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Abstract

As derivative of antioxidant of N-(1,3-dimethylbutyl)-N’-phenyl-p-phenylenediamine 

(6-PPD), 6-PPD quinone (6-PPDQ) is frequently found in environments and body of 

organisms. Vitamin D3 is an important vitamin needing the adsorption from intestine. In 

Caenorhabditis elegans, vitamin D3 content was reduced by 0.1-10 μg/L 6-PPDQ. 

Meanwhile, 6-PPDQ (0.1-10 μg/L) decreased expressions of lrp-2, scl-12, scl-13, and ifo-1, 

and their RNAi decreased vitamin D3 content in 6-PPDQ exposed animals. 6-PPDQ (0.1-10 

μg/L) further decreased nhr-8 expression and increased daf-12 expression, and expression of 

these 2 vitamin D3 receptor genes could be changed by RNAi of lrp-2, scl-12, scl-13, and 

ifo-1 after 6-PPDQ exposure. The 6-PPDQ toxicity was increased by RNAi of lrp-2, scl-12, 

scl-13, ifo-1, and nhr-8 and inhibited by daf-12 RNAi. Moreover, after 6-PPDQ exposure, 

SOD-3 and HSP-6 expressions were decreased by nhr-8 RNAi and increased by daf-12 RNAi. 

Therefore, 6-PPDQ potentially caused damage on adsorption of vitamin D3 and function of 

its receptors, and these effects were related to toxicity induction of 6-PPDQ.

Keywords: vitamin D3 adsorption, receptor function, 6-PPDQ, nematode
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Environmental Significance Statement:

6-PPD quinone (6-PPDQ) can be found in different environments and body of organisms, and 

further results in toxicity on organism including disruption in metabolisms. Vitamin D is 

essential for organisms and needs to be obtained from diet sources. In Caenorhabditis elegans, 

we observed reduction in vitamin D3 contents by 6-PPDQ at environmentally relevant 

concentrations (0.1-10 μg/L). This reduction was related to inhibition in adsorption of vitamin 

D3 and decrease in expression of vitamin D3 transporter genes. Additionally, 6-PPDQ altered 

expression of nhr-8 and daf-12, two vitamin D3 receptor genes, and these receptors genes had 

opposite functions to control 6-PPDQ toxicity by differentially affecting responses of 

Mn-SOD and mitochondrial unfolded protein response (mt UPR).

1. Introduction

In rubber products, N-(1,3-dimethylbutyl)-N’-phenyl-p-phenylenediamine (6-PPD) is a 

widely used antioxidant with the aim for effectively delaying material aging and enhancing 

durability.1 After release from the tires, 6-PPD can react with ozone to generate 6-PPD 

quinone (6-PPDQ) through several pathways.2 Among members of tire wear particles 

(TWP)-related pollutants, 6-PPDQ initially receives attention due to its cause for acute 

lethality in coho salmon.3 PPDQ is widely distributed in environmental media, including 

urban runoff,4 rivers,5 soil,6 and road dust,6 which was closely linked to the traffic density. 

Environmentally relevant concentrations (ERCs) for 6-PPDQ ranged from ng/L to tens of 

μg/L.7 6-PPDQ was further found in some human related biological samples including blood 

and urine,8 suggesting its potential exposure risk to the human health. Accompanied with 

environmental distribution, 6-PPDQ resulted in toxicity on environmental organisms, such as 

fishes.9 In mammals, along with organ distribution, 6-PPDQ caused multiple organ injury, 

including damage on liver and lung.10-11

Besides having typical properties of model animal, Caenorhabditis elegans is highly 

sensitive to pollutants.12-13 Largely because of this, pollutants toxicity at ERCs was frequently 

observed in nematodes.14-15 After exposure at ERCs, 6-PPDQ led to intestinal oxidative 
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damage,16 suggesting damage on intestine, the primary target organ of pollutants.17 Besides 

toxicity on intestine, 6-PPDQ also caused neurotoxicity (such as inhibited locomotion)18 and 

reproductive toxicity (such as decreased brood size)19-20. In cells, 6-PPDQ further induced 

mitochondrial dysfunction,21 which was related to damage on at least mitochondrial complex 

