
JAAS

PAPER

Pu
bl

is
he

d 
on

 0
9 

Ju
ne

 2
02

5.
 D

ow
nl

oa
de

d 
by

 Y
un

na
n 

U
ni

ve
rs

ity
 o

n 
7/

31
/2

02
5 

6:
48

:3
0 

A
M

. 

View Article Online
View Journal  | View Issue
LIBS quantitative
aJiangxi Provincial Key Laboratory of

Technology and Instruments, Nanchang H

China. E-mail: hzq@nchu.edu.cn; jlshi@nch
bDepartment of Nuclear Physics, China Ins

China

Cite this: J. Anal. At. Spectrom., 2025,
40, 2038

Received 10th April 2025
Accepted 2nd June 2025

DOI: 10.1039/d5ja00132c

rsc.li/jaas

2038 | J. Anal. At. Spectrom., 2025,
analysis based on multi-model
calibration marked with characteristic lines

Baining Xu, a Zhongqi Hao, *a Yuanhang Wang, b Li Liu,a Neng Zhang,a Yu Rao,a

Lei Wang,a Jiulin Shi*a and Xingdao Hea

Long-term reproducibility remains one of the important challenges in laser-induced breakdown

spectroscopy (LIBS) quantitative analysis. In this work, a novel LIBS quantitative method based on multi-

model calibration marked with characteristic lines was proposed. Under identical experimental

equipment and parameters, multiple calibration models were established by using LIBS data collected at

different time intervals. Simultaneously, the characteristic line information, which reflects variations in

experimental conditions, was marked as the characteristic of each calibration model. During the analysis

of unknown samples, the optimal calibration model was selected for quantitative analysis by

characteristic matching. Taking the analysis of Mo, V, Mn, and Cr elements in alloy steel as an example,

ten calibration models were established based on daily spectral data, and the test samples were

quantitatively validated for five days. The results indicate that, compared to the single calibration model,

the calibration model selected through the matching of characteristic lines significantly improves the

average relative errors (ARE) and the average standard deviations (ASD). The method proposed in this

study provides a new quantitative analysis idea for LIBS technology, which can effectively improve the

reproducibility of LIBS long-term repeated measurements.
1. Introduction

Laser-induced breakdown spectroscopy (LIBS) is an atomic
emission spectroscopy technique that employs high-energy
focused laser pulses to generate plasma from samples.1 The
LIBS technique offers distinct advantages over traditional
chemical analysis methods, including minimal invasiveness,
rapid analysis, simple sample preparation, simultaneous
detection of multiple elements, and in situ detection.2,3 There-
fore, LIBS has been widely applied in various elds, such as the
metallurgical industry,4 coal industry,5 environmental moni-
toring,6 space exploration,7,8 biological application,9 and food
safety.10 However, due to the inuence of laser energy uctua-
tion, equipment parameter dri, environmental conditions
change, human operation error and other factors, the calibra-
tion model of LIBS quantitative analysis has difficulty remain-
ing effective in the long term, that is, the error of the
quantitative results obtained using the established calibration
model increases as time progresses.11–15 To ensure the
measurement accuracy, it is oen necessary to re-establish the
calibration model before measurement, but this signicantly
undermines the advantages of LIBS rapid detection and hinders
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its commercialization and instrumentation development.16,17

Therefore, it is of great signicance to study methods to
improve the long-term reproducibility of LIBS quantitative
analysis.

