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atmospheric organochloride pesticide
concentrations near Tibet's Namco Lake as a case
study†‡

Lidong Huang, *a Qian Zheng,a Hongyang Wangb and Daquan Sunc

In the analysis of pollutant data, concentrations below the analytical detection limit are commonly handled

by substituting a constant value between zero and the limit of detection (LOD). However, this substitution

can introduce significant bias under certain conditions. To address this issue, we have derived weight

expressions that eliminate bias for lognormal and gamma data. These weights, applied to LOD/2

substitutions, can be calculated using available ranges of means, standard deviations and censoring

proportions. We evaluated the performance of our weighted substitution (uLOD/2) method using both

simulated datasets with censoring proportions ranging from 5% to 50% and actual atmospheric a-HCH

and HCB data from Tibet's Namco Lake. The uLOD/2 method was compared against LOD/2 substitution,

maximum likelihood estimation (MLE), and regression on order statistics (ROS). The results demonstrate

that with small sample sizes (<160), although MLE and ROS did not show larger bias, uLOD/2

outperforms both methods in estimating arithmetic and geometric means in most scenarios. It is also

worth noting that ROS is currently limited to estimating summary statistics under the assumption of

a lognormal distribution and cannot be applied to gamma-distributed data. In addition, uLOD/2 provides

standard deviation estimates comparable to those from MLE, with biases remaining within 5% in the

majority of cases. Therefore, the proposed method is particularly suitable for situations involving small

sample sizes. The application of our method to six censored atmospheric organochloride pesticide

concentrations from Namco Lake further highlights its advantages in practical settings. To facilitate easy

adoption by researchers, a free web app was developed that integrates our proposed weighting method

with censored data distribution fitting.
Environmental signicance

Accurate estimation of atmospheric pollutants is vital for assessing environmental risks and implementing effective protection measures. Traditional methods
for handling data below detection limits oen introduce bias, leading to potentially misleading conclusions about pollutant levels. Our study presents
a weighted substitution method (uLOD/2) that signicantly improves the accuracy of pollutant estimates, particularly for lognormal and gamma distributions.
Applied to data from Tibet's Namco Lake, this method ensures more reliable environmental assessments. By enhancing the precision of pollutant monitoring,
our approach supports better-informed environmental policies and strategies, ultimately contributing to more effective environmental protection efforts.
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1. Introduction

Organochlorine pesticides (OCPs) pose signicant risks to both
human health and ecological systems. These compounds are
highly persistent in the environment, bioaccumulate in the food
chain, and exhibit long-term toxicity. For humans, exposure to
OCPs can lead to serious health issues, including cancer,
endocrine disruption, reproductive disorders, and neurological
damage.1,2 They can enter the body through contaminated food,
water, and air and are stored in fatty tissues, leading to pro-
longed exposure. OCPs are transported by air through volatili-
zation from contaminated surfaces and soils.3 Once airborne,
they can travel long distances via atmospheric currents, even-
tually depositing in remote areas through dry deposition and
precipitation, leading to widespread environmental
contamination.

Tibet, known as the “Third Pole” and the “Water Tower of
Asia,” plays a crucial role in the region's environmental health.
The surrounding countries' industrial activities have led to
signicant organic pollution, including OCPs. These pollutants
are transported through atmospheric currents and eventually
settle in Tibet's pristine environment. Monitoring OCP levels in
Tibet is essential not only for protecting its unique ecosystem
and public health but also for understanding the broader
impacts of transboundary pollution. Previous studies showed
seasonal variations in OCPs in the Tibet Namco Lake atmo-
sphere, with some compounds falling below limits of detection
(LOD).4,5 This complicates accurate monitoring and risk
assessment, as low detection limits hinder the ability to quan-
tify exposure levels, evaluate long-term environmental impacts,
and develop effective regulatory policies for public health
protection. In the same region, while most OCPs are below
detection limits in lake water, they are fully detected in sh.5

This suggests that low environmental levels of OCPs do not
necessarily equate to low risk. Even trace pollutants can bio-
accumulate in organisms through biomagnication, posing
signicant ecological and health risks. Therefore, accurately
estimating the statistics of datasets with non-detectable
concentrations is crucial for understanding pollution charac-
teristics and assessing risks. Such data, where some measure-
ments fall below the detection limit, are commonly referred to
as le-censored datasets. A diverse array of methods have been
developed to cope with this problem caused by censored data,

such as substitution ðLOD=2;LOD= ffiffiffi
2

p Þ,6,7 the maximum likeli-
hood method (MLE),6,8,9 regression on order statistics (ROS),6,10