I-III.22 In nematodes, recently, we further observed disruption in some metabolisms (such as 

glucose and glycogen metabolisms) by 6-PPDQ exposure.23-26

Vitamin D (such as vitamin D3) is an essential vitamin needing to be obtained from diet 

source in intestine.27 Vitamin D deficiency would cause a subset of diseases and further lead 

to health consequence in the clinical,28 and this deficiency has become a worldwide 

question.29 Pharmacological analysis indicated the role of vitamin D3 in modulating stress 

response.30 Thus, we asked whether 6-PPDQ at ERCs could affect vitamin D3 adsorption and 

function of its receptors in organisms. Considering conserved processes of biochemical 

metabolisms, C. elegans is helpful to elucidate molecular basis of metabolic processes.31 In 

the current study, in this model, we first examined possible effect of 6-PPDQ on vitamin D3 

adsorption. Moreover, we determined effect of 6-PPDQ on function of vitamin D3 receptors 

and the association with toxicity induction and underlying mechanism. Three C. elegans 

receptors (NHR-48, NHR-8, and DAF-12) act as orthologs of human vitamin D receptor.30 

Our results highlighted the damage on vitamin adsorption and function of receptors by 

6-PPDQ at ERCs, and this was associated with toxicity formation by suppressing certain 

protective responses, such as Mn-SOD and mitochondrial unfolded protein response (mt 

UPR).

2. Materials and methods

2.1. Reagents

To prepare a stock solution of 6-PPDQ (1 g/L), 1 mg 6-PPDQ powder (Toronto 

Chemical Research Co.) was dissolved in 1 mL dimethyl sulfoxide (DMSO). Selection of 

6-PPDQ working solutions (0.1, 1, and 10 μg/L) were based on reported ERCs of 6-PPDQ,7 

and they were prepared after dilution of stock solution by K buffer. Vitamin D3 was 
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purchased from Sangon Biotech. (Shanghai) Co. Working concentration (400 μM) of vitamin 

D3 was selected as described.30

2.2. C. elegans maintenance

C. elegans were cultured on nematode growth medium (NGM) plates fed with E. coli 

OP50.32 Used wild-type strain is N2. To prepare L1-larval population, gravid nematodes were 

treated by alkaline hypochlorite lysis solution (0.45 M NaOH and 2 % HOCl) to release the 

eggs.33 The obtained eggs were transferred to another NGM plate to develop into 

synchronized L1 larvae.

2.3. Exposure

As previously described, we assessed toxicity of 6-PPDQ by continuously exposing 

synchronized L1 larvae to 6-PPDQ till to adult day-3 (approximately for 6.5 days).34 

Exposure solution was replaced daily to maintain a consistent concentration of chemical. 

OP50 was meanwhile added in exposure solutions to satisfy the need of larval development.

2.4. Vitamin D3 content

Vitamin D3 test kit (Sangon Biotech. Co.) was used to quantify vitamin D3 content. C. 

elegans were weighted and homogenized in a tissue crusher. After centrifugation at 5000g for 

10 minutes, supernatant was collected for measurement of absorbance at 450 nm. A standard 

curve was generated, and the vitamin D3 content in each group was calculated. Experiments 

were repeated three times.

2.5. Endpoints

Intestinal reactive oxygen species (ROS) generation was used to assess oxidative stress 

induction in intestine. The exposed C. elegans were washed with K buffer and centrifuged to 
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remove the bacteria. C. elegans were labeled by 1 μM CM-H2DCFDA for 2 hours with 

shaking at 200 rpm.35 Following incubation, C. elegans were added on 2 % agar plates. 

Intestinal ROS fluorescence signals were analyzed under fluorescence microscopy 

(excitation/emission wavelength: 488/510 nm). Fluorescence intensity of ROS signals was 

quantified using ImageJ software. Fifty C. elegans were tested per treatment.

Intestinal lipofuscin accumulation is also an indicator of intestinal oxidative damage.17 

The exposed C. elegans were washed with K buffer and centrifuged to remove the bacteria. 

The C. elegans were first fixed for 20 minutes by 4% paraformaldehyde. After fixation, C. 

elegans were analyzed under DAPI filter using fluorescence microscope. Fluorescence 

intensity was also evaluated using ImageJ software. Fifty C. elegans were tested per 

treatment. 

