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Abstract

Quantum computational chemistry holds great promise for simulating molecular systems more

efficiently than classical methods by leveraging quantum bits to represent molecular wavefunctions.

However, current implementations face significant limitations in accuracy due to hardware noise

and algorithmic constraints. To overcome these challenges, we introduce a hybrid framework that

learns molecular wavefunction using a combination of an efficient quantum circuit and a neural

network. Numerical benchmarking on molecular systems shows that our hybrid quantum-neural

wavefunction approach achieves near-chemical accuracy, comparable to advanced quantum and

classical techniques. Based on the isomerization reaction of cyclobutadiene, a challenging multi-

reference model, our approach is further validated on a superconducting quantum computer with

high accuracy and significant resilience to noise.

I. INTRODUCTION11

Quantum computers leverage quantum effects to store and manipulate data, making them12

particularly suitable for the simulation of microscopic quantum systems [1–3]. The Varia-13

tional Quantum Eigensolver (VQE) algorithm is the most widely adopted framework for14

quantum computational chemistry [4–9]. The key component of the VQE algorithm is the15

parameterized quantum circuit, which learns the quantum state of the system under study16

variationally [10]. The challenge of VQE lies in striking a delicate balance between circuit17

depth and accuracy [11–14]. While deeper circuits tend to improve accuracy, they also make18

the algorithm more sensitive to noise and and can suffer from barren plateaus [15]. In con-19

trast, shallow circuits may not capture the system’s complexity adequately. Parallel to the20

evolution of VQE, Neural Networks (NNs) have shown remarkable success in representing21

quantum wavefunctions of chemical systems [16]. Based on variational Monte Carlo, these22

NNs are trained to minimize the energy expectation, similar to the VQE approach. Efforts23

along this line include DeepWF [17], FermiNet [18], PauliNet [19], QiankunNet [20], and24

so on [21–24]. Thanks to the expressive power of NNs, these methods demonstrate accu-25

racy comparable to Coupled Cluster with Single and Double excitations (CCSD) but with26

significantly lower computational scaling, typically O(N4).27

∗ liwt31@gmail.com
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The success in these new wavefunction representations has inspired the development28

of hybrid quantum-neural wavefunctions, where quantum circuits and neural networks are29

jointly trained to represent the wavefunction of quantum systems [25]. In this hybrid ap-30

proach, quantum circuits are responsible for learning the quantum phase structure of the31

target state, which is a difficult task for neural networks alone [26], and the neural network32

correctly describes the amplitude. The combination of quantum computation and varia-33

tional Monte Carlo has also demonstrated considerable potential in simulating quantum34

systems [27], and the inclusion of neural networks significantly enhances the expressiveness35

of trial wave functions, thereby leading to more accurate and scalable simulations. The in-36

tersection between quantum computing and machine learning, known as quantum machine37

learning, is developing at a rapid pace [28–31]. Chemistry applications include the construc-38

tion of shallow depth ansatz, energy eigenstate filtration, material phase prediction, neural39

network pertaining, and so on [32–38].40

In this work, we propose a quantum machine learning framework for efficient representa-41

tion of molecular wavefunction and accurate computation of molecular energies. The method42

employs the linear-depth paired Unitary Coupled-Cluster (UCC) with Double excitations43

(pUCCD) circuit to learn molecular wavefunction in the seniority-zero subspace [39–43], and44

a neural network to correctly account for the contributions from unpaired configurations.45

We propose an efficient algorithm to compute the expectations of physical observables for46

the hybrid quantum-neural wavefunction, which avoids calculating the overlap between the47

quantum circuit state and classical state, or the costly process of quantum state tomography.48

This represents an enhancement of scalability over the previously proposed quantum-classical49

hybrid quantum Monte-Carlo method [44]. We name our method as pUNN, which stands50

for paired Unitary coupled-cluster with Neural Networks. pUNN retains the low qubit count51

(N qubits) and shallow circuit depth of pUCCD, while achieving accuracy comparable to52

the most precise quantum and classical computational chemistry methods, such as UCCSD53

(UCC with single and double excitations) and CCSD(T) (CCSD with perturbative triple54

excitations). We demonstrate the efficacy of pUNN through numerical simulations of vari-55

ous diatomic and polyatomic molecular systems, such as N2 and CH4. To test pUNN in a56

real quantum computing scenario, we compute the reaction barrier for the isomerization of57

cyclobutadiene on a programmable superconducting quantum computer. The results demon-58

strate that the pUNN is highly accurate and noise resilient for a real quantum computing59
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task.60

II. THEORY AND METHODOLOGY61

FIG. 1. A Schematic diagram for the pUNN framework. The pUCCD circuit in the grey

box is the only component executed on a real quantum computer. “GS” denotes Givens-Swap

gate. Meanwhile, the perturbation circuit and the entanglement circuit are processed classically.

Together, the quantum circuit and the neural network serves as an ansatz and are trained jointly

to represent the molecular wavefunction.

In this section, we present our pUNN algorithm and focus on our contribution. General62

backgrounds, such as the electronic structure problem and the UCC types of ansatz for63

quantum computational chemistry are briefly overviewed in the Appendix A. We start by64

employing the pUCCD ansatz to represent molecular wavefunction, which is encoded in the65

parameterized quantum circuit Û(θ⃗). In the computational basis, the pUCCD circuit state66

can be expressed as67

|ψ⟩ =
∑
k

ak |k⟩ , (1)

where |k⟩ represents the occupation of a pair of electrons in the original N -qubit Hilbert68

space. For ground state problems, the coefficients ak can be assumed to be real numbers.69

To correctly describe the configurations outside of the seniority-zero subspace, we add N70
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ancilla qubits to the circuit and expand the Hilbert space from N qubits to 2N qubits. In71

the expanded 2N -qubit space, the equivalent state is72

|Φ⟩ =
∑
k

ak |k⟩ ⊗ |k⟩ , (2)

with the two |k⟩ terms now representing the occupation of the alpha and beta spin sectors,73

respectively. We note that these N ancilla qubits can be treated classically, which will be74

explained later.75

In the context of quantum circuits, the expanded state |Φ⟩ is constructed from |ψ⟩ using76

the ancilla qubits and an entanglement circuit Ê:77

|Φ⟩ = Ê (|ψ⟩ ⊗ |0⟩) . (3)

The entanglement circuit Ê creates the necessary correlations between the original qubits78

and the ancilla qubits. Ê can be decomposed into N parallel CNOT gates:79

Ê =
N∏
i

CNOTi,i+N , (4)

where each CNOT gate entangles the i-th original qubit with the corresponding i-th ancilla80

qubit.81

Although |Φ⟩ has 2N qubits while |ψ⟩ has N qubits, from a quantum chemistry per-82

spective, they represent the same state in the seniority-zero space and therefore have the83

same energy. We then apply the neural network, acting as an quantum operator N̂ , on84

the quantum state. N̂ is a non-unitary post-processing operator [25] defined in the ex-85

panded Hilbert space. After applying N̂ , the overall state becomes N̂Ê (|ψ⟩ ⊗ |0⟩). The86

method is inspired by variational quantum-neural hybrid eigensolver (VQNHE) and it pro-87

vides exponential acceleration for nonunitary postprocessing in VQE than naive transformed88