and the tting distribution curve method.11 Besides, Tobit
models, originally developed in econometrics, are designed to
address le-censored dependent variables by modeling an
underlying latent variable through MLE.12,13 The Tobit model is
particularly valuable when the goal is regression-based infer-
ence.14 However, the Tobit model requires strong assump-
tions—most notably, that the latent variable follows a normal
distribution, which may not hold in environmental datasets
where variables oen follow gamma distributions.15 Addition-
ally, Tobit models are primarily designed for estimating
regression coefficients, rather than directly estimating
Environ. Sci.: Atmos.
summary statistics such as means and standard deviations,
which are the focus of our study. Survival analysis, particularly
the Cox proportional hazards model and Kaplan–Meier esti-
mator, has long been applied to right-censoring and more
complex censoring structures.6,16,17 The Cox proportional
hazards model is a widely used method in survival analysis for
modeling the relationship between the time until an event
occurs and one or more predictor variables.18 Similar to Tobit
models, the Cox proportional hazards model is primarily
designed for regression analysis involving covariates, rather
than for estimating summary statistics such as the mean or
standard deviation. In addition, existing literature suggests that
the Kaplan–Meier estimator may be less accurate than MLE or
ROS when estimating distributional summary statistics in
environmental datasets.6,19

Among these methods, substitution is widely used, but it
remains a subject of considerable debate.20 In some scenarios,
the substitution method performs exceptionally well. According
to George et al.,21 “Threshold/2 substitution was the least
biased” method for determining the concentration means and
standard deviations (sd) of dibenzo[a,h]anthracene in stove
chimney emissions. Furthermore, many studies have concluded
that substitution is sometimes comparable to other methods in
estimating means.7,16 When discussing which method is rec-
ommended for handling censored data, Hites commented
“Clearly, as long as more than half of the data are above the
LOD, using the median or geometric mean with the <LOD or
missing values replaced by LOD/2 causes little bias”. Besides, to
our knowledge, the U.S. CDC uses a method where concentra-
tions below the LOD are assigned a value equal to the LOD=

ffiffiffi
2

p
for calculating geometric means in studies on human exposure
to environmental chemicals.22

Simultaneously, we must also acknowledge that the substi-
tution method is not indefensible. For example, it tends to be
less accurate than MLE and ROS in estimating the population
mean.6 Moreover, the common choices for substitution are

LOD/2 or LOD=
ffiffiffi
2

p
, while the results strongly depend on the

substituted values. The geometric diagram of the principle of
substitution (Fig. S1) indicates that several factors might
inuence the accuracy of substitution: (1) sample size, which
determines the smoothness and step length of the Empirical
Cumulative Distribution Function (ECDF) curve; (2) the percent
of observations below the LOD (<LOD%) and (3) distribution
parameters, which affect the steepness and shape of the ECDF
curve. LOD/2 substitution assumes that all censored values are
equal to the midpoint, which ignores the true variability of
values below the detection limit. Inspired by this question, we
propose using a weighted substitution value that ensures
consistent accuracy. Our proposed method is based on the idea
that the estimation of summary statistics for le-censored
values can be informed by the observed portion of the data,
due to the inherent structure of the dataset. —much like
reconstructing missing sections of a broken picture based on
the remaining visible parts.

Generally, it is known that concentrations of pollutants are
skewedly distributed.6,23,24 The vast majority of environmental
© 2025 The Author(s). Published by the Royal Society of Chemistry
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scientists assume that pollutant distributions follow
a lognormal pattern.6,7,24–26 Under such an assumption, it is
suggested that the geometric mean (gm) should represent
central tendency, as the median equals gm for lognormal data
(Table S1‡).7,16,24,27 However, we found that more than half of
OCPs in the atmosphere of Namco Lake followed a gamma
distribution (Fig. S2‡). Notably, the median of gamma data does
not align with the geometric mean (Table S1‡). This introduces
a pertinent question: in cases where the gamma distribution
better ts the data, should one use the arithmetic mean (am) or
gm to represent data? Additionally, many studies overlook the
crucial aspect of justifying whether censored data actually
follow a lognormal or gamma distribution. The lack of this
justied process can potentially lead to misleading conclusions.
In this context, EnvStats is an R package that provides a wide
range of tools for analyzing censored data, estimating distri-
bution parameters, conducting goodness-of-t tests, and
generating visual diagnostics.23 It includes functions such as
elnormCensored() and egammaCensored(), which implement
MLE for le-censored data under lognormal and gamma
distributions. However, MLE can exhibit greater bias than
substitution methods when applied to small sample sizes, as it
relies on asymptotic properties that may not hold in such
cases.19,28 To facilitate the process and simplify the coding work,
A user-friendly tting tool would enable more informed
decision-making and enhance the reliability of environmental
studies.