Locomotion was assessed by analyzing body bending and head thrashing frequencies.36 

C. elegans were allowed to recover for 1 minute on a fresh NGM plate without OP50 bacteria. 

Subsequently, locomotion behavior was evaluated. Head thrashing was measured by tracking 

movement direction along X-axis and changes in direction of posterior (Y-axis), and body 

bending was quantified by observing direction of bend at mid-body.37 The frequency was 

counted within 1 min (head thrashes) or 20 s (body bends). Fifty C. elegans were tested per 

treatment.

Brood size was used to reflect the reproductive capacity of C. elegans. Brood size 

indicates the total number of offspring produced by each C. elegans, which was measured 

until the C. elegans ceased egg-laying.17 Thirty C. elegans were tested per treatment.

2.6. Transcriptional expression

C. elegans were homogenized using Trizol and ceramic beads to ensure efficient tissue 

lysis. cDNA was synthesized using M-MuLV reverse transcriptase. Quantitative real-time 

polymerase chain reaction (qRT-PCR was performed using a SYBR qPCR Master Mix 

(Vazyme, China) with a StepOnePlus Real-Time PCR System (Applied Biosystems). The 

relative expression levels were calculated using the 2−ΔΔCt method. tba-1 gene is a reference 

gene.38 Experiment was conducted in triplicate. Primers are shown in Table S1.

Page 5 of 29 Environmental Science: Processes & Impacts

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

E
nv

ir
on

m
en

ta
lS

ci
en

ce
:P

ro
ce

ss
es

&
Im

pa
ct

s
A

cc
ep

te
d

M
an

us
cr

ip
t

Pu
bl

is
he

d 
on

 3
0 

Ju
ly

 2
02

5.
 D

ow
nl

oa
de

d 
by

 Y
un

na
n 

U
ni

ve
rs

ity
 o

n 
8/

5/
20

25
 1

0:
52

:0
0 

A
M

. 

View Article Online
DOI: 10.1039/D5EM00358J

https://doi.org/10.1039/d5em00358j


6

2.7 RNA interference (RNAi)

To silence expression of candidate genes in C. elegans, dsRNA-producing bacterial 

strains were fed to animals.39 Monoclones for RNAi feeding were picked to 2 mL LB liquid 

medium added with ampicillin and tetracycline, and incubated overnight in a shaker at 37 ◦C. 

The isopropylthiogalactoside was added and further induced for 4 h. The L1 larvae nematodes 

were cultured on NGM plated fed with RNAi bacteria. The offspring were used for 6-PPDQ 

exposure. Empty vector L4440 acted as control.40 Fig. S1 shows the RNAi efficiency.

2.8 Data analysis

Data are represented as means ± SD. Statistical test was analyzed by SPSS v27. 

Difference among groups was evaluated using one-way or two-way ANOVA (for multi-factor 

comparison) followed by post-hoc test. The p-values of < 0.05 (*) and < 0.01 (**) were 

deemed statistically significant.

3. Results

3.1. 6-PPDQ affected adsorption of vitamin D3

Vitamin D3 content was reduced by 0.1-10 μg/L 6-PPDQ (Fig. 1A). In C. elegans, some 

transporters including CHUP-1,41 LRP-2,42 IFO-1,43 and SCL-12/1344 have been identified to 

control of adsorption of nutrients from intestinal lumen to intestinal cells. Among them, 

chup-1 expression was not changed by 0.1-10 μg/L 6-PPDQ (Fig. 1B). In contrast, exposure 

to 0.1-10 μg/L 6-PPDQ decreased expression of lrp-2, scl-12, scl-13, and ifo-1 (Fig. 1B). 

Under normal condition, expression of lrp-2, scl-12, scl-13, and ifo-1 could be activated by 

vitamin D3 (400 μM) (Fig. 1C).

We next focused on the concentration of 10 μg/L for 6-PPDQ to examine effects of 

RNAi of vitamin D3 adsorption related and receptor genes in 6-PPDQ exposed nematodes. 
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Moreover, after 6-PPDQ exposure, vitamin D3 content could be further reduced by RNAi of 

lrp-2, scl-12, scl-13, and ifo-1 (Fig. 1D).