In recent years, researchers have made various efforts to
reduce LIBS spectral uctuation and enhance the reproduc-
ibility of detection results. For instance, in 1998, Panne et al.
rst proposed standardizing the spectral intensity by plasma
characteristics (such as electron temperature and electron
number density) to cope with the inuence of experimental
conditions on the calibration model. This method signicantly
improves the short-term stability of LIBS analysis by dynami-
cally adjusting the spectral response through real-time diag-
nosis of plasma parameters and lays a foundation for the wide
application of the subsequent internal standard method.
However, for a single calibration model, this method is prone to
failure due to long-term equipment parameter dri or cumu-
lative environmental changes and cannot cope with long-term
measurement.18 Feng et al. proposed a spectral normalization
method based on plasma characteristics, which uses plasma
characteristic parameters to correct the original spectral data.
This method compensates for the uctuation of characteristic
line intensity caused by the change of plasma temperature,
ionization degree and total particle number density of the
measured elements, and the method effectively reduced the
uncertainty of spectral intensity and improved the accuracy of
LIBS quantitative analysis.19 Hao et al. introduced the two-point
This journal is © The Royal Society of Chemistry 2025
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Fig. 1 Schematic diagram of the LIBS experimental system.
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standardization (TPS) method, which effectively corrected
instrumental dri, signicantly reducing the average relative
error (ARE) for various elements and improving the long-term
reproducibility of LIBS quantitative analysis. However, the
correction results of this method depend on the selection of
reference samples.20 Hou et al. converted the Gaussian beam
into a dome beam, resulting in a more uniform and stable
plasma, thereby enhancing the intensity and stability of LIBS
spectral signals.21 Liu et al. employed partial least squares
regression (PLSR) to establish a relationship model between the
relative deviation of the laser pulse energy distribution and the
LIBS spectral intensity, and used the pulse energy distribution
to correct the spectral intensity. As a result, the long-term
relative standard deviation of copper and silicon samples
decreased from 13.5% and 10.7% to 4% and 6.5%, respectively,
and the long-term repeatability of LIBS measurement was
signicantly improved.22 Xu et al. calibrated the element
quantitative analysis model based on the correlation between
the plasma acoustic signals and the spectral signal. Using the
acoustically corrected model, the average relative standard
deviation (ARSD) of the spectral intensity for Cr, Mo, Ni and V
elements was reduced by 26.7%. The ARE of 48 hours decreased
by 38.6%, and the spectral ARSD of 8 days was signicantly
reduced by 43.1%, thereby achieving notable improvements in
the long-term repeatability of LIBS quantitative analysis.23 Nie
et al. proposed a spectral standardization method based on
plasma image-spectrum fusion (SS-PISF) to correct for the
parameter changes of plasma. Through experimental verica-
tion on aluminum alloy, alloy steel and ore briquetting samples,
it is proved that the SS-PISF method can signicantly improve
the determination coefficient (R2) of the calibration curve,
reduce the standard deviation and improve the LIBS spectral
stability compared with the full spectral normalization method
and the simplied spectral normalization method.24 Lu et al.
proposed a Kalman ltering algorithm to calibrate the calibra-
tion model, which can improve the long-term reproducibility of
LIBS quantitative analysis.25 Just recently, Zhang et al. proposed
an articial neural network calibration method based on multi-
period data fusion. By integrating spectral data of different time
periods and combining the back propagation neural network
model optimized by genetic algorithm, the accuracy and
stability of LIBS long-term repeated measurement results are
signicantly improved.26

In summary, laser-induced plasma contains a wealth of
important information, such as LIBS spectral information,
acoustic signals, and plasma images, which can be utilized for
the establishment and calibration of calibration models to
improve the accuracy and stability of LIBS quantitative analysis.
Although the multi-dimensional information contained in the
laser-induced plasma provides a potential direction for the
optimization of the calibration model, its practical application
needs to consider the detection efficiency and data reliability. As
the core output of the LIBS system, spectral information has
real-time characteristics and convenient data acquisition.
Among them, the selection of matrix element characteristic line
information as a marker has signicant advantages. Because
the content of matrix elements is stable, such as iron, which
This journal is © The Royal Society of Chemistry 2025
accounts for a stable proportion (>90%) in alloy steel samples,
and the content changes little in different samples, the change
in characteristic line intensity is mainly due to the dri of
experimental conditions (such as laser energy uctuation,
environmental temperature, and humidity change), rather than
the difference in sample composition. In addition, most of the
existing studies use a single calibration model for quantitative
analysis, but this type of model has signicant limitations: due
to its sensitivity to changes in experimental conditions, it leads
to a decline in analytical performance in long-term measure-
ments. The specic performance issue is that the prediction
results deviate from the true value, and the stability is poor. To
address this issue, this study proposes a LIBS quantitative
analysis method based on multi-model calibration marked with
characteristic lines, aiming to improve the long-term repro-
ducibility of LIBS quantitative analysis.
2. Experimental
2.1 Experimental setup

