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tal and molecular fingerprints for
accurate classification of kimchi by country of
origin†

Sandeep Kumar, a Yujin Oh,b Hyemin Jung,b Kyung-Sik Ham,c Hyun-Jin Kim, d

Song-Hee Han,e Sang-Ho Nam*abf and Yonghoon Lee *abf

The geographical origin of commercial kimchi products is a key indicator of their quality, authenticity, and

economic value. In this study, we propose a spectroscopic classification method combining laser-induced

breakdown spectroscopy (LIBS) and infrared (IR) spectroscopy to differentiate kimchi samples from South

Korea and China. LIBS was used to obtain elemental profiles based on the emission intensities of K, Mg, Na,

Ca, C, H, and O, while IR spectroscopy captured molecular features. Principal component analysis of IR

spectra in the carbohydrate absorption region (1254–1018 cm−1) identified the third principal

component (PC3) as the most discriminative. Classification models using k-nearest neighbors (k-NN)

were evaluated with leave-one-out cross-validation. Two LIBS-only models—using variable sets (i) K I

(766 nm), O I (777 nm), C I (248 nm), and (ii) K I, O I, Mg II (279 nm)—achieved 94.4% accuracy. The IR-

only model reached 86.4%. Fusion of LIBS and IR features, with optimized weighting for the IR variable,

enhanced model performance. The best result (96.8% accuracy) was achieved by combining LIBS

variables K I, O I, and C I with IR PC3. We also introduce a statistical method to predict the optimal

weighting factor for fusion, reducing computational complexity by minimizing the number of neighbors

in k-NN. This LIBS-IR fusion strategy provides a robust tool for verifying kimchi origin.
1. Introduction

In Korean cuisine, kimchi is a traditional food consumed daily
with every meal as a side dish. Moreover, it has become a global
representative of Korean culture. Kimchi is a fermented vege-
table dish primarily made from cabbage and radish, pickled in
salt, along with other ingredients such as green onion, garlic,
ginger, red pepper powder, and salted sh.1–3 For the salting
process, various types of salt are used, including puried salt,
rock salt, recrystallized salt, and solar sea salt.4 Fermentation,
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which follows the salting process, imparts kimchi's distinct
avor and extends its shelf life. During fermentation, probiotics
are produced that promote gut health. Kimchi is also rich in
calcium, iron, vitamin A, vitamin B1 (thiamine), and vitamin B2
(riboavin), and contains a diverse array of lactic acid bacteria.5

Recognized as one of the ve healthiest foods globally, kimchi
offers numerous functional health benets, including anti-
aging, anti-cancer, anti-diabetic, anti-obesity, and antioxidant
effects.6–10 Consequently, the global demand for kimchi has
increased signicantly. In response to this growing demand,
kimchi production has expanded beyond South Korea to
countries such as China, Japan, the United States, and Indo-
nesia. However, in the South Korean domestic market—the
primary focus of this study—commercial kimchi is over-
whelmingly sourced from either South Korea or China.
According to the Korea Customs Service, over 99% of imported
kimchi in South Korea originates from China, while kimchi
produced in countries such as Japan or the United States is
typically intended for local consumption in those countries
rather than for export to Korea.11 Therefore, the inclusion of
only South Korean and Chinese samples reects the actual
distribution dynamics relevant to origin verication in the
Korean market. To maintain transparency, South Korea has
mandated the labeling of the origin of kimchi sold in markets.
However, the price of kimchi varies depending on the country of
production due to differences in raw material and resource
This journal is © The Royal Society of Chemistry 2025
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costs. This price disparity may lead to the fraudulent mis-
labeling of kimchi products with false origin claims. To address
this issue, appropriate spectroscopic techniques are essential
for accurately classifying food products by their geographical
origins, thereby ensuring product integrity and consumer
safety.

Conventional elemental analysis techniques, such as atomic
absorption spectroscopy (AAS), inductively-coupled plasma
optical emission spectrometry (ICP-OES), and inductively-
coupled plasma mass spectrometry (ICP-MS), can be used for
quality evaluation and determination of the geographical origin
of food products.12–14 However, these techniques have issues
that include sample preparation time, analyte loss, and poten-
tial contamination during the conversion of solid materials into
liquid solutions. They also have problems with sample diges-
tion prior to analysis.15,16 Laser-induced breakdown spectros-
copy (LIBS) is one of the rapid and simple elemental analysis
techniques that requires minimal sample preparation and can
be applied directly to the solid samples.17,18 In LIBS measure-
ments, laser pulses are focused on the sample surface that
vaporize and ionize a small portion of the sample material to
generate microplasmas. The laser-induced plasma then de-
excites and dissipates energy, mainly via optical emissions,
within tens of microseconds. The optical emissions from laser-
induced plasma exhibit atomic and ionic lines, offering infor-
mation about the sample's elemental composition and enabling
both sample classication and quantication of analytes of
interest. Recently, our group demonstrated the feasibility of the
LIBS technique for distinguishing kimchi purchased in South
Korean markets based on their counties of production, using
Mg and K emission lines.19 Recently, LIBS has been used in
combination with infrared (IR) spectroscopy to grasp compre-
hensive information about samples, covering both elemental
and molecular features. LIBS in combination with IR spectros-
copy is also explored for different food products, such as the
enhanced discrimination of geographical origin of soybean
paste,20 for rice varieties,21 and milk vetch root samples.22