Hamiltonian approach [45–47]. The neural network operator N̂ modulates the state |Φ⟩ as89

follows:90

N̂ =
∑
kj

bkj |k⟩ |j⟩ ⟨j| ⟨k| , (5)

where bkj is a real tensor represented by a continuous neural network B(k, j), such that bkj =91

B(k, j). To drive N̂Ê (|ψ⟩ ⊗ |0⟩) out of the seniority-zero subspace, we apply a perturbation92

circuit P̂ to the ancilla qubits at the beginning, diverting the state of the ancilla qubits93

5
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|ϕ⟩ = P̂ |0⟩ from |0⟩94

|ϕ⟩ = P̂ |0⟩ =
|0⟩+∑

j ̸=0 ϵj |j⟩
1 +

∑
j ̸=0 ϵ

2
j

, (6)

where ϵj are small coefficients satisfying
∑

j ̸=0 ϵ
2
j ≪ 1. As a result, our algorithm is expected95

to be resilient to noise [48], making it well-suited for implementation on real quantum devices.96

The conservation of the particle number is enforced by the neural network introduced in the97

following. The values of ϵj and the exact form of P̂ are flexible. The only key requirement98

for P̂ is that it should have a low circuit depth, which allows efficient simulation of P̂ |0⟩ on99

classical computers. To this end, we adopt a perturbation circuit with single qubit rotation100

gates Ry for each qubit and the rotation angle is set to 0.2. P̂ produces real coefficients, a101

desired property for the ground state of the molecular Hamiltonian.102

After describing the quantum circuit part, we turn to the neural network structure used103

for B(k, j). B(k, j) accepts the two bitstring k and j as input and outputs the coefficients104

bkj. The first component of the neural network is embedding the bitstring |k⟩ ⊗ |j⟩ into a105

vector. We employ a binary representation, where |k⟩ ⊗ |j⟩ is converted to a vector of size106

2N , with each element being either -1 or 1. The vector x0(k, j) is then passed through a107

neural network consisting of L dense layers and ReLU activation functions108

xi+1(k, j) = ReLU [Wixi(k, j) + ci] . (7)

In the hidden layers, the number of neurons is set to 2KN where K is a tunable integer109

that controls the size of the neural network. In this work we set K = 2 unless otherwise110

specified. The number of layers L is set to N − 3, proportional to the size of the molecule.111

The number of parameters in the neural network scales as K2N3 considering both the width112

and depth of the neural network. The computational complexity is also O(K2N3) for each113

input bitstring.114

The final dense layer outputs the desired coefficient bkj, before multiplying with the115

particle number conservation mask m(k, j)116

bkj = m(k, j) [WLxL(k, j) + cL] . (8)

The mask m(k, j) is defined as117

m(k, j) =

1 if
∑

i ki = Nα and
∑

i ji = Nβ,

0 otherwise,
(9)

6
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where Nα/β is the number of spin up/down electrons. The mask eliminates configurations118

|k⟩ ⊗ |j⟩ that do not conserve the number of spin up and down electrons.119

To summarize, the overall wavefunction is given by120

|Ψ⟩ = N̂Ê
(
Û(θ⃗) |0⟩ ⊗ P̂ |0⟩

)
, (10)

which consists of four components: the pUCCD circuit Û(θ⃗), the perturbation circuit P̂ ,121

the entanglement circuit Ê and the neural network N̂ . The next challenge is to measure122

the expectation value of the physical observables such as the energy based on Eq. (10),123

which is highly nontrivial without resorting to quantum tomography or incurring exponential124

measurement overhead. Without an efficient measurement protocol, the pUNN approach125

could be rendered impractical. Besides, in quantum computational chemistry, the number126

of measurements required to estimate expectation values is a key indicator of efficiency for127

variational algorithms like pUNN. In fact, the ansatz represented by Eq. (10) is carefully128

designed in such a way that an efficient algorithm for computing expectation values is129

possible.130

Since |Ψ⟩ is not normalized, the energy expectation is131

⟨E⟩ = ⟨Ψ|Ĥ|Ψ⟩
⟨Ψ|Ψ⟩ . (11)

Here we outline the key points of the measurement protocol that enables the computation of132

both ⟨Ψ|Ĥ|Ψ⟩ and ⟨Ψ|Ψ⟩ using the measurement outcome of the quantum circuit Û(θ⃗) |0⟩133

and the output from the neural network. The full measurement protocol is provided in134

the Appendix B. For brevity, we assume there is only a single Pauli string in Ĥ, and the135

summation over many Pauli strings can be handled straightforwardly. We also note that136

the estimation of the norm ⟨Ψ|Ψ⟩ can be considered as a special case when Ĥ = Î.137

To perform the measurement, we transform the Hamiltonian Ĥ and the neural network138

N̂ with Ê139

⟨Ψ|Ĥ|Ψ⟩ = ⟨ψ ⊗ ϕ|
(
Ê†N̂ †Ê

)(
Ê†ĤÊ

)(
Ê†N̂Ê

)
|ψ ⊗ ϕ⟩ . (12)

Since Ê is a Clifford circuit, Ĥ ′ = Ê†ĤÊ is also a Pauli string. Additionally, since Ê is140

composed of CNOT gates, it reversibly maps one bitstring to another, rather than a linear141

combination of bitstrings. Specifically,142

Ê (|k⟩ ⊗ |j⟩) = |k⟩ ⊗ |k ⊕ j⟩ . (13)

7
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The transformed neural network N̂ ′ = Ê†N̂Ê is143

N̂ ′ =
∑
kj

bkj |k⟩ |k ⊕ j⟩ ⟨k ⊕ j| ⟨k| =
∑
kj

bk,k⊕j |k⟩ |j⟩ ⟨j| ⟨k| . (14)

N̂ ′ is thus formally the same as N̂ but with a permuted index for the coefficient b.144

After the transformation, the entanglement circuit Ê is removed from Eq. (12)145

⟨Ψ|Ĥ|Ψ⟩ = ⟨ψ ⊗ ϕ|N̂ ′†Ĥ ′N̂ ′|ψ ⊗ ϕ⟩ . (15)

Eq. (15) corresponds to the measurement of N̂ ′†Ĥ ′N̂ ′ on two unentangled circuits |ψ⟩ and146

|ϕ⟩. If N̂ ′ is absent or if N̂ ′ = Î, the measurement of Ĥ can be performed efficiently by147

measuring the two separate circuits |ψ⟩ and |ϕ⟩. In Appendix B, we show that, by carefully148

designing the measurement circuit, N̂ ′Ĥ ′N̂ ′ can also be measured by separate measurement149

of |ψ⟩ and |ϕ⟩, with a constant overhead. Therefore, the evaluation of ⟨Ψ|Ĥ|Ψ⟩ is cast into150

the separate measurement of |ψ⟩ and |ϕ⟩. Since |ϕ⟩ is designed to be a shallow circuit that151

can be efficiently simulated classically, the only circuit that needs to be executed on real152

quantum devices is the pUCCD circuit |ψ⟩. Nonetheless, the number of terms to measure in153

the Hamiltonian increases from N2 in the pUCCD circuit to N4 for more general electronic154

structure problems. Thus, in terms of measurement shots, the pUNN method is as efficient155

as other quantum computational methods such as UCCSD , but with significantly reduced156

circuit depth and higher accuracy. Compared with Entanglement Forging [49], which utilizes157

classical sampling to recover the entanglement between two sub-systems, our method encodes158

the entanglement between two sub-systems into Ĥ and N̂ and avoids excessive sampling.159