Fig. 1 illustrates the schematic diagram of the LIBS experi-
mental system. A Q-switched Nd: YAG pulsed laser (Continuum
Precision-II, wavelength 532 nm, frequency 10 Hz, and pulse
width 10 ns) serves as the plasma excitation source. The laser
beam is divided by a beam splitter into transmitted and re-
ected beams at a ratio of 5 : 95. The transmitted beam is
directed to a photodetector (Thorlabs-DET25K, wavelength
range 150–550 nm, rise time 55 ns, active area 4.8 mm2), which
converts the laser pulse into an electrical signal used as
a synchronous trigger for the spectrometer. The reected beam
is focused on the surface of the sample using a focusing lens (f
= 150 mm). To avoid plasma shielding caused by air break-
down, the focal point of the lens is positioned 4 mm below the
sample surface. The sample is placed on a three-dimensional
electric displacement platform and moves horizontally with
the displacement platform, so that each laser pulse can act on
a new position on the surface of the sample, thereby preventing
the laser from repeatedly ablating the same position on the
surface of the sample. The emission spectrum of the plasma is
collected by a paraxial light collector and coupled into an
J. Anal. At. Spectrom., 2025, 40, 2038–2048 | 2039
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optical ber. The optical signal is then transmitted through the
ber to the spectrometer (AvaSpec-ULS4096CL-3EVO, wave-
length range 200–485 nm, spectral resolution 0.05 nm).

The LIBS experimental parameters were optimized based on
the signal-to-noise ratio (SNR), with the optimal conditions
determined as follows: laser pulse energy of 60 mJ, spectral
acquisition delay of 2 ms, and defocus amount of −4 mm (the
distance from the laser focal point to the sample surface).27,28

During data acquisition, each sample collected 5 spectra, with
each spectrum representing the average of 10 laser pulses,
respectively, for the modeling samples to collect 10 days of
spectral data and for the test samples to collect 5 days of data.
All data were processed using the program written in Matlab™
R2016a.
2.2 Experimental sample

The experimental samples were all national standard samples
of alloy steel. The samples were polished and cleaned before the
experiment to ensure the consistency of the surface and reduce
the inuence of the surface characteristics of the samples on
the experimental results. The composition and number are
shown in Table 1. Based on the high, medium, and low levels of
elemental content, two samples were selected from each type of
steel. Specically, samples 5, 6, 9, 11, 16 and 18 were chosen as
test samples (marked with *) for validation, while the remaining
samples were used as modeling samples to establish the cali-
bration model.
3. Method
3.1 Multi-model calibration marked with characteristic lines

Fig. 2 shows the ow diagram of the LIBS quantitative analysis
method based on multi-model calibration marked with
Table 1 Composition of Mn, Cr, Mo, and V elements from the alloy stee

Sample no. Manufacturers National

1 Shenyang Institute of standard samples,
China

GSB 03-1
2 GSB 03-1
3 GSB 03-1
4 GSB 03-1
5* GSB 03-1
6* GSB 03-1
7 NCS testing technology CO., LTD, China GBW(E) 0
8 GBW(E) 0
9* GBW(E) 0
10 GBW(E) 0
11* GBW(E) 0
12 GBW(E) 0
13 GBW(E) 0
14 Central iron & steel research Institute,

China
GBW 016

15 GBW 016
16* GBW 016
17 GBW 016
18* GBW 016
19 GBW 016
20 GBW 016
21 GBW 016

2040 | J. Anal. At. Spectrom., 2025, 40, 2038–2048
characteristic lines. The meaning of each symbol in the ow
diagram is as follows: It(j) represents the characteristic line
intensity of the j-th test sample under the current experimental
conditions, and its value directly reects the current real-time
experimental state. Ic(i) denotes the mean intensity of the
characteristic line for the modeling sample corresponding to
the i-th calibration model, which represents the reference value
for historical experimental conditions. ME(i) is dened as the
distance between the i-th calibration model and the character-
istic line value of the current test sample (that is, the Euclidean
distance between It(j) and Ic(i)), which is used to represent the
proximity of the experimental conditions. Under identical
experimental equipment and parameters, multiple calibration
models were established by using LIBS data collected at
different time intervals. Simultaneously, the characteristic line
information, which reects variations in experimental condi-
tions, was marked as the characteristic of each calibration
model. During the analysis of unknown samples, the optimal
calibration model was selected for quantitative analysis by
characteristic matching. This method assesses the consistency
of experimental conditions by the similarity of the characteristic
lines and identies the model with the smallest deviation of the
characteristic line. Since the experimental conditions under
which the model is established are closest to those of the
current test samples, this approach effectively mitigates the
impact of temporal and environmental changes on the LIBS
signal, thereby enhancing the accuracy and long-term repro-
ducibility of LIBS quantitative analysis. Moreover, by developing
a multi-period calibration model mechanism for the dynamic
matching of characteristic lines, the frequent demand for re-
establishing the calibration model is effectively avoided.