However, the combination of LIBS and IR spectroscopy has not
been used to distinguish kimchi products. To our knowledge,
other hyphenated spectroscopic techniques have also not been
applied to this purpose. This gap in the literature motivates us
to explore the potential of combining LIBS and IR for classifying
kimchi by country of origin.

In this study, we investigated the feasibility of combining
LIBS and IR spectroscopy for improved classication of kimchi
produced in China and South Korea. Spectral variables from
LIBS and IR were used to model the two sample classes using k-
nearest neighbors (k-NN). In the LIBS spectra, emission peaks
corresponding to Na, K, Mg, Ca, C, H, and O were identied.
Following the forward selection scheme based on the interclass
distance values of the seven emission peak intensities, two LIBS
variable sets showing the highest classication accuracy
(94.4%) were identied: (i) K I (766 nm), O I (777 nm), and C I
(248 nm); and (ii) K I (766 nm), O I (777 nm), andMg II (279 nm).
For IR spectroscopy, the region between 1254 and 1018 cm−1—

corresponding to characteristic carbohydrate absorption
bands—showed relatively high discriminative power. Principal
This journal is © The Royal Society of Chemistry 2025
component analysis (PCA) was performed on this region, and
the third principal component (PC3) was selected as a variable,
and the IR model based on the PC3 scores from the selected
spectral region showed the classication accuracy of 86.4%.
Although the two LIBS models showed the same classication
performances, that composed of K I (766 nm), O I (777 nm), and
C I (248 nm) were found to comprise the best variable set for
pairing with the IR variable. By assigning an optimal weighting
factor to the IR variable, the fused LIBS-IR model achieved the
classication accuracy of 96.8% outperforming the standalone
LIBS and IR models. These results indicate that the combina-
tion of LIBS and IR spectroscopy provides complementary
elemental and molecular information of kimchi products and
demonstrates strong potential for accurately verifying the
country of origin of kimchi products distributed in the market.
2. Materials and methods
2.1 Sample preparation

In 2021, the National Agricultural Products Quality Manage-
ment Service (NAQS) of South Korea conducted the kimchi
sample collection process.13 From Korean markets, a total of
125 cabbage kimchi samples were gathered. Of them, 72 were
imported from China, and 53 were domestic ones. The 12
regions of South Korea that comprise Chungbuk-do Cheongju-
si, Chungnam-do Asan-si, Chungnam-do Dangjin-si,
Chungnam-do Goesan-si, Daegu, Daejeon, Gangwon-do
Donghae-si, Gyeongbuk-do Gimcheon-si, Gyeongbuk-do
Gumi-si, Gyeonggi-do Pyeongtaek-si, Gyeongnam-do
Changnyeong-gun, and Jeonbuk-do Gimje-si were the loca-
tions from which the kimchi samples were acquired directly
from the sales outlets. The import certicates of the Chinese
samples were thoroughly examined at nearby grocery stores
prior to the separation of the Chinese and Korean kimchi
samples. For each sample, 200 grams of kimchi were rst taken
and washed under running deionized water to remove season-
ings. All samples were cleaned, dried, and then pre-frozen for
eight hours at −40 °C until they weighed 50 grams. Aer that,
the samples were freeze-dried for the whole day. A ceramic
homogenizer (Pulverisette 14, FRITSCH, Idar-Oberstein, Ger-
many) was then used to ground the dry materials. A 0.5 mm
lter was used to lter the nal powder. This freeze-dried
powder was used directly for IR measurements without any
further preparation, whereas additional pellet formation was
required for LIBS measurements.
2.2 IR measurements

The IR spectra were recorded using a commercial Fourier-
transform IR instrument (Frontier PerkinElmer, Waltham,
USA) with the Attenuated Total Reection (ATR) method
(GladiATR accessory, PIKE Technologies, Fitchburg, USA).
Kimchi powder samples were placed to cover the ATR diamond
crystal, and measurements were repeated ve times for each
sample. The spectrum for each sample, obtained by averaging
a total of 75 measurements in the range of 450–4000 cm−1 was
used for analysis. For the analysis of IR spectral data,
J. Anal. At. Spectrom., 2025, 40, 2222–2231 | 2223
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preprocessing was conducted by converting transmittance to
absorbance.