A schematic diagram of the pUNN framework is depicted in Fig. 1. In the whole algo-160

rithm, only the pUCCD circuit within the grey box in dashed lines is executed on quantum161

computers, which allows pUNN to maintain the N -qubit requirement for the computation162

instead of 2N . The perturbation circuit and entanglement circuit can be efficiently pro-163

cessed on classical computers. The measured bitstring of the composite circuit is fed into164

the neural network for B(k, j), which is then used to adjust the measurement outcome. The165

entire ansatz is then set up in a VQE workflow, where both the parameters in the quantum166

circuit and the neural network are trained to minimize the molecular energy. This process167

ultimately yields the ground state through the variational principle.168

In the noiseless simulation described in Sec.IIIA, we use the L-BFGS-B algorithm to169

optimize the parameters in the quantum circuit. For circuit optimization on real quantum170
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hardware, we employ the SOAP method [50]. For both the noiseless simulations and the171

experiments on quantum computers, the neural network is trained using the AdaMax opti-172

mizer [51], a variant of the widely adopted Adam optimizer. The optimizer begins with a173

learning rate schedule of α = 0.01, b1 = 0.8 and b2 = 0.99. The learning rate decays linearly174

to α = 0.001 between the 8000th and 32000th steps. This learning rate schedule helps ensure175

stable convergence by gradually decreasing the learning rate as the training progresses. For176

noiseless simulation, the maximum number of steps is set to 64000. A summary table for177

the hyper-parameters can be found in the Supplementary Information. For the noiseless178

simulation, we initialize the neural network with five different random seeds, and the lowest179

energy found across these seeds is reported. For quantum circuit manipulation, including180

both noiseless and noisy emulation as well as interfacing with real quantum hardware, we use181

the TensorCircuit framework [52]. General quantum computational chemistry tasks, includ-182

ing Hamiltonian construction, reference value calculation, and parameter optimization are183

handled by TenCirChem [53], a specialized package built on top of TensorCircuit designed184

for quantum computational chemistry. TenCirChem also relies on PySCF for evaluating the185

integrals and performing calculations based on classical computational chemistry [54].186

III. RESULTS187

A. Accuracy and Scalability188

We first compare the accuracy of pUNN with other quantum computational methods189

in Fig. 2. For this comparison, we perform noiseless numerical calculations on molecular190

systems corresponding to 8 spatial orbitals and 16 qubits. The basis set employed is STO-191

3G and the 1s orbitals are frozen. The exact geometries of the molecules are reported in192

the Supplementary Information. The full configuration interaction (FCI) energy for these193

molecules is computed as the reference energy. As shown in Fig. 2, the standard pUCCD194

approach improves over the HF method but consistently shows the highest error across all195

molecules. The results indicate that the neglect of configurations outside of the seniority-zero196

subspace limits the accuracy. The orbital optimization pUCCD (oo-pUCCD) method [42,197

55, 56] reduces the error to a modest extent for most molecules, except for N2 and CO, where198

the errors of pUCCD and oo-pUCCD are comparable. This demonstrates the limitation of199
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oo-pUCCD, as it still assumes electron paring. The UCCSD method, known for its high200

accuracy, performs well across the board. However, UCCSD requires 2N qubits for N201

molecular orbitals and has a very deep circuit, which is computationally expensive. The202

typical circuit depth of UCCSD for these molecules is approximately 1000. Our proposed203

pUNN method stands out as the most accurate approach for the majority of the molecules204

studied. In the meantime, pUNN uses only N qubits for N molecular orbitals, and its205

circuit depth is the same as the circuit depth of pUCCD. In contrast to UCCSD, the circuit206

depth of pUNN is approximately 20. pUNN frequently achieves or approaches the chemical207

accuracy threshold of 1.6 mHartree, as indicated by the shaded area on the graph. By208

comparing pUNN and pUCCD, we find that, the mean absolute error (MAE) decreases209

from 51.9 mHartree for pUCCD to 0.6 mHartree for pUNN. This corresponds to a reduction210

in error by two orders of magnitude. The MAE of pUNN is comparable to the MAE of211

UCCSD, which is 1.9 mHartree.212

BH3 NH3 CH4 NH+
4

N2 CO Average

Molecule

10−5

10−3

10−1

E
rr

or
(H

ar
tr

ee
)

HF pUCCD oo-pUCCD UCCSD pUNN

FIG. 2. Compare the accuracy of pUNN with other quantum computational chemistry methods.

The 1s orbitals are frozen and the reference energy is FCI. The shaded area indicates the chemical

accuracy.

In Fig. 3 we compare the error of pUNN with several classical computational methods.213

The doubly occupied configuration interaction (DOCI) method is the classical counterpart214

of the pUCCD method since it also assumes electron pairing. Based on the results in Fig. 2215

we can expect DOCI will perform poorly, which is confirmed by the data in Fig. 3. The216

second order Møller–Plesset perturbation theory (MP2) improves over DOCI, particularly217

for diatomic molecules. This suggests that including the configurations with singly occupied218

orbitals is crucial for accurately describing the molecular wavefunction. The coupled-cluster219
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methods, CCSD and its perturbative extension CCSD(T), are considered some of the most220

accurate techniques in quantum chemistry. Both CCSD and CCSD(T) demonstrate high ac-221

curacy, with CCSD(T) achieving chemical accuracy for most of the molecules studied. When222

comparing pUNN to these classical methods, we find that pUNN achieves accuracy compa-223

rable to that of CCSD(T), indicating that pUNN is a high-accuracy method for quantum224

chemistry calculations.225

BH3 NH3 CH4 NH+
4

N2 CO Average

Molecule

10−5

10−3

10−1

E
rr

or
(H

ar
tr

ee
)

HF DOCI MP2 CCSD CCSD(T) pUNN

FIG. 3. Compare the accuracy of pUNN with other classical computational chemistry methods.

The 1s orbitals are frozen and the reference energy is FCI. The shaded area indicates the chemical

accuracy.