3.1.1 Selection of analytical spectral lines. The basic cali-
bration method is a quantitative analytical approach that
establishes a model based on the correlation between the
l samples (wt%)

standard sample number Mn Cr Mo V

525-2002/1 0.503 2.460 0.600 0.140
525-2002/2 0.243 0.860 0.290 0.628
525-2002/3 0.930 1.430 0.109 0.074
525-2002/4 1.330 0.278 0.404 0.031
525-2002/5 2.100 1.830 0.860 0.900
525-2002/6 1.320 3.160 1.000 0.355
10515 0.414 0.212 0.157 0.010
10516 0.646 0.127 0.208 0.062
10517 1.960 0.640 0.306 0.149
10518 0.176 0.098 0.071 0.215
10519 1.640 0.436 0.257 0.105
10520 1.050 0.374 0.104 0.042
10521 0.117 0.077 0.029 0.326
66a 0.680 2.970 0.210 0.189
67a 3.600 0.950 0.019 0.478
68a 0.890 2.270 0.556 0.346
69a 2.420 4.400 1.400 0.449
70a 1.040 1.360 0.864 0.118
71a 1.880 3.270 0.118 0.273
72a 0.325 0.703 0.305 0.013
73a 0.553 0.177 0.423 0.055

This journal is © The Royal Society of Chemistry 2025
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Fig. 2 Flow diagram of the LIBS quantitative analysis method based on multi-model calibration marked with characteristic lines.
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intensity of spectral lines and the concentration of elements.
This method is widely recognized as the most employed,
physically signicant, and representative quantitative analysis
model in LIBS.29,30 In the present study, alloy steel samples were
analyzed for four elements: Mo, V, Mn, and Cr. To identify the
optimal analytical lines for these elements, LIBS experimental
equipment was utilized to systematically collect the spectral
intensity data of the 15 modeling samples listed in Table 1.
According to the NIST atomic spectrum database and the
spectra collected by the experiment, the spectral lines with high
signal intensity, small background interference, and no peak
interference or overlapping peaks in each element were selected
for analysis. Then, the linear relationship model between the
intensity of each spectral line and the concentration of the
corresponding element was established based on the basic
calibration method. By comparing the determination coeffi-
cients (R2) of various spectral lines, those with higher R2 values
were chosen as the analytical spectral lines. As illustrated in
Fig. 3, the spectral lines Mo II 281.62 nm, V I 437.92 nm, Mn I
478.34 nm, and Cr II 286.51 nm were ultimately selected for
modeling the four elements. The determination coefficients (R2)
for the basic calibration models of these spectral lines were
0.990, 0.985, 0.995, and 0.991, respectively, indicating a strong
linear relationship between the concentration of each element
and the corresponding spectral intensity.

3.1.2 Development of multiple calibration models. Fig. 4
presents ten calibration models for each of the four elements
Mo, V, Mn, and Cr, which were developed by collecting LIBS
spectra under identical experimental equipment and parame-
ters. The spectra were collected at 24 hour intervals over ten
days. Utilizing the chosen analytical spectral lines in conjunc-
tion with the 10 days spectral dataset, the basic calibration
method is employed to develop a daily calibration model. As
shown in Fig. 4, the ten-day calibration models of the four
elements all showed high determination coefficients, ranging
This journal is © The Royal Society of Chemistry 2025
from 0.937 to 0.998, which indicated that the calibration
models of each day could still maintain a good linear relation-
ship with the change of time. However, through observation, it
can be found that the calibration models of different days had
signicant differences in slope and intercept. This is because
each calibration model contains information on the experi-
mental conditions of the day, such as laser energy uctuation,
equipment parameter dri, human operation error, environ-
mental condition change, and other unpredictable factors.26,31

The cumulative effect of these variables is reected in the
alterations of the slope and intercept of the calibration curves.
Because the change of these factors is random, the slope and
intercept of the calibration curve will not increase or decrease
monotonously. However, when the experimental device and
parameter settings remain unchanged, the changes of these
factors can only be in a limited range. Although the 10 days
calibration curve shown in Fig. 4 cannot include all the changes,
it can still reect the range of changes to a certain extent. This
study aims to demonstrate the feasibility of enhancing the long-
term reproducibility of LIBS quantitative analysis using
a method based on multi-model calibration marked with
characteristic lines with 10 days analysis data.