3.2. 6-PPDQ affected expression of receptors genes for vitamin D3

Among C. elegans vitamin D3 receptor genes, after 0.1-10 μg/L exposure, nhr-48 

expression was not altered; however, nhr-8 expression was decreased and daf-12 expression 

was increased (Fig. 2A). Under normal condition, vitamin D3 (400 μM) treatment activated 

nhr-8 expression and inhibited daf-12 expression (Fig. 2B). Moreover, after 6-PPDQ 

exposure, RNAi of lrp-2, scl-12, scl-13, and ifo-1 cloud inhibit nhr-8 expression and 

accelerate daf-12 expression (Fig. 2C).

3.3. RNAi of genes governing vitamin D3 adsorption and vitamin D3 receptor genes 

affected intestinal 6-PPDQ toxicity

In intestine, ROS generation and lipofuscin accumulation could be induced by 

6-PPDQ.45 After 6-PPDQ exposure, the induced intestinal ROS generation could be 

strengthened by lrp-2, scl-12, scl-13, ifo-1, and nhr-8 RNAi, and suppressed by daf-12 RNAi 

(Fig. 3A). Similarly, after 6-PPDQ exposure, the induced intestinal lipofuscin accumulation 

was increased by lrp-2, scl-12, scl-13, ifo-1, and nhr-8 RNAi, and decreased by daf-12 RNAi 

(Fig. 3B).

3.4. RNAi of genes governing vitamin D3 adsorption and vitamin D3 receptor genes 

affected 6-PPDQ toxicity in resulting in inhibited locomotion and reduced brood size

Exposure to 6-PPDQ could induce neurotoxicity (such as inhibited locomotion)18 and 

reproductive toxicity (such as reduced brood size)19. After 6-PPDQ exposure, the induced 

locomotion inhibition was enhanced by lrp-2, scl-12, scl-13, ifo-1, and nhr-8 RNAi, and 

inhibited by daf-12 RNAi (Fig. 4A). Additionally, after 6-PPDQ exposure, the observed 

reduction in brood size could be strengthened by lrp-2, scl-12, scl-13, ifo-1, and nhr-8 RNAi, 
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and suppressed by daf-12 RNAi (Fig. 4B).

3.5. RNAi of nhr-8 and daf-12 affected response of Mn-SOD and mitochondrial UPR in 

6-PPDQ exposed nematodes

Mn-SOD and mitochondrial UPR are important protective responses against 6-PPDQ 

toxicity.46-47 SOD-3 is a member of mitochondrial Mn-SODs, and HSP-6 is marker of 

mitochondrial UPR. Expressions of sod-3 and hsp-6, as well as expressions of SOD-3::GFP 

and HSP-6::GFP, were decreased by 10 μg/L 6-PPDQ. The 6-PPDQ induced decrease in 

sod-3 and SOD-3::GFP expressions were enhanced by nhr-8 RNAi and suppressed by daf-12 

RNAi (Fig. 5A and 5B). In addition, 6-PPDQ caused reduction in hsp-6 and HSP-6::GFP 

expressions were strengthened by nhr-8 RNAi and inhibited by daf-12 RNAi (Fig. 5A and 

5C).

3.6. Pharmacological effect of treatment with vitamin D3 on 6-PPDQ toxicity in 

wild-type nematodes

To confirm beneficial role of vitamin D3 against 6-PPDQ toxicity, we performed 

pharmacological vitamin D3 treatment in 6-PPDQ exposed wild-type. The 6-PPDQ induced 

intestinal ROS generation and lipofuscin accumulation could be decreased by following 

vitamin D3 treatment (Fig. 6A ad 6B). Similarly, 6-PPDQ caused inhibition in locomotion 

and brood size could be suppressed by vitamin D3 treatment (Fig. 6C and 6D). Moreover, the 

observed decrease in nhr-8 expression and increase in daf-12 expression caused by 6-PPDQ 

were also inhibited by following vitamin D3 treatment (Fig. 6E).