2.3 LIBS measurements

Details of the experimental conditions for LIBS were reported
previously.19 Briey, a 13 mm diameter pellet was prepared for
each samples using the freeze-dried kimchi powder treated by
the procedure described above. LIBS spectra of the pelletized
kimchi samples were acquired using a commercial LIBS
instrument (J200, Applied Spectra, Inc.). The LIBS instrument
was integrated with a ash-lamp-pumped Q-switched
neodymium-doped yttrium aluminum garnet (Nd:YAG) laser
and a 6-channel charge-coupled device (CCD) spectrometer. The
Nd:YAG laser emitted pulses at a repetition rate of 10 Hz, with
a wavelength of 266 nm, a pulse energy of 9.4 mJ per pulse, and
a pulse duration of 7 ns. The laser beam was focused on the
pellet surface through a high-power focusing lens, and the
focused spot diameter was set to be 35 mm. The light emitted
from the laser-induced plasma was collected by two plano-
convex lenses and delivered to the spectrometer via an optical
ber bundle. The 6-channel CCD spectrometer covered wave-
lengths from 180 to 1047 nm with a spectral resolution of
∼0.1 nm. To alleviate unwanted continuum background and
line broadening, the CCD detection gate was deliberately
delayed by 0.5 ms from the laser Q-switching event and
remained open for 1 ms. The sample chamber was purged with
helium gas owing at a rate of 0.7 L min−1. Each LIBS spectrum
was recorded from an 8 mm long line-scan on the sample pellet
surface. Along each scan line, 81 laser pulses were launched,
and the emissions were accumulated for recording a LIBS
spectrum. During the LIBS measurement, the sample stage was
linearly translated at a rate of 1 mm s−1. For each sample pellet,
een line-scans were conducted. The distance between two
adjacent line-scans was 500 mm. The analysis was carried out by
taking an average of the een LIBS spectra for each sample.

2.4 IR spectral preprocessing

The preprocessing of the IR spectra is crucial for extracting
reliable variables. It typically enhances the robustness and
accuracy of the following quantitative or classication analyses
and also increases the interpretability of the data by correcting
issues related to spectral data acquisition.23 It ensures only the
sample's chemical differences are involved in the nal analysis
results. In this study, the IR spectra of all kimchi samples were
pre-processed following these steps. Initially, the average (of 5
spectra) spectrum recorded in the spectral range 400–4000 cm−1

was rst obtained for each sample. From the IR spectra, it is
observed that the O–H band mainly predominates in the spec-
tral range beyond 1750 cm−1. Thus, the IR spectra of all kimchi
samples in the 750–1750 cm−1 range were chosen for the
spectral pre-processing. Then, the rst derivatives were ob-
tained in the range of 750–1750 cm−1 using the Savitzki–Golay
method.24 This method resolves overlapped bands in the
complex IR spectra and also helps in eliminating slopes at lower
wavenumbers. The rst derivative spectra of 125 kimchi
samples were then normalized by their unit vectors.
2224 | J. Anal. At. Spectrom., 2025, 40, 2222–2231
2.5 k-NN modeling and validation

The k-NN algorithm is a non-parametric, instance-based
method that classies a sample by identifying the majority
class among its k closest training objects in the feature space.25

It does not rely on any assumptions about the underlying data
distribution and is particularly suited for simple, exible
implementation. The parameter “k” in the k-NN algorithm
determines how many of the nearest neighbors are considered
when assigning a class to a sample. A small k (e.g., k = 1) oen
reects local variations andmay capture subtle distinctions, but
can be more susceptible to noise or outliers. In contrast, larger k
values provide more general predictions by averaging over more
samples, but may smooth out meaningful differences, espe-
cially when the data exhibits local structure. Therefore, the
choice of k greatly inuences classication performance. To
determine the optimal value of k in our modeling, we system-
atically evaluated classication accuracy across a wide range of k
values—from 1 up to one less than the total number of
samples—using leave-one-out cross-validation (LOOCV).26 In
LOOCV, each sample in the dataset is sequentially used as a test
object, while the remaining objects form the training set. This
process is repeated for all objects, ensuring that each one is
used for validation exactly once. Classication accuracy is then
calculated as the proportion of correctly predicted objects
across the entire dataset. LOOCV is especially well-suited for
relatively small datasets, as it maximizes data utilization and
provides a nearly unbiased estimate of model performance. In
this study, LOOCV was applied to 125 cabbage kimchi samples,
including 53 produced in South Korea and 72 imported from
China. For each iteration, one sample was held out as the test
sample, and the remaining 124 were used to train the k-NN
model, which then predicted the country of origin of the test
sample. This procedure was repeated 125 times—once per
sample—and the nal accuracy was determined by the
percentage of correct predictions. To evaluate the effect of the
number of neighbors, k, on classication performance, LOOCV
was performed from 1 to 124. For each k, the entire LOOCV
procedure was conducted, and the corresponding accuracy was
recorded. This approach allowed us to identify the optimal k
value for each modeling scenario. Euclidean distance was
measured between a test object to each of training objects and
used to assign the sample class of the test object for LOOCV.
3. Results and discussion
3.1 LIBS modeling