3.1.3 Marking of characteristic lines. To nd information
that can accurately reect the changes in experimental condi-
tions and achieve the matching of the optimal calibration
model, the marking of characteristics is particularly important.
As the main information component of the whole LIBS spec-
trum, the spectral lines are the primary characteristic marker.
In the analysis of alloy steel samples, the matrix element iron
(Fe) is the main element in the alloy steel sample, and its
content usually accounts for more than 90% of the total sample,
with little variation in different samples. This stability means
that the change in the characteristic line intensity of Fe mainly
arises from changes in experimental conditions, rather than
from composition differences of the sample itself. Therefore, it
J. Anal. At. Spectrom., 2025, 40, 2038–2048 | 2041
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Fig. 3 Calibration model of the analytical spectral lines: (a) Mo II 281.62 nm; (b) V I 437.92 nm; (c) Mn I 478.34 nm; (d) Cr II 286.51 nm.
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is feasible to mark the characteristic line of Fe as characteristic
to reect the change in experimental conditions. To ensure the
applicability of the characteristic lines, the selection of the
characteristic lines should refer to the following criteria: (1) to
avoid the inuence of the self-absorption effect, the weak lines
of the Fe element should be selected; (2) the selected lines
should be free from overlaps or interference from other peaks;
(3) the selected lines should be clearly distinguishable within
the resolution range of the spectrometer.

3.1.4 The matching method of characteristic lines. In the
LIBS quantitative analysis based on multi-model calibration
marked with the characteristic lines, the Euclidean Distance
method is used to match the characteristic lines. This method is
commonly used to calculate the straight-line distance between
two points in multi-dimensional space. In this study, it was
employed to calculate the distance between the characteristic
line values of the test samples on verication days and the
characteristic line values of calibration models from different
time periods. The calibration model with the shortest distance
was then selected for quantitative analysis. The calculation
formula for Euclidean Distance is as follows:

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

ðxi � yiÞ2
s

(1)

where xi and yi represent the characteristic line values of the i-th
characteristic lines for the test samples and the modeling
2042 | J. Anal. At. Spectrom., 2025, 40, 2038–2048
samples, respectively, while n represents the number of char-
acteristic lines.

4. Results and discussion
4.1 Multi-model calibration marked with a single
characteristic line

4.1.1 Correlation between characteristic line intensity and
laser pulse energy. In this study, Fe II 261.18 nm was marked as
the characteristic line reecting the change in experimental
conditions because it conforms to the selection basis of the
above characteristic lines. To reveal the correlation between the
intensity of the characteristic line and the laser pulse energy,
this study systematically discusses the change trend of the
intensity of the characteristic line under different laser pulse
energies, as shown in Fig. 5. From the diagram, the linear tting
coefficient R2 = 0.992 indicates a clear linear relationship
between the intensity of the characteristic line and the laser
pulse energy. When the laser pulse energy increases, the
intensity of the characteristic line also increases; however, it can
be observed that with the continuous increase of laser energy,
the intensity of the characteristic line shows a certain uctua-
tion, which are caused by the instability of the laser output
energy. Nevertheless, for the experimental parameters of 60 mJ
laser pulse energy selected in this study, the uctuation is small
and has little effect on characteristic matching. Therefore, in
general, the intensity of the characteristic line can still better
reect the change in laser pulse energy, providing a solid data
This journal is © The Royal Society of Chemistry 2025
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Fig. 4 Calibration models of four elements for ten consecutive days: (a) Mo; (b) V; (c) Mn; (d) Cr.

Fig. 5 Correlation between characteristic line intensity and laser pulse
energy.
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support for the characteristic line as the basis for reecting the
change in experimental conditions.

4.1.2 Characteristics extraction andmatching. The spectral
intensity of each modeling sample was extracted and calculated
at the characteristic line Fe II 261.18 nm on the rst day, and the
average was taken as the characteristic line value (CL) for the
calibration model of that day. The above process was repeated
to calculate the respective characteristic line values for each of
the 10 days (day 1–day 10). These values are presented in Table
This journal is © The Royal Society of Chemistry 2025
2. As shown in Table 2, the CL values varied across different
days, reecting changes in experimental conditions over time.
Although the variation in CL values was random, the uctuation
range remained limited, further demonstrating the feasibility of
using the characteristic line. Similarly, the CL values of six test
samples over ve days (day 11–day 15) were extracted and
calculated. The results are presented in Table 3.