3.7. Pharmacological effect of treatment with vitamin D3 on 6-PPDQ toxicity in 

nhr-8(RNAi) nematodes

Considering the susceptibility of nhr-8(RNAi) to 6-PPDQ toxicity, we further carried out 

pharmacological vitamin D3 treatment in 6-PPDQ exposed nhr-8(RNAi) nematodes. Vitamin 
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D3 treatment could inhibit intestinal ROS generation and lipofuscin accumulation caused by 

6-PPDQ in nhr-8(RNAi) nematodes (Fig. 7A and 7B). Additionally, vitamin D3 treatment 

could further increase locomotion and brood size in 6-PPDQ exposed nhr-8(RNAi) (Fig. 7C 

and 7D).

4. Discussion

In organisms, 6-PPDQ caused several aspects of biochemical metabolisms. 6-PPDQ 

disrupted lipid metabolism in frogs,48 and affected citric acid cycle in C. elegans.49 In C. 

elegans, both glucose accumulation and glycogen accumulation were induced by 6-PPDQ.23-24 

In adult zebrafish and mice, glucolipid was also affected by 6-PPDQ.50-51 6-PPDQ could 

disrupt amino acid metabolisms (such as arginine biosynthesis) in mice.52 6-PPDQ decreased 

dopamine content by affecting its synthesis and transport in nematodes.53 We further found 

the decrease in vitamin D3 content in C. elegans (Fig. 1A). These observations suggested that 

6-PPDQ can potentially result in disruption in multiple aspects of biochemical metabolisms in 

various organisms.

After the exposure, the observed reduction in vitamin D3 content was largely due to 

inhibition in vitamin D3 adsorption by C. elegans. Two lines of evidence supported this. 

Firstly, 6-PPDQ (0.1-10 μg/L) decreased expression of lrp-2, scl-12, scl-13, and ifo-1 

governing nutrient uptake from intestinal lumen (Fig. 1B). Secondly, after 6-PPDQ exposure, 

vitamin D3 content could be reduced by RNAi of lrp-2, scl-12, scl-13, and ifo-1 (Fig. 1D), 

which confirmed the role of these genes in controlling vitamin D3 adsorption. That is, 

6-PPDQ inhibited adsorption of vitamin D3 by suppressing expression and function of lrp-2, 

scl-12, scl-13, and ifo-1. C. elegans LRP-2, IFO-1, and SCL-12/13 were also involved in 

regulating adsorption of other nutrients, such as cholesterol.42-44 These observations 

demonstrated that LRP-2, IFO-1, and SCL-12/13 may provide conserved molecular 

mechanisms for adsorption of nutrients from C. elegans intestinal lumen. In addition, under 

normal condition, expression of lrp-2, scl-12, scl-13, and ifo-1 could be activated by vitamin 

D3 treatment (Fig. 1C). This suggested that vitamin D3 treatment could induce the response 

and activation of lrp-2, scl-12, scl-13, and ifo-1, which in turns drives the adsorption of 
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vitamin D3 from intestinal lumen.

Besides the effect on vitamin D3 adsorption, 6-PPDQ also affected expression of vitamin 

D3 receptors. Among candidate receptors, 0.1-10 μg/L 6-PPDQ decreased nhr-8 expression 

and increased daf-12 expression (Fig. 2A), which implied that NHR-8 and DAF-12 had 

opposite functions in 6-PPDQ exposed nematodes. The nhr-48 expression was not changed 

by 0.1-10 μg/L 6-PPDQ (Fig. 2A), suggesting that nhr-48 expression was not sensitive to 

6-PPDQ exposure. Moreover, we provided two lines of evidence to support the role of NHR-8 

and DAF-12 as vitamin D3 receptors. Firstly, under normal condition, vitamin D3 treatment 

could increase nhr-8 expression and decrease daf-12 expression (Fig. 2B), indicating the 

response of nhr-8 and daf-12 to vitamin D3. Secondly, after 6-PPDQ exposure, RNAi of lrp-2, 

scl-12, scl-13, and ifo-1 could decrease nhr-8 expression and increase daf-12 expression (Fig. 

2C), which suggested that the inhibited vitamin D3 adsorption by 6-PPDQ would affect 

expression of these two genes.

After the exposure, RNAi of genes (lrp-2, scl-12, scl-13, and ifo-1) governing vitamin 

D3 adsorption caused susceptibility to 6-PPDQ toxicity in causing intestinal ROS generation 

and lipofuscin accumulation (Fig. 3), inhibiting locomotion (Fig. 4A), and reducing brood 

size (Fig. 4B). This indicated that, besides having function to control vitamin D3 adsorption, 

these genes also participated in controlling stress response, such as the response to 6-PPDQ 

exposure, which suggested the novel function of these genes. Moreover, this suggested the 

possible association of reduction in vitamin D3 adsorption with toxicity induction of 6-PPDQ. 