The average LIBS spectra of kimchi samples produced in South
Korea (53 samples) and China (72 samples) are shown in Fig. 1.
The spectra primarily consist of emission peaks from Na, K, Mg,
Ca, C, H, and O, which were identied using the NIST Atomic
Spectra Database.27 The presence of metallic elements such as
Na, K, Mg, and Ca is associated with the plant tissues that are
essential micronutrients for the growth of cabbage. Addition-
ally, the salting process during kimchi preparation further
enhances their concentrations in cabbage. Although the LIBS
spectra of the two groups appear similar in overall shape,
This journal is © The Royal Society of Chemistry 2025
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Fig. 1 LIBS spectra of kimchi samples produced in South Korea and
China within the wavelength range of 200–1000 nm. The strongest
emission peaks corresponding to the elements C, Mg, Ca, Na, H, K, and
O are marked.

Fig. 2 Classification accuracy values from LOOCV of (a) one-, (b) two-
, (c) three-, and (d) four-variable k-NN models. In each panel, the
models showing the highest classification accuracy are marked using
“*” with the corresponding accuracy values.
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certain emission lines exhibit interclass differences that are
substantially greater than the variability within each class. In
the following, rather than using the full spectral range from 200
to 1000 nm, we selected only a small number (typically 1 to 4) of
the most prominent and stable emission peaks as variables.
These peaks were chosen based on their individual discrimi-
native power and their potential to complement one another
when used together in a multivariate model. The emission
peaks of nonmetallic elements, C, H, and O, are attributed to
the cabbage and other vegetables used as main ingredients in
kimchi. The strongest emission peaks of Na I (590 nm), K I (766
nm), Mg II (279 nm), Ca II (393 nm), C I (248 nm), H I (656 nm),
and O I (777 nm) were marked in Fig. 1. The intensities of these
peaks were calculated as baseline-subtracted peak areas. These
peaks are representative of emissions from their corresponding
elements. Based on the intensities of these seven emission
peaks extracted from the LIBS spectra of South Korean and
Chinese kimchi samples, k-NN models were constructed to
classify the two sample classes.

The best variable sets for k-NN modeling using the peak
intensities from LIBS spectra were identied by following the
forward selection scheme.28,29 In the forward selection scheme,
modeling begins with no variables initially included. At each
step, a new variable is added by selecting the one that yields the
greatest improvement in model performance, as measured by
cross-validated classication accuracy. This process is repeated
iteratively: aer each addition, the next best-performing vari-
able is identied and incorporated into the model. The proce-
dure terminates when the inclusion of additional variables no
longer results in a signicant increase in accuracy. Through this
approach, variable sets that balance high classication perfor-
mance with minimal model complexity were systematically
identied. Herein, seven one-variable k-NNmodels were trained
rst and their classication performances were evaluated.
This journal is © The Royal Society of Chemistry 2025
Fig. 2a shows the classication accuracy values of the seven one-
variable k-NN models. Among them, the model trained using
the K I emission peak intensity shows the highest classication
accuracy (86.4%). Then, the K I emission peak intensity was
paired with each of the others in turn to train six two-variable k-
NN models: (K, Mg), (K, C), (K, O), (K, Ca), (K, H), and (K, Na).
The classication accuracy values of these two-variable k-NN
models are compared in Fig. 2b. When the K I emission peak
intensity was paired with that of O I, the two-variable model
performance was maximized with the classication accuracy of
93.6%, which is higher than that of the best one-variable model
(86.4%). Thus, the O I emission peak intensity was added to the
variable set where that of K I was already contained. Next, the
ve possible three-variable k-NN models were set by adding
each of the Mg II, C I, Ca II, H I, and Na I emission peak
J. Anal. At. Spectrom., 2025, 40, 2222–2231 | 2225
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Fig. 3 Confusion matrices of three-variable standalone LIBS k-NN
models using the emission intensities of (a) K I, O I, andMg II, and (b) K I,
O I, and C I.