When analyzing the test samples, the CL value of each test
sample on the verication days is compared with the CL value of
the calibration model for each corresponding period. According
to eqn (1), the minimum CL deviation serves as the matching
criterion to select the calibration model that corresponds to the
calibration days, which is then used as the quantitative analysis
model for the test sample. For instance, as shown in Table 3, the
CL value of test sample 5 on day 11 was 3219.7 counts, which
exhibited the smallest deviation from the CL value of 3219.9
counts recorded on day 2 in Table 2. Consequently, the cali-
bration model from day 2 was employed for the quantitative
analysis of test sample 5 on day 15. The quantitative analysis
results for the four elements across all samples were compared
with the standard values listed in Table 1, and the average
relative errors were calculated to assess the accuracy of the
quantitative analysis method. Additionally, the average stan-
dard deviations of the results for the four elemental contents in
the test samples over ve consecutive days were computed to
J. Anal. At. Spectrom., 2025, 40, 2038–2048 | 2043
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Table 2 The values of the characteristic line for calibration days (counts)

Day 1 2 3 4 5 6 7 8 9 10

CL 3230.4 3219.9 3052.3 3159.1 3355.7 3241.3 3060.6 3058.3 3145.3 3085.3

Table 3 The values of the characteristic line for verification days
(counts)

Test sample no. Day 11 Day 12 Day 13 Day 14 Day 15

5 3219.7 3242.9 3116.8 2753.0 2852.9
6 2844.8 2877.8 3029.8 2632.7 3037.1
9 2777.3 2924.7 2922.7 2763.3 2910.8
11 3210.6 3272.4 2962.7 2716.8 2940.4
16 3115.6 2970.1 2969.0 2824.6 2917.1
18 3065.8 3097.6 3377.4 2937.4 2940.6
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evaluate the long-term reproducibility of the quantitative anal-
ysis method.

4.1.3 Improvement in accuracy. In the long-term verica-
tion of quantitative analysis methods, this study compared and
evaluated the accuracy of the single calibration model (SM)
method and the multi-model calibration marked with a single
characteristic line (SCL-MM) method. As illustrated in Fig. 6,
the average relative errors (AREs) of Mo, V, Mn, and Cr content
prediction in six test samples based on the two methods over
the ve-day verication period are presented. Fig. 6(a)–(e)
present the prediction results for test samples measured on
days 11 to 15, respectively. Here, C1–C10 represent the single
calibration model based on days 1–10, while T1–T5 represent
the multi-calibration model marked with a single characteristic
line. As demonstrated in the gure, C1 shows that the AREs of
the ve-day verication based on the calibration model of the
rst day are 8.9%, 9.2%, 11.2%, 18.9%, and 16.7%, with
maximum daily uctuation reaching 68.8% between days 13
and 14, and the error uctuates greatly. Other AREs predicted
based on a single calibration model (C2–C10) also vary from 8%
to 19%, which indicates that there are signicant differences in
the performance of the single calibration model under different
verication days, and the error uctuation is obvious. This
conrms the phenomenon reported in the literature, indicating
that the change in experimental conditions has a great inu-
ence on the single calibration model, resulting in poor accuracy
of its quantitative analysis results.32

In contrast, the AREs (T1–T5) obtained based on SCL-MM
were 11.0%, 9.1%, 9.4%, 12.8%, and 11.4%, respectively. The
overall uctuation in error was signicantly reduced, and the
accuracy was also improved accordingly. For example, in
Fig. 6(a), the ARE corresponding to model C8 is 18%. Aer
applying the method proposed in this paper, T1 was reduced by
38.9% compared to C8, decreasing from 18% to 11%. Similarly,
in Fig. 6(b), T2 decreased by 46.2% compared to C8, from 16.9%
to 9.1%. The AREs obtained based on SCL-MM on other veri-
cation days also generally exhibit a downward trend, further
demonstrating the effectiveness of the proposed method.
2044 | J. Anal. At. Spectrom., 2025, 40, 2038–2048
Fig. 6(f) summarizes the ve-day average results from
Fig. 6(a)–(e). The results show that the average AREs based on
the SM method are 13%, 13.2%, 11.5%, 12.4%, 13.2%, 13.3%,
12.3%, 13.4%, 12.5%, and 12.4%, respectively. The average ARE
(TA) based on SCL-MM is 10.7%, which is lower than all the
average AREs based on the SMmethod. Additionally, it is 13.0%
lower than that of the optimal single model (C7) and 20.1%
lower than that of the least effective single model (C8). These
results demonstrate that the LIBS quantitative analysis method
based on multi-model calibration marked with a single char-
acteristic line can effectively solve the problem of error uctu-
ation caused by experimental condition dri and improve the
accuracy of LIBS quantitative analysis aer a long time interval.