We next investigate the factors that determine the accuracy of the pUNN method.226

Fig. 4(a) compares the accuracy of pUCCD and pUNN methods against the size of hy-227

drogen chain molecules (H +
5 , H6, H

+
7 , and H8) for two different bond lengths (d = 1.0 Å and228

d = 2.5 Å). The results clearly demonstrate that pUNN consistently outperforms standard229

pUCCD, achieving lower error across all molecule sizes and bond lengths. Notably, pUNN230

maintains high accuracy even as the molecule size increases especially for the longer bond231

length of 2.5 Å. When d= 1.0 Å, the errors of pUNN seem to fluctuate when the system232

size varies. However, the magnitude of the fluctuation, in the order of 10−4 Hartree, is233

well below the chemical accuracy threshold and thus insignificant. Fig. 4(b) showcases the234

impact of neural network size on the error of pUNN for various molecules. The x-axis repre-235

sents the neural network size K, and the number of hidden neurons is 2KN where N is the236

number of molecular orbitals. The atomic distance in H8 is d = 1.0 Å. As the network size237

increases from 2 to 8, there’s a clear trend of a logarithmic decreasing error for all molecules.238

Most molecules achieve chemical accuracy (indicated by the shaded area) with larger neural239
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networks, with NH3 and BH3 showing particularly significant improvements in accuracy as240

the network size grows. Although molecules studied here are still much smaller than those241

encountered in practical chemistry problems, the promising scaling shown in Fig. 4(a) sug-242

gests that pUNN has the potential to accurately learn the wavefunction of complex chemical243

systems.244

H+
5

H6 H+
7

H8

Molecule

10−5

10−4

10−3

10−2

10−1

E
rr

or
p

er
at

om
(H

ar
tr

ee
)

(a) Error vs. Size of Molecule

pUNN
d = 1.0 Å
pUNN
d = 2.5 Å
pUCCD
d = 1.0 Å
pUCCD
d = 2.5 Å

2 4 6 8
Neural Network Size K

10−7

10−5

10−3

E
rr

or
(H

ar
tr

ee
)

(b) Error vs. Size of Neural Network

NH3

BH3

CH4

NH+
4

N2

CO

H8

FIG. 4. Factors for the accuracy of the pUNN method. (a) The error of pUNN versus the size

of the molecule under study. (b) The error of pUNN versus the size of the neural network K.

The number of hidden neurons in the neural network is 2KN where N is the number of molecular

orbitals. The shaded area indicates the chemical accuracy.

We finally test the accuracy of pUNN based on cubic H8 molecule at different H-H distance245

d. The system is particularly challenging due to the strong correlation as d increases. In246

Fig. 5(a) we show the potential energy profile computed by both pUNN. As expected, pUNN247

shows much higher accuracy than other methods. From d = 0.5 Å to 2.5 Å pUNN coincides248

well with the FCI solution. For reference, we also include the CCSD method, which shows249

high accuracy at intermediate d. However, due to its single-reference and non-variational250

nature, the error of CCSD quickly increases as d becomes larger than 1.5 Å and it fails251

to reach convergence for larger d. CCSD(T) is not expected to improve CCSD when it252

fails because CCSD(T) relies on good CCSD wavefunction to account for perturbative triple253

excitation. Thus, although the 16 qubit system represents a relatively small variational254

space compared to challenging strongly correlated systems [57, 58], it is sufficient to reveal255

the limitations of methods like CCSD, which fail in strongly correlated regimes, while pUNN256

maintains relatively high accuracy. In Fig. 5(b) we depicted the error of the methods in257

logarithmic scale. All methods except pUNN show an increase in error as d increases. The258
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maximum error for pUNN appears at d = 1.7 Å and the magnitude of the error is 10−2
259

Hartree. The relatively large error highlights the complexity of the cubic H8 molecule. We260

anticipate that integrating alternative quantum circuits into our pUNN framework, such as261

those based on valence bond theory [59], could enhance accuracy in strong correlation. The262

UCCSD method is also included in Fig. 5(b). While UCCSD shows high accuracy at smaller263

d, it suffers from significant error at the large d limit, similar to CCSD. We perform additional264

benchmarks for strongly correlated systems based on the potential energy profile of N2 and265

CH4 and the trend is similar to Fig. 5(b). The results are included in the Supplementary266

Information.267

FIG. 5. Benchmarking pUNN based on the potential energy profile of cubic H8. (a) The potential

energy profile of cubic H8 by different computational methods. (b) The error compared with the

exact solution versus the H-H distance in the H8 cube.

In Table I, we present a breakdown of parameters for hydrogen systems studied in Fig. 4268

and in Fig. 5, comparing pUNN with FCI. For pUNN, the pUCCD circuit has O(N2)269

parameters, while the NN has O(K2N2L) parameters, with K = 2 and L = N − 3. From270

Table I, pUNN’s total parameters grow polynomially with N , while FCI’s determinant space271

grows exponentially. For H8, pUNN uses fewer parameters than FCI, and achieves high272

accuracy across both weak and strong correlation, as shown in Fig. 4(a) and Fig. 5. As our273

main contribution is the novel and unique quantum-neural hybrid framework, our choice274

of a dense MLP for the neural network is a proof-of-concept. More efficient architectures,275

such as restricted Boltzmann machines or graph neural networks, could further optimize276

pUNN [60, 61],277278
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TABLE I. Parameter Counts for pUNN and FCI for Hydrogen Systems

System FCI Determinants NN Parameters pUCCD Parameters

H+
5 100 661 6

H6 400 1537 9

H+
7 1225 2885 12

H8 4900 4801 16

H2n

[
(2n)!/(n!)2

]2
128n3 − 208n2 − 16n + 1 n2

B. Experiments on a Superconducting Quantum Computer279

To evaluate the performance of pUNN in a real quantum computing scenario, we conduct280

experiments on a superconducting quantum computer. We choose the isomerization reaction281

of cyclobutadiene as our model system, as shown in Fig. 6(a). The transition state of this282

system is particularly challenging due to strong correlations arising from degeneracy [19, 62].283

In this reaction, the reactant and product are identical molecules, with a 90-degree rotation284

between them. The electronic structures of the reactant and the product are considerably285

simpler than that of the transition state. Therefore, in the following analysis, we focus on286

the transition state, and calculate the reaction barrier by subtracting the exact energy of287

the reactant and product from the energy of the transition state.288

We employ the cc-pVDZ basis set [63] for HF calculation and select the four frontier289

orbitals as the active space. Using the paired ansatz, the active space is represented by a 4-290

qubit quantum circuit, with four parameters corresponding to four double excitations. The291

superconducting quantum chip used in this work consists of 13 qubits. Since the Givens-292

Swap gate is not a native gate on this chip, we carefully select 4 qubits from the 13-qubit293

system, which follows a ring topology, as shown in Fig. 6(d). This selection allows us to294

implement all four excitation operators using only Givens rotation gates, eliminating the295

need for the more expensive swap gates, which would otherwise require 3 CNOT gates. The296