In summary, the objectives of this study are to (i) explore the
factors impacting the accuracy of LOD/2 substitution; (ii)
develop a more accurate substitution method by weighting
LOD/2. We approximate the weight through a function of the
following form:

Weight ∼f(<LOD%, E(XjX > LOD), SD(XjX > LOD)); (iii) apply
this improved method to deal with censored OCPs in the Tibet
Namco Lake atmosphere.
2. Materials and methods

We evaluated the bias associated with le-censoring and the
subsequent statistical analysis of concentration measurements
through both case and simulation studies. The case study
utilized OCP concentration measurements, while the simula-
tion study employed both lognormal and gamma distributions
similar to the observed OCP distribution.
2.1 Case study

Namco Lake ((30°300–30°560 N, 90°160–91°010 E), situated in the
central Tibet Autonomous Region, is the second-largest lake in
Tibet and the third-largest saltwater lake in China. Namco is
considered the highest large lake in the world and is considered
one of the regions least impacted by OCPs. The data in our case
study were from an air pollutant monitoring experiment at the
Namco Monitoring and Research Station for Multisphere Inter-
actions.5 A total of 47 air samples were collected from September
2012 to September 2014. Eight OCPs (a-HCH, b-HCH, g-HCH,
HCB, o,p0-DDE, p,p0-DDE, o,p0-DDT, and p,p0-DDT) in the air were
© 2025 The Author(s). Published by the Royal Society of Chemistry
determined using gas chromatography−mass spectrometry (GC-
MS). The LODwere derived as themean blank concentration plus
three times its standard deviation, based on 600 m3 air samples.5

We found that 6 out of the 8 OCPs had concentrations below the
LOD. Therefore, OCPs are the analytes needed for our assessment
of bias when calculating the sample statistics.
2.2 Simulation study

Lognormal data with parameters m log and s log and gamma
with shape (a) and rate (b) are simulated. Factors inuencing
the data structure, including sample size (n), m log, s log, a,
b and <LOD% are listed in Fig. S2 and Table S2.‡ The ranges of
the factors are referred to in publications.6,8,27 m log, s log,
a and b are linked by equal expectation and variance. Speci-
cally, the expectation (mL) and variance (sL

2) for the lognormal
distribution are

mL ¼ em logþ s log2

2 $sL
2 ¼ e2m logþs log2

h
es log2 � 1

i
(1)

And expectation (mG) and variance (sG
2) for the gamma distri-

bution are

mG ¼ a

b
$sG

2 ¼ a

b2
(2)

Based on mL = mG and sL
2 = sG

2, once we set the parameters
for the lognormal distribution, the parameters for gamma are
also xed. The true sample mean and sd for the complete data
are known. Aer articially censoring, we assessed the bias in
the mean and sd estimation at each censoring level. We used
the relative bias (RB) to compare the accuracy of different
statistical methods:

RB(%) = (estimated − true)/true × 100 (3)

2.3 Procedures to get the substitution weight

For simulated data, LOD is virtually set. In this case, the data
below the LOD is also known. Assuming that the simulated
pollutant X has n observations, X= {x1, x2,., xn}, the true am of
X could be expressed as follows:

am ¼ n\ � x\ þ n. � x.

n
(4)

where x\ is the conditional mean of <LOD X. n> is the sample
size of >LOD X. x. is the conditional mean of >LOD X. Now, the
<LOD X array was substituted by ‘u × LOD/20 and u is weight.
The amu can be as follows:

amu ¼
n\ � u

LOD

2
þ n. � x.

n
(5)

Let the estimated amu equal the true am (assuming 0% bias),
formula (4) = formula (5), then we can easily derive the u:

u ¼ 2
x\

LOD
(6)
Environ. Sci.: Atmos.
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Likewise, we could also get the weight for calculating gm, u0:

u
0 ¼ 2

xg\

LOD
where is conditional gm of xg\ X\LOD (7)

Obviously, weight computation needs the conditional mean
of <LOD X, which is unrealistic for actual measured censored
data, because no one knows the value. To address this issue, our
approach involves constructing a range of weight variations
using simulated data and leveraging the available information
from censored data to predict the weights.
2.4 Model weight with available information of the censored
data

As we know, sample x\ (or xg\) will asymptotically approach
conditional population expectation E(XjX < c) or E[gmjX < c] (c is
LOD) and we can get

uz 2
EðX jX\cÞ

c
or u

0
z 2

E½gmjX\c�
c

(8)