Fig. 4 Representative IR spectra of kimchi samples produced in South
Korea and China in the IR range of 4000–450 cm−1. The inset shows
the expanded spectra in the region of 1180–1020 cm−1 where the
absorptions bands of carbohydrates are observed and indicated by the
arrows.
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intensities to the two-variable set composed of those of K I and
O I: (K, O, Mg), (K, O, C), (K, O, Ca), (K, O, H), and (K, O, Na).
Their classication performances were evaluated to select the
third variable for the best variable set (Fig. 2c). Among the ve
three-variable models, those of (K, O, Mg) and (K, O, C) showed
the equally highest performances with the classication accu-
racy of 94.4% outperforming the best two-variable model
(93.6%). To the former three-variable model of (K, O, Mg), each
of the C I, Ca II, H I, and Na I emission peak intensities were
added to form four-variable models. However, none of them
showed improved classication accuracy in comparison with
that of the three-variable model of (K, O, Mg) (Fig. 2d). The other
three-variable model of (K, O, C) also could not be extended to
any four-variable models which outperform it (Fig. 2d). There-
fore, the forward selection process was stopped here with the
two variable sets of (K, O, Mg) and (K, O, C) as the best stand-
alone LIBS models. Fig. 3 shows the confusion matrices of the
two best standalone LIBS models. The optimal k values were
comparably 8 and 7 for the models of (K, O, Mg) and (K, O, C),
respectively. Although the overall classication accuracy values
of the two (K, O, Mg) and (K, O, C) models were equal, the
former showed much better performance in classifying the
kimchi samples produced in China and the latter provided
rather balanced classication accuracy between the South
Korean and Chinese kimchi classes.

3.2 IR modeling

The IR spectra of the kimchi samples produced in South Korea
and China in the IR region of 450–4000 cm−1 are shown in
Fig. 4. Each spectrum represents the average of 53 and 72
spectra for the samples from South Korea and China, respec-
tively. The IR spectra for both kimchi classes exhibit similar
features, primarily due to their cabbage content. The absorption
band in the spectral region 3100–3700 cm−1 is attributed to
O–H and N–H stretching vibrations.30 The absorption peaks at
2925 cm−1 and 2853 cm−1 observed in both classes correspond
to asymmetrical and symmetrical stretching of C–H bonds in
lipids and other organic compounds.31 The absorption peak at
2321 cm−1 is attributed to the characteristic asymmetric
stretching band of CO2.32 The absorption band observed at
∼1734 cm−1 is linked to the stretching vibration of C]O,
indicating the presence of organic acids, primarily lactic acid.33

The typical amide I, II, and III absorption bands were observed
2226 | J. Anal. At. Spectrom., 2025, 40, 2222–2231
in both kimchi spectra at ∼1616 cm−1 (C]O stretching),
1541 cm−1 (N–H deformation), and 1250 cm−1 (N–H deforma-
tion), respectively.34 These amide absorption bands indicate the
contribution of proteins or peptides to the IR spectra. Addi-
tionally, the carbohydrate absorption bands observed in the
1200–900 cm−1 region arise predominantly from the combina-
tion of C–O–C and C–OH stretching at 1028, 1051, 1075, 1101,
and 1146 cm−1, as indicated by the arrows in the inset of
Fig. 4.35,36

To identify a suitable range having signicant discrimi-
nating power within the spectral region of 750–1750 cm−1, the
interclass distances between the two kimchi classes were
calculated and compared at each wavenumber for both raw and
preprocessed IR spectra. The interclass distance is actually
a measure of separation between distinct classes and plays
a crucial role in classication and clustering analyses. The
larger interclass distances indicate the better separation
between classes along a certain variable axis. Relying on inter-
class distances, variables with high discriminating power can be
identied. The comparison of interclass distances at each
wavenumber for both raw and preprocessed IR spectra offers
two main advantages: (i) it demonstrates the superior class-
separation capability of the preprocessed spectra compared to
the raw spectra, and (ii) it enables the identication of the
optimal spectral region within the preprocessed IR spectra that
provides the highest discriminatory power between the two
classes. The interclass distance, dK−C, between the two kimchi
sample classes was calculated using eqn (1) at each wave-
number from 750 to 1750 cm−1.14

dK�C ¼ jmK �mCj
spooled

(1)

In the above equation, the subscripts “K” and “C” represent the
two sample classes—kimchi produced in South Korea and
China, respectively, and mK and mC denote the means of the
This journal is © The Royal Society of Chemistry 2025
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absorbance values for the South Korean and Chinese classes,
respectively. The absolute difference, jmK − mCj, is simply the
mean-to-mean distance between two classes. However, this is
insufficient to describe how far the two classes are separated
along the given variable axis because each class has its own
variance. This can be addressed by scaling the mean-to-mean
distance by the pooled standard deviation, spooled, calculated
as the square root of a weighted average combining variances
across several classes, as expressed in eqn (2).37

spooled ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnK � 1ÞsK2 þ ðnC � 1ÞsC2

nK þ nC � 2

s
(2)

