide sequences containing modifications 
cannot be directly represented by FASTA. Compared to FASTA, 
SMILES is more suitable for our work, especially when 
calculating the physicochemical properties of peptides using 
RDKit or providing input for graph neural networks. To assist 
more users in conveniently obtaining the SMILES according to 
corresponding peptide sequences, we have developed a 
FASTA to SMILES functional interface on our webpage(Fig. 7B). 
When inputting the peptide sequence in the designated input 
box and selecting the type of cyclization from the dropdown 

menu, the users can obtain corresponding SMILES. If users 
choose disulfide bond cyclization, they also need to specify the 
binding sites of the disulfide bonds in another input box to 
ensure accurate SMILES. Similar to the peptide blood stability 
prediction interface, we provide "Check" and "Example" 
buttons to help users verify their input and refer to the correct 
input format, thereby ensuring correct SMILES translation. 
Once the webpage completes the translation, the SMILES will 
be displayed in the results area for users to view and copy for 
their use. 

Fig. 7 PepMSND web server. (A) PepMSND's homepage. (B) The functional interface for converting FASTA into SMILES. (C)The functional 
interface for predicting the blood stability of polypeptides. (D) Presentation page of the database.
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Conclusions
In this study, we provide a comprehensive peptide blood 
stability database. This dataset has diverse blood experiments 
and peptides, comprising 635 samples. It represents the first 
open-source database that offers easy access to peptide 
stability in blood. Furthermore, we develop a multi-model 
model based on this dataset to predict peptide blood stability 
across various experimental settings. This model integrates 
multi-dimensional features, including 0D physicochemical 
property, 1D sequence, 2D molecular structure, and 3D 
structure, to capture the correlation between peptides and 
their blood stability. At the same time, for the convenience of 
researchers' use, we not only integrate the model into an 
online server but also design a fully functional web interface 
to provide free access and use to researchers.

To evaluate the ability of our model, we compare it to 
baseline models such alike GIN. In this performance 
comparison, our model exhibits an excellent ability to 
determine whether the peptide is stable in blood and achieves  
0.867, 0.849, 0.836, 0.841, 0.912, 0.726 in ACC, Pre, Recall, 
F1_Score, AUC, MCC, respectively. Additionally, our model 
shows improvements of 4.53% in ACC, 6.97% in F1_Score, 
4.02% in AUC, and 9.05% in MCC, when compared to the best 
baseline model. This benchmark experiment demonstrates 
our model’s superiority in predicting peptide blood stability. 

To further explore the effect of different features in our 
model, we make a series of ablation experiments. The results 
show that in this model, 1D sequence information and 2D 
structural information play equally important roles, while 3D 
structural information and 0D physicochemical property 
information play a more important role and can provide more 
useful information. However, although these variant models 
perform worse than our model, they still show superiority 
when compared to other baseline models such as SVM. The 
PepMSND model will accelerate the advancement of peptide 
drugs, enabling the screening of peptides with high blood 
stability at a lower cost in the early stages. It will also provide 
effective suggestions for peptide drug modification to 
researchers dedicated to designing stable and efficient 
peptide therapeutics.

 It is important to note that the peptide blood stability 
dataset currently suffers from limitations in both quality and 
quantity, which pose substantial challenges to the real-world 
applicability of our model. In particular, our peptide stability 
database requires ongoing expansion and refinement. To 
address the issue of data scarcity, transfer learning emerges as 
a promising strategy, given its demonstrated effectiveness 
across various domains. Moreover, accurately obtaining high-
resolution peptide structures remains difficult due to current 
limitations in structure prediction tools. Although we adopted 
a randomized 9:1 data split combined with 10-fold cross-
validation to ensure robust evaluation, we acknowledge that 
this approach has inherent shortcomings when applied to 
peptide datasets. Specifically, the presence of highly similar or 
nearly identical sequences in both training and test sets can 

lead to overly optimistic estimates of generalization 
performance. To better evaluate the model’s capability on 
truly novel peptides, future work will investigate more 
rigorous data partitioning strategies, such as scaffold-based or 
similarity-aware splitting methods (e.g., clustering or 
Tanimoto similarity thresholds), which are better suited to 
mitigate data leakage and enhance the assessment of real-
world performance.
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