The detailed mathematical derivation process of the condi-
tional expectation for the lognormal and gamma distribution
can be found in the ESI,‡ and we also summarized the related
formulae in Table S1.‡

Utilizing the mathematical expressions for E(XjX < c) and E
[gmjX < c] (Table S1‡), we can easily compute the u (u0) based on
formula (8). For censored data, the known information includes
the proportion below the detection limit (<LOD%) and the
mean and standard deviation of the data above the LOD. So, we
tried to explore the relationships between u (u0) and E(XjX $ c)
and sd(XjX$ c) at different censored levels. And the expressions
of E(XjX $ c) and sd(XjX $ c) for lognormal and gamma are
derived in the ESI,‡ and in our previous paper.8 Aer extensive
trials, the following nested models were found to be the best to
t û
bu ¼

8>>>>>>>>>>>><
>>>>>>>>>>>>:

a$tb
Lognormal data; a; b are constants; t ¼ sdðX jX $ cÞ

EðX jX $ cÞ
predict a or b with linear equation by \LOD%

a$eb$t
Gamma data; a; b are constants; t ¼ sdðX jX $ cÞ

EðX jX $ cÞ
predict a or b with quadratic equation by \LOD%

(9)
2.5 Comparison of the performance of the weighted
substitution with that of other methods

a-HCH and HCB and simulated data were used to compare the
performance of the weighted method with that of the most
sophisticated methods. Means and sd were calculated aer
censoring by using the following approaches: LOD/2
Environ. Sci.: Atmos.
substitution, the weighted method (uLOD/2), MLE and ROS.
The likelihood function of MLE for lognormal or gamma-
censored data is expressed as follows:

LðqÞ ¼
Y
i˛D

FX ðqjLxÞ
Y
i˛M

fX ðqjxiÞ

where q is a parameter. FX is the cumulative distribution func-
tion (CDF) and fX is the probability density function (PDF). Lx is
the LOD of x. D is the vector of below LOD. M is the vector of
observed x.

And bq ¼ argmax
q

� ln LðqÞ. The corresponding R code is lis-
ted in the ESI.‡

Kaplan–Meier and non-parametric quantile methods were
excluded because of poor performance.6,19 Referring to George
et al.,6 simulated data values were generated for 1000 data sets
with n = 50 for each censoring level from two lognormal and
two gamma distributions, representing two skewed levels and
RBs are averaged.

Since both a-HCH and HCB have been completely detected,
their statistics, such as the am, gm and sd, are known. Biases of
different estimation methods were compared by articially
censoring the levels at 10%, 30%, and 50%. MLE and ROS
estimates are computed based on the distribution test of a-HCH
and HCB. ROS is only for censoring data where lognormal
distribution is assumed.
2.6 Statistical analysis

Data simulations and analysis are completed through R
language (R 4.3.2).29 Lognormal data simulation was performed
using the R function rlnorm(n, m log, s log), and gamma data
was simulated using the function rgamma(n, a, b). When using
LOD/2 substitution, we employed a linear model lm (.) func-
tion to test whether the factors had a signicant (P < 0.05) effect
on the RB of the am or gm estimation. In the model, the log-
transformed RB served as the dependent variable, while
m log, s log (or a, b), n and <LOD% were treated as inde-
pendent variables. Standardized coefficients were extracted
using the lm.beta (.) function in R. Weights u were computed
based on lognormal and gamma data simulated with m log,
s log, a and b listed in Table S2.‡ In the simulated data, LOD
was articially set and <LOD% was obtained. sd(XjX $ c) and
E(XjX $ c) could be computed accordingly (Table S1‡).
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 Concentrations of OCPs in the Tibet Namco lake atmosphere.
The distribution fittings were performed using a web app developed in
this paper (Fig. S3‡).
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Non-linear relationship between u and
sdðX jX$ cÞ
EðX jX $ cÞ , as shown in

formula (9), was tted using the R nls (.) function. Conse-
quently, the parameters a and b were obtained at different
<LOD% levels. Linear and quadratic functions were applied to
t the relationships between a (b) and <LOD% for lognormal
and gamma distribution separately. To test the goodness of t

of the nested models R2 ¼ 1�
P ðui � buiÞ2P ðui � uÞ2 was calculated

accordingly. Given the satisfaction of formula (9), uû could be
computed using the available information of the censored data,
specically the <LOD%, sd, and mean of the detected observa-
tions. The sample statistics of weighted substitution were then
computed as follows:

amuLOD=2 ¼
n\ � bu LOD

2
þ n. � x.