For the formation of susceptibility to 6-PPDQ toxicity in lrp-2(RNAi), scl-12(RNAi), 

scl-13(RNAi), and ifo-1(RNAi), we further raised underlying molecular basis. That is, after 

6-PPDQ exposure, RNAi of lrp-2, scl-12, scl-13, and ifo-1 could result in inhibition in 

protective responses of antioxidation and mitochondrial UPR by suppressing SOD-3 and 

HSP-6 expressions (Fig. 5). Antioxidation and mitochondrial UPR are two important 

protective responses for nematodes against toxicity of pollutants and stresses.54 In C. elegans, 

RNAi of sod-3 and hsp-6 strengthened 6-PPDQ toxicity in reducing lifespan.46 Additionally, 

sod-3 RNAi enhanced 6-PPDQ induced ROS generation,22 and hsp-6 RNAi enhanced 

6-PPDQ toxicity in causing mitochondrial dysfunction and mitochondrial ROS generation.47

Besides the genes governing vitamin D3 adsorption, vitamin D3 receptor genes also 
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participated in controlling 6-PPDQ toxicity. Nevertheless, nhr-8(RNAi) showed susceptibility 

to 6-PPDQ toxicity, whereas daf-12(RNAi) exhibited resistance to 6-PPDQ toxicity (Fig. 3 

and 4). This suggested that decrease in nhr-8 expression and increase in daf-12 expression 

mediated toxicity induction of 6-PPDQ. Additionally, NHR-8 and DAF-12 had opposite 

functions in regulating 6-PPDQ toxicity. This is also supported by some of previous studies. 

RNAi of nhr-8 also enhanced 6-PPDQ induced immunosenescence.35 Similarly, nhr-8(RNAi) 

showed susceptibility to toxicity of CPPDQ.55 In contrast, RNAi of daf-12 resulted in 

resistance to toxicity of multi-walled carbon nanotube56 and nanoplastic39. RNAi of daf-12 

further suppressed 6-PPDQ induced immunosenescence.35 Moreover, opposite functions 

between NHR-8 and DAF-12 was also reflected by their role in affecting their targets during 

controlling 6-PPDQ toxicity. The 6-PPDQ exposure caused inhibition in expressions of 

SOD-3 and HSP-6 could be strengthened by nhr-8 RNAi and suppressed by daf-12 RNAi 

(Fig. 5). Considering the decrease in nhr-8 expression and increase in daf-12 expression (Fig. 

2A), the altered nhr-8 and daf-12 expression after 6-PPDQ exposure both implied inhibition 

in antioxidation response and mitochondrial UPR. Moreover, using intestinal ROS generation, 

intestinal lipofuscin accumulation, and locomotion as endpoints, genetic interaction analysis 

indicated that the resistance of daf-12(RNAi) to 6-PPDQ toxicity could be suppressed by 

RNAi of nhr-8 (Fig. S2). This implied the possibility that, besides directly affecting SOD-3 

and HSP-6 expression, DAF-12 possibly also controlled SOD-3 and HSP-6 expressions and 

toxicity of 6-PPDQ by inhibiting NHR-8. During control of 6-PPDQ toxicity, SOD-3 and 

HSP-6 also acted as targets of DAF-16, a FOXO transcriptional factor in insulin signaling 

pathway.46 After 6-PPDQ exposure, daf-16 expression was decreased.46 Considering the role 

of DAF-12 and NHR-8 as nuclear hormone receptors (NHRs), after inhibition in NHR-8 and 

activation of DAF-12 on nuclear membrane in the cells, 6-PPDQ may further induce 

suppression in SOD-3 and HSP-6 expressions by inhibiting DAF-16. That is, the signaling 

cascade of DAF-12/NHR-8-DAF-16 may exist to control SOD-3 and HSP-6 expressions in 

6-PPDQ exposed nematodes, which needs to be further determined.