In eqn (2), nK and nC represent the numbers of objects in the
South Korean and Chinese kimchi classes, respectively, while sK
and sC denote the standard deviations of the corresponding
classes. Fig. 5a and b illustrate wavenumber-dependent inter-
class distances between South Korean and Chinese kimchi
classes for both raw and preprocessed IR spectra, respectively. It
is evident that for each wavenumber, the value of dK−C for the
raw spectra is far below 1 (Fig. 5a). Contrary to the raw spectra,
Fig. 5 Interclass distance values between the two sample classes of
kimchi produced in South Korea and China using (a) raw and (b) pre-
processed IR spectra in the region of 1750–750 cm−1. The horizontal
dashed lines indicate the interclass distance value of 1. In the yellow-
shaded region in b, absorption bands with interclass distance values
greater than 1 were observed.

This journal is © The Royal Society of Chemistry 2025
the dK−C values show signicant improvement across most
wavenumbers for the pre-processed IR spectra. This emphasizes
how crucial spectral preprocessing is when working with
complex IR data. For the preprocessed spectra, the dK−C values
are found to be particularly high between 1254 and 1018 cm−1.
The interclass distance exceeds 1 for several bands in this
spectral range, indicating a greater potential for distinguishing
between the two kimchi classes compared to other ranges.
Thus, modeling with the data in this spectral range would be
essential. The shaded region in Fig. 5b shows relatively high
discriminative power with dK−C values greater than 1. This
shaded spectral range 1260–1010 cm−1 is mainly associated
with the carbohydrate absorption bands in the IR spectra of
kimchi samples.

The variables of the preprocessed IR spectra in the selected
region (1254–1018 cm−1) were reduced using PCA, and the
discrimination capabilities of the resulting principal compo-
nents (PCs) were subsequently evaluated. The rst three PCs
together explained approximately 91% of the total spectral
variance. PCA extracts features in descending order of the
variance they explain, prioritizing components that account for
greater variability in the dataset. However, since this variance is
calculated using all spectra in an unsupervisedmanner, the rst
principal component is not necessarily the most effective for
classication purposes. Fig. 6a–c show the histograms of scores
for the rst three PCs. The score distributions reveal that PC1
provide almost no noticeable separation between Korean and
Chinese kimchi samples, PC2 shows slight separation, and PC3
exhibits the greatest distinction between the two classes. This
observation suggests that PC3 is the most suitable component
for data fusion with the LIBS variables. The discrimination
capabilities of the three PCs were quantitatively assessed based
on their interclass distance values calculated using eqn (1) and
(2). The interclass distances for PC1, PC2, and PC3 were found
to be 0.05, 0.67, and 1.47, respectively, as shown in Fig. 6d.
Accordingly, PC3, derived from the preprocessed IR data, was
selected for inclusion in the fused LIBS-IR model. Prior to data
fusion, the standalone IR k-NN model were independently
trained using the PC3 scores from the IR spectra and evaluated
by LOOCV. The standalone IR k-NN model achieved the highest
classication accuracy of 86.4% at k = 5. The corresponding
confusion matrix is shown as the inset in Fig. 6d.
3.3 LIBS-IR fused model