n
;

gmuLOD=2 ¼ exp

0
BB@
n\ � log

�bu LOD
2

�
þ n. � logðx. Þ

n

1
CCA; where

logðx. Þ is the mean of logarithm x, which is detected.

sduLOD=2

¼

0
BBBB@
n\ � �bu LOD

2
� amuLOD=2

�2

þ Pn
ðn�n\þ1Þ

�
x� amuLOD=2

�2
n� 1

1
CCCCA

0:5

R mle (.) and ros (.) functions were applied to implement
the MLE and ROS estimation. lognormal and gamma distribu-
tions were considered candidates for best-tting parametric
distributions for GC-MS-determined OCP measurements.
However, it is well known that testing the distributions of
censored data, compared to completely observed data, is
challenging.6,30 To simplify the process of tting distributions of
OCPs, we have developed a web app using the R Shiny pack-
age to censor environmental data. This app is available at
https://lidonghuang.shinyapps.io/Censored_tting_weighting_
substitution/. In the app, the function gofTestCensored (.) from
package ‘EnvStats’ is used to perform goodness-of-t tests.
These tools help visually and statistically assess how well the
chosen distribution ts the observed data. The Shapiro–Wilk
test, ECDF plot and QQ plot were used to evaluate and indicate
the better distribution between the candidates, lognormal and
gamma. To enable other scientists to conveniently utilize the
weighted substitution method proposed in this study, we have
integrated it into the web app as well. Instructions on how to
use the app are provided on the home page of the app.
3. Results
3.1 Distributions of air OCP measurements

Fig. 1 illustrates the concentration ranges of the eight atmo-
spheric OCPs. Notably, two were detected at full prevalence (a-
HCH and HCB), while the remaining six displayed varying
© 2025 The Author(s). Published by the Royal Society of Chemistry
degrees of concentrations <LOD. For these six OCPs, the
<LOD% ranged from 9% (o,p0-DDT) to 60% (b-HCH). The Sha-
piro–Wilk test and QQ plot with tted lognormal and gamma
distributions indicate gamma to be the best tting for these six.
This conclusion is supported by the higher p-values and the
points lying closer to the straight line in the QQ plot, which both
suggest a better t (Fig. S3‡). Therefore, it may be prudent to
question the assumption that pollutant concentrations merely
follow a lognormal distribution. If pollutants follow a gamma
distribution, it necessitates a re-evaluation of several theoretical
frameworks. For example, the selection of the likelihood func-
tion for the MLE, the suitability of the ROS method, and the
representativeness of the gm will all require reconsideration. At
present, estimates of the am, gm and sd of these six censored
pollutants were required on the basis of robust methods.

3.2 The RB of mean estimation by LOD/2 substitution for
simulated data

As illustrated in Fig. 2, for the lognormal type, the RB of am and
gm estimated by LOD/2 substitution ranged from−14% to 2%and
from−21% to 19% respectively. For the gamma type, the RB of am
and gm estimated by LOD/2 substitution ranged from−13% to 6%
and from −21% to 842%. The accuracy of both am and gm is
signicantly inuenced by skewness of data, as skewness of

lognormal data is given by ½es log2 þ 2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½es log2 � 1�

q
and skewness

of gamma data is 2=
ffiffiffi
a

p
(Tables S3–S6‡). Higher skewness and

<LOD% lead to greater uncertainty in mean estimation (Fig. 1).
Other factors, such as m log, b and n, had little effect on the RB of
both am and gm (Fig S4–S5‡). This result can explain why some
studies nd the LOD/2 substitution method to have smaller bias,
while others nd it to have larger bias,6,7,19 This discrepancy is
evidently related to the distribution structure of the data (Fig. S1‡).

3.3 Weighted LOD/2 substitution

When adjusting the LOD/2 to correct bias in mean estimation
using simulated data, the averaged weights used to compute am
Environ. Sci.: Atmos.
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Fig. 2 Response of Relative Bias (RB) for arithmetic mean (am, left) and geometric mean (gm, right) in simulated censored data: Effects of
lognormal slog and <LOD% (top) and gamma shape parameter a and <LOD% (bottom), with different scales applied.
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and gm for lognormal censored data were 1.33 and 1.24, and
0.98 and 0.76 for gamma censored data respectively (Table S7‡).
The relationship between the weights and known characteris-
tics of the censored data was illustrated in scatter plots (Fig. 3).
A general trend observed is that the weight decreased with an
increase in the ratio of sd to the expectation of observations

> LOD,
sdðX jX$ cÞ
EðX jX$ cÞ , and decreased with <LOD%. Notably, the

weights for gamma data were nearly constant at the highest
sdðX jX$ cÞ
EðX jX $ cÞ stage, suggesting that they are more affected by

<LOD%. Previous study pointed out that the reasonable limit

for
sdðXÞ
EðXÞ is 0.1–2,31 which is consistent with the range in this

study, indicating that our weights can be applied to the majority
of cases.