Increasing evidence including those from human studies have indicated beneficial effect 

of vitamin D supplementation.57 Vitamin D3 treatment could suppress formation of paralysis 

induced by amyloid-beta in C. elegans transgenic AD model.58 In this study, 6-PPDQ induced 
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intestinal toxicity (such as ROS generation and lipofuscin accumulation in intestine) could be 

inhibited by vitamin D3 treatment (Fig. 6A and 6B). Additionally, decreased locomotion and 

reduced brood size induced by 6-PPDQ could be further inhibited by vitamin D3 treatment 

(Fig. 6C and 6D). These observations suggested that vitamin D3 treatment can be considered 

as an intervention strategy against 6-PPDQ induced damage on organisms.

Furthermore, we found that vitamin D3 could show beneficial effect against 6-PPDQ 

toxicity by affecting its corresponding receptors. After 6-PPDQ exposure, the induced 

decrease in nhr-8 expression and increase in daf-12 expression could be reversed by 

following vitamin D3 treatment (Fig. 6E). Moreover, vitamin D3 treatment could suppress 

formation of susceptibility of nhr-8(RNAi) nematodes to 6-PPDQ toxicity (Fig. 7). 

Pharmacological treatment with vitamin D3 could also rescue the short lifespan phenotype of 

nhr-8 mutants.30

5. Conclusions

Together, we found the reduction in vitamin D3 content by 6-PPDQ exposure in 

nematodes. This 6-PPDQ induced reduction in vitamin D3 content was due to inhibition in 

vitamin D3 adsorption mediated by inhibition in lrp-2, scl-12, scl-13, and ifo-1 expressions. 

Moreover, 6-PPDQ affected expression of nhr-8 and daf-12, two vitamin D3 receptor genes. 

RNAi of genes governing vitamin D3 adsorption and receptor genes all could influence 

6-PPDQ toxicity. NHR-8 and DAF-12 could regulate 6-PPDQ toxicity by affecting 

mitochondrial Mn-SOD and mitochondrial UPR responses. The 6-PPDQ induced toxicity 

could be suppressed by following vitamin D3 treatment, which further confirmed beneficial 

effect of vitamin D3 against 6-PPDQ toxicity. Our results suggested long-term exposure risk 

of 6-PPDQ in disrupting vitamin adsorption and function of its receptors in organisms.
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Figure legends:

Fig. 1 Effect of 6-PPDQ exposure on vitamin D3 content and adsorption. (A) Effect of 

6-PPDQ exposure on vitamin D3 content. Relative vitamin D3 content is shown after 

normalization to control. *P < 0.05 and **P < 0.01 vs control. (B) Effect of 6-PPDQ exposure 

on expression of clup-1, lrp-2, scl-12, scl-13, and ifo-1. **P < 0.01 vs control. (C) Effect of 

vitamin D3 treatment at 400 μM on expression of clup-1, lrp-2, scl-12, scl-13, and ifo-1. 

Young adults were treated with 400 μM vitamin D3 for 24-h. Relative vitamin D3 content is 

shown after normalization to control. **P < 0.01 vs control. (D) Effect of RNAi of clup-1, 

lrp-2, scl-12, scl-13, and ifo-1 on vitamin D3 content in 6-PPDQ exposed nematodes. 

Exposure concentration of 6-PPDQ was 10 μg/L. Relative vitamin D3 content is shown after 

normalization to control. **P < 0.01 vs wild-type(L4440).

Fig. 2 Effect of 6-PPDQ exposure on expression of vitamin D3 receptor genes. (A) Effect of 

6-PPDQ exposure on expressions of nhr-8, nhr-48, and daf-12. **P < 0.01 vs control. (B) 

Effect of vitamin D3 treatment at 400 μM on expression of nhr-8 and daf-12. Young adults 

were treated with 400 μM vitamin D3 for 24-h. **P < 0.01 vs control. (C) Effect of RNAi of 

clup-1, lrp-2, scl-12, scl-13, and ifo-1 on expression of nhr-8 and daf-12 in 6-PPDQ exposed 

nematodes. Exposure concentration of 6-PPDQ was 10 μg/L. **P < 0.01 vs wild-type(L4440).