The variables extracted from the LIBS and IR spectra of kimchi
samples were combined to improve the classication perfor-
mance of the k-NNmodel. From the LIBS data, two variable sets,
(i) the emission intensities of K I, O I, andMg II, and (ii) those of
K I, O I, and C I, were found to yield the equally highest clas-
sication accuracies of 94.4% at k = 8 and 7, respectively,
among the standalone LIBS k-NN models. The standalone IR k-
NN model trained using the PC3 scores from the IR spectra
achieved the highest classication accuracy of 86.4% at k = 5.
Accordingly, two fused LIBS-IR k-NN models were developed
using (i) the LIBS emission intensities of K I, O I, and Mg II
combined with the IR PC3 scores, and (ii) the LIBS emission
J. Anal. At. Spectrom., 2025, 40, 2222–2231 | 2227
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Fig. 6 Histograms of scores for (a) PC1, (b) PC2, and (c) PC3 extracted from the preprocessed IR spectra in the range of 1018–1254 cm−1 and (d)
the interclass distance values calculated for PCs 1–3. The confusion matrix of the standalone IR k-NN model trained using the PC3 scores
extracted from the preprocessed IR spectra is shown as the inset in d.
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intensities of K I, O I, and C I combined with the IR PC3 scores.
However, the classication accuracies of both fused models
were identical to those of the corresponding standalone LIBS
models, showing the same optimal k values, and producing
identical confusion matrices. This similarity is primarily
attributed to the dominance of the score values of LIBS variables
(106 to 107) over those of PC3 from IR spectra (−0.1 to +0.1) and
hinders the effective utilization of the discrimination power of
the IR spectra. Therefore, appropriate scaling of data from
different spectroscopic techniques is essential for effective
combination.38 In order for the optimal scaling, weighting
factors ranging from 101 to 109 were applied to the PC3 scores
from the IR spectra, and the classication accuracy values were
investigated. Fig. 7a and b illustrate the classication accuracies
of the fused LIBS-IR k-NN models trained using the LIBS
emission intensities of K I, O I, and Mg II combined with the IR
PC3 scores, and the LIBS emission intensities of K I, O I, and C I
combined with the IR PC3 scores, respectively, as a function of
the weighting factors applied to the IR PC3 scores. In these
gures, the classication accuracy values of the standalone LIBS
and IR k-NN models are also shown at the two extremes for
comparison, and the accuracy values of the fused models lie
between these extreme results. In both fused models, the
2228 | J. Anal. At. Spectrom., 2025, 40, 2222–2231
classication accuracy of the standalone LIBS k-NN models and
the fused LIBS-IR k-NN models remained the same until the
weighting factors assigned to the IR variable became signi-
cantly large. The fused model combining the IR variable with
the LIBS emission intensities of K I, O I, and Mg II showed the
higher classication accuracy (96.0%) than those of the corre-
sponding standalone LIBS and IR models with the weighting
factors of 107 to 5 × 107 applied to the IR variable (Fig. 7a). Also,
the fused model combining the IR variable with the LIBS
emission intensities of K I, O I, and C I showed the higher
classication accuracy (96.8%) than those of the corresponding
standalone LIBS and IRmodels with the weighting factors of 106

to 5 × 107 applied to the IR variable (Fig. 7b). As the weighting
factors increase further, the classication accuracy converged to
that of the standalone IR k-NN models (86.4%) for both fused
models.

It should be noted that the optimal weighting factors can be
rationalized by considering the difference in the magnitudes of
the LIBS and IR variables. k-NN model measures distance
between a test object and training ones in the variable space,
and with multiple variables, the distances along different vari-
ables are combined following Euclidean distance formulation
as expressed by eqn (3).
This journal is © The Royal Society of Chemistry 2025
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Fig. 7 Classification accuracy of fused LIBS-IR k-NNmodels trained using (a) the LIBS emission intensities of K I, O I, andMg II and the PC3 scores
from IR spectra and (b) the LIBS emission intensities of K I, O I, and C I and the PC3 scores from IR spectra and optimal k values of the cor-
responding models with respect to the weighting factors given to the IR variable. The highest classification accuracy values are indicated by the
arrows in a and b. The confusionmatrices corresponding to the best fused LIBS-IR k-NNmodels trained using the two variable sets are shown as
the insets in (c) and (d).
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D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðvTR1 � vTE1 Þ2 þ ðvTR2 � vTE2 Þ2 þ ðvTR3 � vTE3 Þ2 þ/

q
(3)

In a given variable space, training and test objects are repre-
sented by (vTR1 , vTR2 , vTR3 ,/) and (vTE1 , vTE2 , vTE3 ,/), respectively.
This equation indicates that the discrimination power of ith
variable in the multi-variable k-NN model originates from the
absolute difference between vTRi and vTEi with i = 1, 2, 3, .

ð��vTRi � vTEi
�� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðvTRi � vTEi Þ2
q