Aiming to predict weights using available

information
�
sdðX jX$ cÞ
EðXjX $ cÞ ;\LOD%

�
, various conventional

nonlinear models are used to t the relationship between u and
sdðX jX$ cÞ
EðX jX $ cÞ at xed < LOD%. The power function and expo-

nential functions as shown in formula (9) are found best to
predict u for lognormal and gamma distribution (Fig. S6 and
S7‡). To embrace the <LOD% in the prediction, constants of
Environ. Sci.: Atmos.
formula (9) are linked with <LOD% using linear and quadratic
equations for lognormal and gamma types respectively (Fig. S6

and S7‡). The full models (incorporating both
sdðX jX $ cÞ
EðX jX$ cÞ and

<LOD%) are summarized in Table 1. The selected model shows
a better goodness of t to the weights with an R2 > 0.98.

4. Discussion and applications

The accuracy of LOD/2 substitution for estimating am or gm
was markedly affected by skewness and <LOD% (Fig. 1), which
can be explained by the geometric area demonstration
(Fig. S8‡). Essentially, high skewness results in a steep initial
stage of the ECDF curve, increasing the bias of LOD/2 substi-
tution. The bias of LOD/2 substitution is magnied for gm due
to the transformation through an exponential algorithm
(Fig. S2‡). Apparently, large <LOD% can lead to unacceptable
accuracy levels, a concern also highlighted by others.6,7,32

4.1 Differences in representativeness of gm between
lognormal and gamma data

Some researchers suggest using gm instead of am to represent
the central tendency of lognormal censored data,7,16,32 as sup-
ported by the fact that the median of lognormal data equals the
gm (Table S1‡). Although the gm coincides with the median for
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 Relationship between weight (u) and
sdðX jX$ cÞ
EðX jX$ cÞ for accurate calculation of am (left) and gm (right) in lognormal and gamma censored

data.

Table 1 Models to fit the relationships of weight (u) to LOD/2 and known characteristics of censored data E(XjX$ c), sd(XjX $ c) and < LOD%)a

Distribution Type of mean Models to get u R2

Lognormal am u = a$tb 0.996
a = 10−3 [1482 − 9.164 c]
b = – 10−3 [166 + 2.569 c]

gm u = a$tb 0.992
a = 10−2[142.327 − 1.098 c]
b = −10−3[202.6 + 3.906 c]

Gamma am u = a$eb$t 0.999
a = 10−4 [1.215c2 −131.5 c + 23390]
b = −10−4[1.652c2 + 5.432 c + 8939]

gm u = a$eb$t 0.983
a = 10−4 [1.403 c2 − 123.6 c + 29240]
b = –10−4 [ 2.253 c2 + 111.1 c + 14210]

a u is weight; t ¼ sdðX jX $ cÞ
EðX jX $ cÞ ; c = <LOD (%) and a and b are constants.
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lognormal data, this is not the case for gamma data (Table S1‡).
For gamma data, the median is higher than the gm, especially
for highly skewed situations (Fig S9‡). This discrepancy between
gm and median indicates that gm may not effectively summa-
rize the central tendency of gamma censored data. As recom-
mended, reporting the am, gm and median together remains
a prudent approach.
© 2025 The Author(s). Published by the Royal Society of Chemistry
4.2 Merits of weighted LOD/2 substitution

Fig. 4 and S10‡ show the RB of weighted substitution in
comparison with other sophisticated methods for the HCB and
a-HCH data. Aside from the LOD/2 substitution method, the
RBs of other methods are all within 15%. Notably, for the HCB
data, the proposed weighted substitution method has an RB of
Environ. Sci.: Atmos.
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Fig. 4 Comparisons of relative bias (RB) in estimates of the am, gm and sd based on the atmospheric HCB case data. HCB is completely detected
and the am, gm and sd of the whole data are known. By virtually obtaining the censored HCB data with different <LOD%, the RB could be
calculated and compared among different methods. Scales are different.
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around 3% and is almost unaffected by the level of censoring
(Fig. 4). It is perplexing that, for the a-HCH data, the simple
substitution method performs best. The weighted substitution
method shows the largest RB for gm and sd when the censoring
level is 50%, but it is still below 15%, which is deemed to be
Fig. 5 Comparisons of relative bias (RB) in estimates of the am, gm and
lognormal distribution with m log = 1, s log = 0.5, and n = 50.