Fig. 3 Effect of RNAi of lrp-2, scl-12, scl-13, ifo-1, nhr-8, and daf-12 on 6-PPDQ toxicity in 

causing intestinal ROS generation (A) and intestinal lipofuscin accumulation (B). Exposure 

concentration of 6-PPDQ was 10 μg/L. **P < 0.01 vs wild-type(L4440).

Fig. 4 Effect of RNAi of lrp-2, scl-12, scl-13, ifo-1, nhr-8, and daf-12 on 6-PPDQ toxicity in 

causing inhibition in locomotion (A) and reduction in brood size (B). Exposure concentration 

of 6-PPDQ was 10 μg/L. **P < 0.01 vs wild-type(L4440).

Fig. 5 Effect of RNAi of nhr-8 and daf-12 on expression of SOD-3 and HSP-6 in 6-PPDQ 

exposed nematodes. (A) Effect of RNAi of nhr-8 and daf-12 on expression of sod-3 and hsp-6 
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in 6-PPDQ exposed nematodes. (B) Effect of RNAi of nhr-8 and daf-12 on expression of 

SOD-3::GFP in 6-PPDQ exposed nematodes. (C) Effect of RNAi of nhr-8 and daf-12 on 

expression of HSP-6::GFP in 6-PPDQ exposed nematodes. Exposure concentration of 

6-PPDQ was 10 μg/L. **P < 0.01.

Fig. 6 Pharmacological effect of treatment with vitamin D3 on 6-PPDQ toxicity in wild-type 

nematodes. (A) Pharmacological effect of treatment with vitamin D3 on 6-PPDQ toxicity in 

inducing intestinal ROS generation in wild-type nematodes. (B) Pharmacological effect of 

treatment with vitamin D3 on 6-PPDQ toxicity in inducing intestinal lipofuscin accumulation 

in wild-type nematodes. (C) Pharmacological effect of treatment with vitamin D3 on 6-PPDQ 

toxicity in causing inhibition in locomotion in wild-type nematodes. (D) Pharmacological 

effect of treatment with vitamin D3 on 6-PPDQ toxicity in causing reduction in brood size in 

wild-type nematodes. (E) Pharmacological effect of treatment with vitamin D3 on expression 

of nhr-8 and daf-12 in 6-PPDQ exposed wild-type nematodes. After exposure to 10 μg/L 

6-PPDQ from L1-larvae for 6.5 days, the nematodes were treated with 400 μM vitamin D3 for 

24-h. **P < 0.01.

Fig. 7 Pharmacological effect of treatment with vitamin D3 on 6-PPDQ toxicity in 

nhr-8(RNAi) nematodes. (A) Pharmacological effect of treatment with vitamin D3 on 6-PPDQ 

toxicity in inducing intestinal ROS generation in nhr-8(RNAi) nematodes. (B) 

Pharmacological effect of treatment with vitamin D3 on 6-PPDQ toxicity in inducing 

intestinal lipofuscin accumulation in nhr-8(RNAi) nematodes. (C) Pharmacological effect of 

treatment with vitamin D3 on 6-PPDQ toxicity in causing inhibition in locomotion in 

nhr-8(RNAi) nematodes. (D) Pharmacological effect of treatment with vitamin D3 on 6-PPDQ 

toxicity in causing reduction in brood size in nhr-8(RNAi) nematodes. After exposure to 10 

μg/L 6-PPDQ from L1-larvae for 6.5 days, the nematodes were treated with 400 μM vitamin 

D3 for 24-h. **P < 0.01.
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Figure 1:
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Figure 2:
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Figure 3:
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Figure 4:
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Figure 5:

Page 26 of 29Environmental Science: Processes & Impacts

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

E
nv

ir
on

m
en

ta
lS

ci
en

ce
:P

ro
ce

ss
es

&
Im

pa
ct

s
A

cc
ep

te
d

M
an

us
cr

ip
t

Pu
bl

is
he

d 
on

 3
0 

Ju
ly

 2
02

5.
 D

ow
nl

oa
de

d 
by

 Y
un

na
n 

U
ni

ve
rs

ity
 o

n 
8/

5/
20

25
 1

0:
52

:0
0 

A
M

. 

View Article Online
DOI: 10.1039/D5EM00358J

https://doi.org/10.1039/d5em00358j


27

Figure 6:
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Figure 7:
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