Þ: Thus, the difference can be esti-

mated by obtaining the average difference of the two scores for
all possible combinations. Totally, 125 kimchi samples were
used in this work. Thus, for each variable, 7750 (=125 × 124/2)
score pairs can be taken for calculating the corresponding
distances. The average of the 7750 distance values corre-
sponding to the LIBS emission intensities of K I, O I, Mg II, and
C I are 5.57 × 105, 1.93 × 105, 3.09 × 106, and 1.08 × 105,
respectively, and that of the PC3 scores extracted from the IR
spectra is 3.00 × 10−2. As can be seen from these calculations,
the magnitude of the average distance of the IR variable scores
is almost negligible compared to those of the LIBS variables.
Under these circumstances, the distance along the IR variable
This journal is © The Royal Society of Chemistry 2025
can be combined as-is with those along the LIBS variables, but
its contribution to the resulting distance in the fused-variable
space is nearly negligible. Therefore, weighting factors are
necessary to make the discrimination power from the IR vari-
able effective in the fused models. However, the optimal
weighting factor can be predicted by taking the ratio of the
distance along the LIBS variable to that along the IR variable.
For the fused model based on the LIBS emission intensities of K
I, O I, and Mg II combined with the IR PC3 scores, this ratio was
estimated to be 4.27 × 107. For this calculation, the average
distance of the three LIBS variables was used as a representative
of the LIBS variables. The ratio of 4.27 × 107 accurately pre-
dicted the optimal weighting factor to be applied to the IR
variable, 5.00 × 107, making the distance along the IR variable
comparable to those along the LIBS variables. Likewise, for the
fused model based on the LIBS emission intensities of K I, O I,
and C I combined with the IR PC3 scores, this ratio was esti-
mated to be 9.53 × 106, which is very close to the optimal
weighing factor, 1.00 × 107.

Fig. 7c and d show the optimal k values leading to the highest
classication accuracy of the standalone LIBS and IR k-NN
J. Anal. At. Spectrom., 2025, 40, 2222–2231 | 2229
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models (at the lemost and rightmost sides, respectively), as
well as those of the LIBS-IR fused k-NN models across a range of
weighting factors assigned to the IR variable. These gures
highlight not only the classication performance but also the
computational behavior of the fused models. When the
weighting factor assigned to the IR variable is small, its inu-
ence on the overall distance metric is negligible due to its much
smaller magnitude compared to the LIBS variables. Conse-
quently, the fused models behave similarly to the standalone
LIBS models, and the optimal number of neighbors, k, remains
unchanged. However, as the weighting factor increases and the
scaled IR variable begins to contribute meaningfully to the
distance calculation, the class separation in the fused feature
space becomes sharper. This enhanced separation allows for
accurate classication using only the nearest neighbor (k = 1),
resulting in the highest observed classication accuracy.
Notably, this point of optimal class separation also corresponds
to the lowest amount of computation required, since the k-NN
model requires only one distance comparison to make
a prediction. Beyond this optimal weighting range, further
increases in the IR weighting factor cause the model to
resemble the standalone IR model, which has lower discrimi-
native power. Accordingly, the classication accuracy drops,
and the optimal k value increases again, indicating a need to
average over more neighbors to maintain performance. These
results underscore the dual benet of proper weighting: it
enhances classication accuracy while simultaneously reducing
the amount of computation required. The confusion matrices
for the best-performing fused models—those using the LIBS
emission intensities of K I, O I, and Mg II combined with the IR
PC3 scores, and those using K I, O I, and C I with IR PC3—are
shown as the insets in Fig. 7c and d, respectively.

4. Conclusions

This study demonstrated the effectiveness of combining
elemental and molecular information obtained through LIBS
and IR spectroscopy, respectively, for the accurate classication
of kimchi products by country of origin. By selecting optimal
variables from both spectroscopic techniques based on inter-
class distance and PCA, high-performing standalone models
were constructed. The LIBS-based k-NN models achieved clas-
sication accuracies of up to 94.4%, while the IR-based k-NN
model using PC3 reached 86.4%. To further improve classi-
cation performance, the variables from both techniques were
fused within a k-NN modeling framework. However, due to the
signicant difference in magnitudes between the LIBS and IR
variables, simple combination without scaling led to fused
models that failed to outperform the LIBS and IR standalone
models. This challenge was effectively addressed by introducing
weighting factors to the IR variable, allowing its discrimination
power to contribute meaningfully to the fused variable space. As
a result, the classication accuracy of the fused models
improved, with the best-performing model reaching 96.8%,
surpassing both standalone models. Importantly, this study
highlights that balancing the discrimination power of variables
from heterogeneous spectroscopic sources is crucial not only
2230 | J. Anal. At. Spectrom., 2025, 40, 2222–2231
for enhancing classication accuracy but also for improving
computational efficiency in k-NN modeling. Specically, with
appropriate weighting, the optimal number of neighbors to be
considered, k, in the fused models decreased signicantly
(down to k= 1), which in turn drastically reduced the amount of
computation required for class assignment. This is particularly
advantageous when working with large-scale datasets or
implementing real-time classication systems. Furthermore, we
proposed a rational method to predict the optimal weighting
factor based on the average distance between sample pairs for
each variable. This predictive approach aligns well with the
empirically determined optimal weights and offers a generaliz-
able strategy for future fusion modeling efforts involving
disparate spectroscopic techniques. Overall, the proposed LIBS-
IR fusion framework provides a robust, efficient, and accurate
solution for verifying the geographical origin of kimchi and
serves as a valuable model for broader applications in food
authentication and multimodal data integration.
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