Givens rotation gates should be further compiled into 4 native CNOT gates, along with297

several single-qubit gates. To reduce circuit depth, we introduce an approximation that298

breaks the symmetry and removes the control qubit of the controlled Ry gate [64]. The299
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resulting circuit does not conserve the total particle number anymore but the overall error300

could be smaller than the gate error by 8 additional CNOT gates, especially when some of301

the rotation gates have small rotation angles. Each Givens rotation gate is thus compiled302

into 2 CNOT gates, resulting in a total of 8 CNOT gates in the circuit. Standard readout303

error mitigation based on a direct product calibration matrix is applied to enhance the304

precision.305

We obtain the circuit parameters by optimizing the pUCCD Hamiltonian on this chip306

using the SOAP optimizer [50], which is an efficient optimizer tailored for parameter op-307

timization on quantum circuits. Next, we train a neural network based on the sampling308

output from the optimized quantum circuit. In Fig. 6(b), we report the energy estimates309

during the optimization process. Sampling from the quantum circuit occurs every 30 steps,310

with the macro iteration performed 15 times, for a total of 450 iterations. The number of311

iterations is determined by trial classical simulation, which ensures convergence. For each312

quantum circuit, we perform 1024 shots of measurement for each Pauli string. The opti-313

mization is repeated with three different neural network initializations and the lowest energy314

is employed for reaction barrier calculation.315

As shown in Fig. 6(c), the reaction barrier predicted by pUNN on the quantum circuit316

is approximately 16 kcal mol−1. While this value is still higher than the experimentally317

reported range of 2 ∼ 10 kcal mol−1 [65], it represents a notable improvement over the HF318

and MP2 energies, and is comparable to the noiseless UCCSD prediction. When using a319

noiseless pUNN model, obtained via a statevector simulator, the predicted reaction barrier is320

around 9 kcal mol−1, which aligns well with the FCI results and experimental observations.321

This highlights the importance of addressing errors introduced by quantum circuit gates322

and measurement uncertainties. In particular, the neural network parameters with quan-323

tum computers are different from the neural network parameters with noiseless simulation.324

We conjecture that pUNN(quantum) predicts a higher energy because the neural network325

parameters are stuck in a local minimum. To improve the performance of pUNN in the326

presence of these errors, advanced optimizers, such as KFAC [18, 66], could be considered.327

Yet adaption of the KFAC optimizer will likely be necessary due to the unique algorithmic328

structure of pUNN.329

Next, we investigate the advantage of incorporating quantum computing into the pUNN330

framework. Since neural networks are widely known for their effectiveness across a variety331
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FIG. 6. Experiments on a superconducting quantum computer. (a) The isomerization reaction

of cyclobutadiene, with the transition state energy calculated using pUNN on a superconducting

quantum computer. (b) The estimated energy during the optimization process. Results by three

independent random initializations of the neural network are shown. (c) The computed reaction

barrier from pUNN, compared with results from several other computational methods. “Exper-

iment” means the reaction barrier calculated by experimentally observed chemical reaction rate.

(d) The 13-qubit superconducting quantum chip and the quantum circuit used for the calculation.

of tasks including representing molecular wavefunction, it is important to assess whether332

a quantum circuit is truly necessary for this framework. To explore this, we replace the333

pUCCD circuit in pUNN with a Hadamard superposition circuit, where Hadamard gates334

are applied to all qubits. The Hadamard superposition circuit can be easily emulated on335

classical computers and can be considered as a “dummy” sample generator when used to336

compute the energy with the neural network. To isolate the impact of quantum gate noise,337

we perform the comparison using a shot-based classical emulator which is free of gate noise.338

We use the transition state of the cyclobutadiene isomerization reaction as our model system.339

As shown in Fig. 7, replacing the pUCCD circuit with a Hadamard superposition leads to340

a noticeable decrease in accuracy, along with a significant increase in energy variance. In341

fact, for large molecules, a Hadamard superposition circuit greatly reduces the probability342
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of sampling the dominant configuration, making it less effective for energy estimation. In343

contrast, the pUCCD circuit provides a suitable starting point for further refinement through344

neural network training, demonstrating the advantage of quantum computing in this context.345

101 102

Iterations

−153.64

−153.62

−153.60
E

n
er

gy
(H

ar
tr

ee
)

pUCCD circuit

All H circuit

FIG. 7. Energy estimates during neural network training with different quantum circuits. This

figure illustrates the effect of quantum circuits on energy estimation within the pUNN framework:

(1) the pUCCD circuit, which is the circuit used throughout this paper, and (2) the Hadamard

superposition circuit, where Hadamard gates are applied to all qubits, creating a superposition of

all possible states. The standard deviation across five different neural network initializations is

shown as the shaded area.

IV. CONCLUSION AND OUTLOOK346

The pUNN framework combines an efficient quantum circuit with the expressive power of347

a neural network to accurately and robustly compute molecular energies. Through a care-348

fully designed algorithmic structure—including the pUCCD circuit, entanglement circuit,349

perturbation circuit, and neural network augmentation—the method achieves high accuracy350

with low quantum resource requirements, utilizing only N qubits instead of the 2N qubits351

typically required by comparable methods. The incorporation of a neural network allows352

the framework to mitigate errors effectively, making it robust to gate noise and capable of353

delivering consistent accuracy on noisy quantum hardware. The design also ensures manage-354

able measurement overhead for the interaction between the quantum circuit and the neural355

network.356

Extensive numerical benchmarks demonstrate that pUNN achieves accuracy compara-357

ble to advanced methods like UCCSD, while being more resource-efficient and scalable to358
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larger molecular systems. Experimental validation on a superconducting quantum computer359

demonstrates the practicality of this approach. With a 4-qubit quantum circuit, pUNN360

successfully computes the transition state energy of cyclobutadiene isomerization, yielding361

energy estimates with accuracy comparable to noiseless UCCSD. Based on this model re-362

action, we also demonstrate that the quantum circuit plays an indispensable role in the363

hybrid framework, as replacing it with a neural network alone leads to a higher error and,364

crucially, a significantly larger variance in energy estimation. This observation serves as an365

evidence for the advantage of this hybrid design than pure classical neural networks, where366

the quantum circuit reduces the representational burden on the neural network. Thus, we367

expect that pUNN is able to demonstrate quantum advantage as we tackle larger systems368

where classical simulation of the pUCCD circuit becomes intractable.369

While this work focuses on closed-shell systems, the pUNN framework can be directly370

extended to open-shell systems by modifying the particle number conservation mask in the371

neural network. However, since the pUCCD quantum circuit may not accurately approx-372

imate open-shell wavefunctions, further adaptations will likely be necessary to maintain373

accuracy for open-shell systems. Future work could enhance the neural network architec-374

ture by incorporating more sophisticated neural layers with physical insights. Additionally,375

pretraining the neural network on a diverse set of molecules offers a possible avenue for376

creating a generalizable model that can be fine-tuned for specific systems.377

APPENDIX A: THE ELECTRONIC STRUCTURE PROBLEM AND THE pUCCD378

ANSATZ379

In this work, we are interested in the second-quantized ab initio electronic structure380

Hamiltonian381

Ĥ =
∑
pq

hpqâ
†
pâq +

1

2

∑
pqrs

hpqrsâ
†
pâ

†
qârâs + Enuc, (16)

where hpq and hpqrs = [ps|qr] are one-electron and two-electron integrals, and â†p, âp are382

fermionic creation and annihilation operators, respectively, acting on the p-th spin-orbital.383