4.1.4 Improvement in long-term reproducibility. To eval-
uate the improvement in long-term reproducibility of LIBS based
on the SCL-MM method, Fig. 7 shows the average standard
deviations (ASDs) of Mo, V, Mn, and Cr content predictions based
on the SM method and the SCL-MM method over ve days of
verication. The SM method takes the C1 day calibration model
as an example. The diagram illustrates that the ASD for the SCL-
MMmethod is lower than that of the SMmethod. Specically, for
the Mn element, the ASD of the SCL-MM method is 21.4% lower
than that of the SM method; for the Mo element, the ASD of the
SCL-MM decreased by 10%; for the Cr element, the ASD of the
SCL-MM decreased by 12.1%; and for the V element, the ASD
decreased themost, by 34.6%. These results demonstrate that the
method based on SCL-MM can effectively reduce the uctuation
of quantitative analysis results in long-term measurement and
improve the long-term reproducibility of LIBS. This is because the
change in the characteristic line intensity of the labeled matrix
element Fe is mainly caused by the dri of the experimental
parameters and changes in the environment. The SCL-MM
method can compensate for changes in the experimental condi-
tions by dynamically matching the characteristics and selecting
the model closest to the current test conditions. For example,
when the device parameters dri, the obtained LIBS data will also
change. Substituting the established calibration model will cause
the predicted value to deviate from the true value. The SCL-MM
method matches the calibration model of the experimental
conditions similar to the experimental conditions when the
device parameters dri frommany calibrationmodels containing
daily experimental condition information and corrects for the
spectral intensity change caused by the device parameter dri,
thereby maintaining the stability of the quantitative analysis
results.
4.2 Multi-model calibration marked with multiple
characteristic lines

Although the SCL-MMmethod improves the accuracy and long-
term reproducibility of LIBS quantitative analysis to a certain
This journal is © The Royal Society of Chemistry 2025
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Fig. 6 Average relative errors (AREs) of Mn, Cr, Mo, and V element content prediction based on the SMmethod and the SCL-MMmethod: (a) day
11; (b) day 12; (c) day 13; (d) day 14; (e) day 15; (f) five-day average.
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extent, it may still have the problem of incomplete reection of
experimental conditions. Because the single characteristic line
only reects the change of experimental conditions from one
dimension, it may lead to inaccurate judgment of experimental
conditions, which, in turn, affects the selection of calibration
models and the accuracy of quantitative analysis results. To
further optimize the model matching, this study proposes
utilizing multiple characteristic line information as the char-
acteristic matching model to improve the accuracy and ratio-
nality of the calibration model selection. In this research, three
This journal is © The Royal Society of Chemistry 2025
spectral lines (Fe II 234.81 nm, Fe II 261.18 nm, and Fe I 400.52
nm) were marked as characteristic lines to form multi-
dimensional characteristics. The selection of these three char-
acteristic lines not only meets the reference basis of the above
characteristic lines but also distributes in different wavelength
regions to enhance the anti-interference of environmental
uctuations and covers different ionization states to improve
the compensation ability of the matrix effect. A three-
dimensional characteristic vector Vtest = (IFeII234.81, IFeII261.18,
IFeI400.52) is formed by the intensity of the three characteristic
J. Anal. At. Spectrom., 2025, 40, 2038–2048 | 2045
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Fig. 7 Average standard deviations (ASDs) of Mo, V, Mn, and Cr
content predictions based on the SM method and the SCL-MM
method.
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lines of the test sample on the verication date, and the
Euclidean distance is calculated with the three-dimensional
characteristic vector set {Vcal} composed of the calibration
model of each day. The Euclidean distance between each row of
{Vcal} (that is, the three-dimensional characteristic vector of
each calibration model) and Vtest is calculated respectively, and
the calibration model with the smallest distance is selected as
the best calibration model for quantitative analysis.

To conrm the validity of the method, this study compared
the average relative errors (AREs) of the prediction of Mn, Cr,
Mo, and V content in six test samples based on the multi-model
calibration marked with a single characteristic line (SCL-MM)
method and the multi-model calibration marked with
multiple characteristic lines (MCL-MM) method. As shown in
Fig. 8, the results indicate that, compared with the results ob-
tained by the SCL-MM method, the ARE values for T1–T5 over
ve days using the MCL-MM method are 9.9%, 8.8%, 9.6%,
10.6%, and 9.5%, respectively. Except for the ARE value of T3,
which increased slightly by 2%, the ARE values of the other four
Fig. 8 Average relative errors (AREs) of Mn, Cr, Mo, and V element
content prediction based on the SCL-MM method and the MCL-MM
method.