Environ. Sci.: Atmos.
acceptable (Fig. S12‡). Likewise, Hewett and Ganser19 also
found that substitution methods tended to be strongly biased,
but in some scenarios had the smaller error. This phenomenon
may be related to the distribution of the data, as we observed
sd from the simulation study. The simulated data were generated by

© 2025 The Author(s). Published by the Royal Society of Chemistry
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a noticeable inection in the ECDF curve of a-HCH, which
makes LOD/2 the best.

Fig. 5 and 6 show the RB of the weighted substitution in
comparison with other sophisticated methods in simulated
data.7,19,30 The weighted substitution yields surprisingly accu-
rate results for mean (am and gm) estimation in both lognormal
and gamma censored data (Fig. 5 and 6). For mean estimation,
the weighted method is more accurate than the MLE and ROS
methods. This improvement permits the choice to eliminate the
bias. Regarding standard deviation (sd), its performance on
lognormal data exhibits slightly more bias compared to the ROS
method but is superior to the MLE method (Fig. 5). For gamma
data, the bias of this method is less favorable compared to MLE
(Fig. 5). Nevertheless, irrespective of the distribution type or
censored level, the relative bias in sd estimation remains below
5%. This weightedmethod is primarily designed as an unbiased
estimator for the mean and does not achieve unbiased esti-
mation for the sd.31 However, the method has also signicantly
improved the accuracy of sd estimation, which can be attributed
to the more accurate mean estimation. The sample variance is

given by S2 ¼ 1
n� 1

Xn

i¼1
ðxi � XÞ2. For censored values, we
Fig. 6 Comparisons of relative bias (RB) in estimates of the am, gm and
gamma distribution with a = 3.5, b = 1.1, and n = 50.

© 2025 The Author(s). Published by the Royal Society of Chemistry
can write S2 ¼ 1
n� 1

½
XnM

i¼1
ðxi � XÞ2 þ nD$ðw$LOD=2� XÞ2�.

Both terms in the variance formula depend on the estimated
mean �X . When �X is more accurately estimated—as in our
proposed method—the variance calculation more accurately
reects the true spread of the data, thereby stabilizing variance
estimation. Fig. 5 and 6 exhibit the method accuracy respond-
ing to the moderately skewed distributions, as dened in
a publication.6 Fig. S11 and S12‡ show the accuracy of the
weighted method with highly skewed data. The RBs of weighted
substitution are within 10%, except for estimating the gm of
gamma data. Overall, considering that ROS is only applicable to
lognormal distributions and MLE can produce signicant bias
in certain situations (Fig. 6), the weighted method proposed in
this paper can greatly enrich the current toolbox for accurately
analyzing censored data.

Our results demonstrated that determining the distribution
type of censored dataset is essential for accurate statistical
estimation. For example, the precision of MLE depends on
correctly specifying the likelihood function, which is derived
from the probability density function of the data distribution.
sd from the simulation study. The simulated data were generated by

Environ. Sci.: Atmos.
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Table 2 Sample statistics of censored OCPs computed with the
weighted LOD/2 substitution method

OCP Distribution Methods am sd gm Median

b-HCH Gamma uLOD/2 0.45 0.41 0.27 NAa

MLE 0.42 0.47 0.21
g-HCH Gamma uLOD/2 2.11 1.79 1.32 1.6

MLE 2.11 1.93 1.32
o,p0-DDE Lognormal uLOD/2 1.20 2.13 0.57 0.5

MLE 1.17 2.22 0.55
ROSb 1.18 2.13 0.52

p,p0-DDE Gamma uLOD/2 1.97 2.40 0.85 0.9
MLE 1.89 2.23 0.82

o,p0-DDT Gamma uLOD/2 3.61 3.92 1.82 1.6
MLE 3.61 3.90 1.82

p,p0-DDT Gamma uLOD/2 1.19 1.18 0.62 0.65
MLE 1.18 1.33 0.55

a Median is not available because <LOD% is greater than 50%. b ROS is
applied only for lognormal data.
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Moreover, methods such as ROS are currently applicable only to
lognormal distributions, necessitating prior knowledge of
whether the data conform to this distribution. However,
previous studies oen assume that censored environmental
data follow a lognormal distribution,7,16,33 a supposition that
this study's ndings suggest that it may not always be valid.
Besides, study has indicated that applying the ROS estimator
directly to gamma-distributed data results in highly biased
estimates and large variances.33 In such cases, the ROS esti-
mator proves to be not robust against deviations from the
assumed distribution.