In order to compute the expectation of Eq. (16) on a programmable quantum computer,384

the symmetry of the creation and annihilation operators has to be taken care of. Creation385
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and annihilation operators for fermions obey the anticommutation relations386

{âi, â†j} = δij

{â†i , â†j} = {âi, âj} = 0
(17)

On the other hand, the qubit creation operator ĉ† = 1
2
(X − iY ) and annihilation operator387

ĉ = 1
2
(X + iY ) obey the commutation relations388

{ĉi, ĉ†j} = δij, [ĉ†i , ĉ
†
j] = [ĉi, ĉj] = 0. (18)

In this work, when necessary, we employ the Jordan-Wigner transformation to map fermionic389

ladder operators into qubit operators390

In general, UCC types of ansatz can be written as391

|Ψ(θ)⟩ =
∏

eθkĜk |ϕ⟩ . (19)

Here, |ϕ⟩ is the Hartree–Fock state. For the UCCSD method, Ĝk has the form392

Ĝk =

â
†
pâq − h.c.,

â†pâ
†
qârâs − h.c.

(20)

pUCCD is an efficient ansatz requiring only O(N) circuit depth and half as many qubits393

as other UCC ansatze [39, 40]. pUCCD allows only paired double excitations, which enables394

one qubit to represent one spatial orbital instead of one spin orbital, and removes the395

need to perform the fermion-qubit mapping. The subspace in which all states have paired396

configuration is called the seniority-zero subspace. In this subspace, there are O(N2) double397

excitations, which can be executed on a quantum computer efficiently using a compact398

circuit. The circuit is composed of a linear depth of Givens-SWAP gates, assuming linear399

qubit connectivity [40]. In the seniority-zero subspace, the Hamiltonian also takes a simpler400

form, with only N2 terms:401

Ĥ =
∑
p

hpĉ
†
pĉp +

∑
pq

vpq ĉ
†
pĉq +

∑
p̸=q

wpq ĉ
†
pĉpĉ

†
q ĉq + Enuc , (21)

where hp = 2hpp, vpq = (pq|pq) and ωpq = 2(pp|qq) − (pq|pq). Here p and q are indices for402

spatial orbitals. If we use n̂p = ĉ†pĉp =
1−Z
2

to denote occupation number operator, Eq. (21)403

can be converted to a sum of Pauli string where the maximum length of Pauli string is 2.404

Meanwhile, the first and the third term in Eq. (21) have only Z terms and the second term405

will contribute to XX and Y Y terms. Thus, the expectation of Eq. (21) can be measured406

in 3 different bases, regardless the number of qubit involved.407
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V. APPENDIX B: THE MEASUREMENT PROTOCOL FOR pUNN408

To begin with, we describe the measurement protocol when a single quantum circuit409

is integrated with a neural network, following the reference [25]. Then, we move on to410

our measurement method that enables efficient measurement of two separate circuits in the411

pUNN algorithm, defined in Eq. (15). In the following, for clarity, we omit the prime symbol412

for both Ĥ ′ and N̂ ′, since Ĥ ′ is Pauli string similar to Ĥ, and N̂ ′ follows the definition of413

N̂ in Eq. (5).414

A. A single quantum circuit415

For a single circuit |ψ⟩ = ∑
k ak |k⟩, where |k⟩ is the computational basis, N̂ is written as416

N̂ =
∑
k

bk |k⟩ ⟨k| . (22)

We then focus on deriving an appropriate form of N̂ĤN̂ . We assume that both |ψ⟩ and417

N̂ are real-valued. We first derive the measurement protocol for the norm of |Ψ⟩ = N̂ |ψ⟩,418

given by419

⟨Ψ|Ψ⟩ = ⟨ψ|N̂ †N̂ |ψ⟩ , (23)

where420

N̂ †N̂ =
∑
k

b2k |k⟩ ⟨k| . (24)

Clearly, the eigenvectors of N̂ †N̂ are |k⟩ and their eigenvalues are b2k. To compute the421

norm, we sample bitstrings from |ψ⟩ and multiply the probability of k by b2k. For efficient422

sampling, bk should not be too large or small. In other words, ak must provide a good423

first-order approximation to the ground state. The same is also true for our measurement424

protocol for 2 circuits and it highlights the role of the quantum computer in this framework.425

Next, we consider the measurement of a Pauli string Ĥ. The main focus is to derive426

N̂ †ĤN̂ . In general, a Pauli string Ĥ can be written as427

Ĥ =
∑
k

Sk̃ |k̃⟩ ⟨k| , (25)

where the summation is over k rather than k and k̃. In other words, applying the Pauli428

string Ĥ on |k⟩ will produce only one bitstring |k̃⟩ up to a phse Sk̃429

Ĥ |k⟩ = Sk̃ |k̃⟩ . (26)
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Since Ĥ2 = I, we also have Ĥ |k̃⟩ = Sk |k⟩ and Sk̃Sk = 1.430

Let’s first consider the case where Ĥ has only Z operators, i.e. |k⟩ = |k̃⟩. In this case,431

the term to measure is432

N̂ †ĤN̂ =
∑
k

b2kSk |k⟩ ⟨k| . (27)

Eq. (27) is similar to the expression for N̂ †N̂ in Eq. (24). As a result, the measurement433

protocol when Ĥ only involves Z operators is very similar to the procedure for measuring434

the norm of the state.435

Now, consider the general case where Ĥ includes at least one X or Y operator, where it436

is ensured that |k⟩ ̸= |k̃⟩. In this case, we can rewrite Ĥ as437

Ĥ =
∑
k∈Ω

(
Sk |k⟩ ⟨k̃|+ Sk̃ |k̃⟩ ⟨k|

)
, (28)

where Ω = {k|bin(k) < bin(k̃)} and bin(k) refers to the corresbonding binary integer of k.438

The Hamiltonian transformed by N̂ is given by439

N̂ †ĤN̂ =
∑
k∈Ω

bkbk̃Ĥk , (29)

where440

Ĥk = Sk |k⟩ ⟨k̃|+ Sk̃ |k̃⟩ ⟨k| . (30)

To measure N̂ †ĤN̂ , we need to derive the eigenvectors of Ĥk. Ĥk is defined by two basis441

|k⟩ and |k̃⟩ and therefore Ĥk has two eigenvectors with eigenvalues +1 and -1. Denote the442

two eigenvectors as |k+⟩ and |k−⟩, we can then write Ĥk as443

Ĥk = |k+⟩ ⟨k+| − |k−⟩ ⟨k−| . (31)

In the computational basis, |k+⟩ and |k−⟩ are written as444

√
2 |k+⟩ = Sk̃ |k̃⟩+ |k⟩ = (Ĥk + 1) |k⟩ ,

√
2 |k−⟩ = Sk̃ |k̃⟩ − |k⟩ = (Ĥk − 1) |k⟩ .