2046 | J. Anal. At. Spectrom., 2025, 40, 2038–2048
days decreased to a certain extent, among which T4 decreased
by 17.2%, and the ve-day average ARE value (TA) decreased by
9.35% compared with 10.7%. Although the MCL-MM method
shows a limited increase in the AREs compared to the SCL-MM
method, it effectively mitigates the inuence of a single outlier
by incorporating a comprehensive distance computation
mechanism derived from multiple characteristic lines. This
improvement can signicantly enhance the robustness of
model matching, thereby obtaining more stable and accurate
quantitative analysis results.

In terms of long-term reproducibility, the method based on
MCL-MM performs well. As illustrated in Fig. 9, the average
standard deviations (ASDs) of the predicted values for the four
elemental contents were presented based on the ve-day veri-
cation period using the SM, SCL-MM, and MCL-MMmethods.
The SM utilizes the C1 calibration model as an example. The
gure demonstrates that both SCL-MM and MCL-MM exhibit
lower ASDs compared to SM. Specically, for the elements Mn,
Mo, Cr, and V, the ASD of SCL-MM decreased by 21.4%, 10%,
12.1%, and 34.6%, respectively, while the ASD of MCL-MM
decreased by 33.3%, 32.3%, 41.2%, and 38.8%. These results
indicate that the MCL-MM method is more effective in
enhancing the long-term reproducibility of LIBS. The reason is
that, compared with the single characteristic line, the multiple
characteristic lines can reect the change of experimental
conditions more comprehensively and avoid the one-sidedness
of the single characteristic line, allowing for a more accurate
selection of the calibration model that closely matches the
experimental conditions of the test data, which reduces
measurement error and improves the long-term reproducibility
of the quantitative analysis. It should be noted that although
adding more characteristic lines may further improve the
comprehensiveness of model matching, it may also introduce
irrelevant or redundant information. This may lead to no
signicant change in the matching results, or even worse,
increase the workload and complexity of data processing. In
addition, the introduction of too many characteristic lines may
also bring interference. For example, some characteristic lines
may be interfered with by noise, resulting in large uctuations
Fig. 9 Average standard deviations (ASDs) of the three quantitative
analysis methods.

This journal is © The Royal Society of Chemistry 2025

https://doi.org/10.1039/d5ja00132c


Paper JAAS

Pu
bl

is
he

d 
on

 0
9 

Ju
ne

 2
02

5.
 D

ow
nl

oa
de

d 
by

 Y
un

na
n 

U
ni

ve
rs

ity
 o

n 
7/

31
/2

02
5 

6:
48

:3
0 

A
M

. 
View Article Online
in values, thus affecting the stability of the matching results.
The three characteristic lines selected in this paper have
balanced performance and complexity. Future research will
further explore the relationship between the number of char-
acteristic lines and model matching, rather than simply
pursuing an increase in the number.
5. Conclusion

This study proposes a LIBS quantitative analysis method based
on multi-model calibration marked with characteristic lines,
which effectively improves the accuracy and reproducibility of
long-term LIBS measurements. Since experimental equipment
parameters and environmental factors vary over time, multiple
calibration models were established for different time periods
to represent experimental conditions under various scenarios.
Furthermore, characteristic line intensities that reect changes
in experimental conditions were used as characteristics to select
the optimal calibration model for quantitative analysis. In this
paper, using the analysis of Mo, V, Mn, and Cr elements in alloy
steel as an example, calibration models were established over
a 10 days period, and test samples were analyzed quantitatively
over 5 days. The results showed that, compared to using a single
calibration model, the proposed method signicantly reduced
both the AREs and the ASDs of the quantitative analysis results.
This demonstrates that the long-term accuracy and reproduc-
ibility of LIBS quantitative analysis were improved. The
proposed method provides a new quantitative analysis idea for
LIBS technology, effectively addressing the issues of declining
accuracy and reproducibility in calibration models over
extended periods. Admittedly, the research in this paper is only
a preliminary study on the feasibility of multi-model calibration
marked with characteristic lines. More characteristic selection
methods and multi-model establishment methods need to be
further studied in subsequent studies.
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