MLE, when correctly implemented using the CDF for
censored data, has strong theoretical advantages, such as
consistency and asymptotic efficiency. The consistency and
asymptotic efficiency of MLEmake it most reliable when sample
sizes are sufficiently large. However, in real-world environ-
mental applications, particularly when sample sizes are small,
MLE estimates can have larger bias.28 The weighted substitution
method generally performed as well as, or better than, MLE in
our simulated scenarios. Therefore, our method serves as
a practical and stable alternative, particularly in cases where
MLE performance is limited due to small sample sizes. We also
emphasize that our proposed method is not meant to replace
MLE universally, but rather to act as a exible and computa-
tionally efficient option in specic contexts (small datasets or
data scarcity). The underlying mathematical principle may
explain why MLE occasionally produces larger bias in standard
deviation estimates, particularly under small sample condi-
tions. As shown in formula (1), since sd depends exponentially
on both m log and s log, small estimation errors in these
parameters can lead to larger bias in the standard deviation due
to error propagation. MLE of SD for lognormal is not unbiased.

In many real-world environmental datasets, the LOD may
vary across samples due to differences in analytical methods or
instruments or matrix effects. In our current study, we assumed
a common LOD for simplicity and clarity in presenting the
method and simulations. However, handling heterogeneous
LODs is important for broader applicability. The proposed
uLOD/2 method can be extended to accommodate varying
LODs by applying individualized weights based on each
sample's specic detection limit and its corresponding
censoring level. The uLOD/2 framework is inherently exible
and can be extended to accommodate heterogeneous LODs.
Specically, each censored value can be substituted using an
individually weighted value.

For censored data, procedures for implementing distribu-
tion tting were mentioned.34 However, users must become
procient in the R programming language to effectively utilize
these methods. Apparently, the app developed in this study
incorporates methods for tting censored data distributions,
greatly enhancing the ease of use and hoping to improve the
accuracy of statistical estimation.
4.3 Atmospheric OCP concentrations

Analyzing data from typical measurements is essential, partic-
ularly in environmental pollutant studies. We briey considered
Environ. Sci.: Atmos.
the 6 atmospheric OCP datasets which contain measurements
under detection limits (Fig. 1). Resorting to the convenient way
to nish distribution tting (Fig. S3‡), a solid foundation is
established for selecting an appropriate likelihood function for
MLE and making informed choices for ROS. Table 2 shows the
estimated sample statistics for the six OCPs. We note that there
is good agreement of the MLE and uLOD/2 estimators. This
proves that the weighted method provides an alternative choice
to robustly calculate the mean and standard deviation of
censored environmental data.

Although this study focuses on atmospheric OCPs, the
proposed weighted substitution approach is not limited to
a specic pollutant type. As long as the data exhibit le-
censoring and the distributional assumption (e.g., lognormal
or gamma) is reasonably appropriate, the method can be
applied to a wide range of environmental contaminants,
including heavy metals, PCBs, PAHs, and others, which may
encounter the censored data processing challenge.35,36
5. Conclusions

Our weighted approach outperforms currently sophisticated
methods by producing smaller errors in estimating the arith-
metic mean and geometric mean for OCP data. The accuracy of
standard deviation estimation is also robust with error <5% in
most cases. Furthermore, we have developed a free, web-based
app that integrates data tting and statistical estimation,
which is well-suited to meet the needs of environmental science
and is bound to advance the eld of censored data processing.
The app is available at https://lidonghuang.shinyapps.io/
Censored_tting_weighting_substitution/. Our proposed
uLOD/2 method improves upon conventional substitution
approaches (e.g., LOD/2) by offering a more data-driven and
adaptive solution, which may help reduce bias in estimated
values, especially under high censoring. This could lead to more
reliable decision-making in regulatory contexts. Agencies such
as the EPA and WHO oen rely on summary statistics (e.g.,
© 2025 The Author(s). Published by the Royal Society of Chemistry
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mean concentrations) to assess compliance, health risks, and
environmental quality. However, the proposed method is
currently derived based on the assumption that data follow
either a lognormal or gamma distribution, which may not hold
for all datasets. Therefore, future work should explore the
extension of the weighting approach to other distributions,
such as the Weibull distribution. Additionally, the method's
performance is inuenced by the accuracy of the distribution
tting process. Although functions in the EnvStats package
facilitate distribution tting, misspecication can still occur,
particularly under high censoring, potentially leading to
increased bias. We emphasize the importance of carefully
assessing distributional assumptions, as mistting can
compromise the method's reliability. To improve robustness,
we encourage practitioners to incorporate distribution tting
results from multiple sources or methods and to verify
goodness-of-t using both statistical tests and visual
diagnostics.
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