(32)

These eigenvectors have eigenvalues +1 and −1, respectively. The neural network trans-445

formed Hamiltonian is then446

N̂ †ĤN̂ =
∑
k∈Ω

bkbk̃
(
|k+⟩ ⟨k+| − |k−⟩ ⟨k−|

)
. (33)
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To perform the measurement in the |k+⟩ and |k−⟩ bases, we append a unitary measure-447

ment circuit V to the original quantum circuit |ψ⟩. V satisfies448

V † |k⟩ = |k+⟩ ,

V † |k̃⟩ = |k−⟩ ,
(34)

for any k ∈ Ω. The unitary property can be proven by considering ⟨k′|V V †|k⟩ or by noting449

that V is a permutation between two sets of orthonormal basis states. The construction of450

the transformation circuit V̂ is a standard procedure in quantum computation, because V̂451

is a circuit that diagonalizes the Pauli string Ĥ. If the number of X and Y operators in Ĥ452

is m, then the number of two-qubit gates in V̂ is m− 1.453

To summarize, the quantum circuit used for the measurement is V̂ |ψ⟩, and the term to454

measure is455

V̂ N̂ †ĤN̂ V̂ † =
∑
k∈Ω

bkbk̃

(
|k⟩ ⟨k| − |k̃⟩ ⟨k̃|

)
. (35)

The expectation value of this term is readily accessible from the quantum circuit V̂ |ψ⟩ by456

performing a projection measurement in the computational basis.457

B. Two separate quantum circuits458

If we take the two separate quantum circuit |ψ ⊗ ϕ⟩ as a whole, the measurement protocol459

developed in Sec. VA can be applied to measure the expectation when a neural network is460

integrated with |ψ ⊗ ϕ⟩. However, in this case, the unitary transformation for measurement461

V will generally entangle the two originally unentangled quantum circuits. This results462

in a quantum circuit of 2N qubits. If we wish to avoid this entanglement and measure463

the expectation using two separate quantum circuits, a special measurement procedure is464

needed. This procedure will be described in the following.465

The total wavefunction is expressed as:466

|Ψ⟩ = N̂ |ψ ⊗ ϕ⟩ . (36)

In the pUNN framework, |ψ⟩ is the pUCCD quantum circuit, and |ϕ⟩ is the perturbation467

circuit to be simulated classically. However, the procedure outlined below is general and can468

be readily applied to other cases involving uncorrelated circuits.469
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Consider Hamiltonian in the form:470

Ĥ = Ĥψ ⊗ Ĥϕ , (37)

where Ĥψ and Ĥϕ are Pauli strings for the two separate circuits. If either of Ĥψ and Ĥϕ471

does not contain X or Y , the measurement procedure simplifies to the standard approach472

described in Sec. VA. Therefore, we will focus on the general case where both Ĥψ and Ĥϕ473

contain X or Y . Similar to Eq. (26), Ĥψ and Ĥϕ satisfy the following relations:474

Ĥψ |k⟩ = Sk̃ |k̃⟩ ,

Ĥϕ |j⟩ = Sj̃ |j̃⟩ .
(38)

Here, Ĥψ and Ĥϕ act independently on the circuit |ψ⟩ and |ϕ⟩, transforming the states |k⟩475

and |j⟩ into |k̃⟩ and |j̃⟩, with corresponding signs Sk̃ and Sj̃.476

The eigenvectors of Ĥ are given by477

2 |k±⟩ |j±⟩ =
(
Sk̃ |k̃⟩ ± |k⟩

) (
Sj̃ |j̃⟩ ± |j⟩

)
, (39)

where we again require k ∈ Ωψ and j ∈ Ωϕ to avoid double-counting. In the following, we478

use k, j ∈ Ω as a short-hand notation for the condition.479

The Hamiltonian in the computational basis is480

Ĥ =
∑
k,j∈Ω

(
Sk |k⟩ ⟨k̃|+ Sk̃ |k̃⟩ ⟨k|

)
⊗
(
Sj |j⟩ ⟨j̃|+ Sj̃ |j̃⟩ ⟨j|

)
=

∑
k,j∈Ω

(
SkSj |k, j⟩ ⟨k̃, j̃|+ Sk̃Sj̃ |k̃, j̃⟩ ⟨k, j|

)
+

∑
k,j∈Ω

(
SkSj̃ |k, j̃⟩ ⟨k̃, j|+ Sk̃Sj |k̃, j⟩ ⟨k, j̃|

)
.

(40)

After applying the transformation N̂ , the transformed Hamiltonian becomes481

N̂ †ĤN̂ =
∑
k,j∈Ω

bkjbk̃j̃

(
SkSj |k, j⟩ ⟨k̃, j̃|+ Sk̃Sj̃ |k̃, j̃⟩ ⟨k, j|

)
+

∑
k,j∈Ω

bkj̃bk̃j

(
SkSj̃ |k, j̃⟩ ⟨k̃, j|+ Sk̃Sj |k̃, j⟩ ⟨k, j̃|

)
.

(41)

The structure of N̂ †ĤN̂ remains similar to Ĥ, but the terms are now weighted by the neural482

network coefficients bkj. Eq. (41) is more complex than Eq. (29) since each term can not483

be readily factored into the direct product of operators acting on the two separate circuits.484
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Consequently, finding a measurement circuit that diagonalizes Eq. (41) without introducing485

entanglement between the two circuits is not straightforward.486

To proceed, it is instructive to consider a 2-qubit system and with the Hamiltonian487

Ĥ = XX as an example. In this case, we can express the neural network transformed488

Hamiltonian as:489

N̂ †ĤN̂ = b00b11(|00⟩ ⟨11|+ |11⟩ ⟨00|) + b01b10(|01⟩ ⟨10|+ |10⟩ ⟨01|)

=
1

2
b00b11(XX − Y Y ) +

1

2
b01b10(XX + Y Y )

=
1

2
(b00b11 + b01b10)XX +

1

2
(−b00b11 + b01b10)Y Y .

(42)

Thus, to measure the expectation value of XX in the presence of a NN, one needs to measure490

both XX and Y Y to avoid measurement circuit that entangles the two separate circuits.491

More generally, consider a Hamiltonian Ĵ = Ĵψ ⊗ Ĵϕ such that (as in Eq. (38))492

Ĵψ |k⟩ = iSk̃ |k̃⟩ ,

Ĵϕ |j⟩ = iSj̃ |j̃⟩ .
(43)

Ĵ can be constructed by replacing an X operator with −Y or a Y operator with X in Ĥψ493

and Ĥϕ. The eigenvectors of Ĵ are494

2 |ki±⟩ |ji±⟩ =
(
iSk̃ |k̃⟩ ± |k⟩

) (
iSj̃ |j̃⟩ ± |j⟩

)
. (44)

We define short-hand notation for the projectors495

ĥ±k = |k±⟩ ⟨k±| (45)

which form the diagonal bases for Ĥ and Ĵ . The first term of N̂ †ĤN̂ from Eq. (41) is then496

transformed to:497

SkSj |k, j⟩ ⟨k̃, j̃|+ Sk̃Sj̃ |k̃, j̃⟩ ⟨k, j|

=
1

2
(ĥ+k − ĥ−k )⊗ (ĥ+j − ĥ−j )−

1

2
(ĥi+k − ĥi−k )⊗ (ĥi+j − ĥi−j ) .

(46)

Similarly, the second term becomes498

SkSj̃ |k, j̃⟩ ⟨k̃, j|+ Sk̃Sj |k̃, j⟩ ⟨k, j̃|

=
1

2
(ĥ+k − ĥ−k )⊗ (ĥ+j − ĥ−j ) +

1

2
(ĥi+k − ĥi−k )⊗ (ĥi+j − ĥi−j ) .

(47)
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The overall expression for N̂ †ĤN̂ is499

N̂ †ĤN̂ =
∑
k,j∈Ω

1

2

(
bkjbk̃j̃ + bkj̃bk̃j

)
(ĥ+k − ĥ−k )⊗ (ĥ+j − ĥ−j )

+
∑
k,j∈Ω

1

2

(
−bkjbk̃j̃ + bkj̃bk̃j

)
(ĥi+k − ĥi−k )⊗ (ĥi+j − ĥi−j )

(48)

One may verify the equation by setting b = 1 and N̂ becomes Î. In this case, the second500

term vanishes and the first term reduces to the original Hamiltonian Ĥ. In Eq. (48), the501

operators are factored into the direct product of operators acting on the two separate circuits.502

Consequently, they can be diagonalized to the computational basis separately following the503

approach discussed in Sec. VA.504

Thus, in order to measure the expectation in Eq. (15), one has to sample bitstrings from505

both Ĥ and Ĵ and calculate the expectation following Eq. (48) accordingly. In the framework506

of pUNN, we first sample bitstrings that correspond to ĥ±k and ĥi±k on quantum computers,507

and then sample bitstrings that correspond to ĥ±j and ĥi±j on classical simulators. Then508

we query the neural network B for bk,j, and finally calculate the expectation based on the509

sampling statistics and the output from the neural network.510
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[19] Hermann J, Schätzle Z, Noé F. Deep-neural-network solution of the electronic Schrödinger574

equation. Nat Chem. 2020;12(10):891-7.575

[20] Shang H, Guo C, Wu Y, Li Z, Yang J. Solving Schrödinger equation with a language model.576

arXiv preprint arXiv:230709343. 2023.577

27

Page 27 of 32 Digital Discovery

D
ig

ita
lD

is
co

ve
ry

A
cc

ep
te

d
M

an
us

cr
ip

t

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

8 
Ju

ly
 2

02
5.

 D
ow

nl
oa

de
d 

on
 8

/3
/2

02
5 

5:
18

:0
1 

PM
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online

DOI: 10.1039/D5DD00222B

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5dd00222b


[21] Li X, Li Z, Chen J. Ab initio calculation of real solids via neural network ansatz. Nat Commun.578

2022;13(1):7895.579

[22] Scherbela M, Gerard L, Grohs P. Towards a transferable fermionic neural wavefunction for580

molecules. Nat Commun. 2024;15(1):120.581

[23] Li X, Huang JC, Zhang GZ, Li HE, Shen ZP, Zhao C, et al. Improved optimization582

for the neural-network quantum states and tests on the chromium dimer. J Chem Phys.583

2024;160(23):234102.584

[24] Nys J, Pescia G, Carleo G. Ab-initio variational wave functions for the time-dependent many-585

electron Schrödinger equation. arXiv preprint arXiv:240307447. 2024.586

[25] Zhang SX, Wan ZQ, Lee CK, Hsieh CY, Zhang S, Yao H. Variational quantum-neural hybrid587

eigensolver. Phys Rev Lett. 2022;128(12):120502.588

[26] Westerhout T, Astrakhantsev N, Tikhonov KS, Katsnelson MI, Bagrov AA. Generalization589

properties of neural network approximations to frustrated magnet ground states. Nat Com-590

mun. 2020;11(1):1593.591

[27] Jiang T, Zhang J, Baumgarten MK, Chen MF, Dinh HQ, Ganeshram A, et al. Walking592

through Hilbert space with quantum computers. arXiv preprint arXiv:240711672. 2024.593

[28] Biamonte J, Wittek P, Pancotti N, Rebentrost P, Wiebe N, Lloyd S. Quantum machine594

learning. Nature. 2017;549(7671):195-202.595

[29] Cerezo M, Verdon G, Huang HY, Cincio L, Coles PJ. Challenges and opportunities in quantum596

machine learning. Nature Comput Sci. 2022;2(9):567-76.597

[30] Ren W, Li W, Xu S, Wang K, Jiang W, Jin F, et al. Experimental quantum adversarial598

learning with programmable superconducting qubits. Nature Comput Sci. 2022;2(11):711-7.599

[31] Li XK, Ma JX, Li XY, Hu JJ, Ding CY, Han FK, et al. High-efficiency reinforcement learning600

with hybrid architecture photonic integrated circuit. Nat Commun. 2024;15(1):1044.601

[32] Li J, Kais S. Quantum cluster algorithm for data classification. Mat Theory. 2021;5(6):1-14.602

[33] Sajjan M, Sureshbabu SH, Kais S. Quantum machine-learning for eigenstate filtration in603

two-dimensional materials. J Am Chem Soc. 2021;143(44):18426-45.604

[34] Sajjan M, Li J, Selvarajan R, Sureshbabu SH, Kale SS, Gupta R, et al. Quantum machine605

learning for chemistry and physics. Chem Soc Rev. 2022;51(15):6475-573.606

[35] Zeng X, Fan Y, Liu J, Li Z, Yang J. Quantum neural network inspired hardware adapt-607

able ansatz for efficient quantum simulation of chemical systems. J Chem Theory Comput.608

28

Page 28 of 32Digital Discovery

D
ig

ita
lD

is
co

ve
ry

A
cc

ep
te

d
M

an
us

cr
ip

t

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

8 
Ju

ly
 2

02
5.

 D
ow

nl
oa

de
d 

on
 8

/3
/2

02
5 

5:
18

:0
1 

PM
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online

DOI: 10.1039/D5DD00222B

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5dd00222b


2023;19(23):8587-97.609

[36] Halder S, Patra C, Mondal D, Maitra R. Machine learning aided dimensionality reduction610

toward a resource efficient projective quantum eigensolver: Formal development and pilot611

applications. J Chem Phys. 2023;158(24):244101.612

[37] Halder S, Dey A, Shrikhande C, Maitra R. Machine learning assisted construction of a shallow613

depth dynamic ansatz for noisy quantum hardware. Chem Sci. 2024;15(9):3279-89.614

[38] Shang H, Zeng X, Gong M, Wu Y, Guo S, Qian H, et al. Rapidly Achieving Chemical Accuracy615

with Quantum Computing Enforced Language Model. arXiv preprint arXiv:240509164. 2024.616

[39] Henderson TM, Bulik IW, Scuseria GE. Pair extended coupled cluster doubles. J Chem Phys.617

2015;142(21):214116.618
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The source data for the figures in this study is available from Zenodo[ref]. DOI: 

10.5281/zenodo.15859709.
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