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epidermal growth factor receptor
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Epidermal growth factor receptor (EGFR) is a membrane-bound protein that interacts with epidermal

growth factor, triggering receptor dimerization and tyrosine autophosphorylation, subsequently promoting

cell proliferation. EGFR-associated pathways regulate cell housekeeping functions like growth, division, and

apoptosis. However, the mutations/overexpression of EGFR cause unrestrained cell differentiation, leading

to tumorigenesis. This study proposes a machine-learning-based tool, EGFRAP, to compute novel

molecules' biological activities (pIC50) against EGFR. The tool is based on a robust quantitative structure–

activity relationship (QSAR) model, trained on a large dataset of existing EGFR inhibitors using multiple

machine learning algorithms. The extra trees regressor (ET) model showed promising results for the training

dataset with an R2 value of 0.99, an RMSE value of 0.07 and an MAE of 0.009. The Pearson correlation

between the observed and predicted pIC50 values of the training set inhibitors was also very substantial, i.e.

0.99. The model was then validated using a test dataset, and the findings were satisfactory. An R2 value of

0.67, an RMSE of 0.89 and an MAE of 0.61 were detected for the test dataset, and the Pearson correlation

coefficient of observed/predicted pIC50 values was 0.82. The model was probed for overfitting using 10-

fold cross-validation, and a series of structure-based drug design experiments were performed to validate

the tool's predictions. The findings backed up the model's performance. This tool will be of significant

importance to medicinal chemists in identifying promising EGFR inhibitors.

1. Introduction

The epidermal growth factor receptor (EGFR), a
transmembrane tyrosine kinase protein, acts as a receptor for
EGF family proteins, regulating key processes like human
epithelial cell growth, spread, invasion, and cell death.1 It
mediates the signalling pathways responsible for cell
proliferation, angiogenesis, and apoptosis.2 It is also involved
in tumour metastasis, making it a crucial drug target for
curing malignancies.3,4 There are four members in the EGFR
family, which include EGFR (HER1/ErbB1), ErbB2 (HER2/
neu), ErbB3 (HER3), and ErbB4 (HER4).5 These receptors are
activated upon ligand binding by dimerization. The activated
receptors undergo autophosphorylation near the structural
domain to initiate downstream signalling pathways like RAS/
RAF/MEK and STAT.6 Mutations in EGFR lead to abnormal

signalling, causing tumorigenesis and overexpression of EGFR
in various cancers.7 The overexpression of EGFR in multiple
cancers results in resistance to traditional radiotherapy and
hormonal therapy.8 Thus, the international guidelines
recommend using anti-EGFR medications as the initial
treatment for patients with high EGFR mutations due to their
improved efficacy and safety compared to standard
chemotherapy.9,10

Monoclonal antibodies and tyrosine kinase inhibitors are
widely used to target EGFR.11 Cetuximab and panitumumab
are the commonly used anti-EGFR monoclonal antibodies to
treat certain cancers.12 These antibodies bind to EGFR's
extracellular domain and prevent endogenous ligands from
interacting with EGFR. As a result, the EGFR signalling cascade
is disrupted, and EGFR tyrosine kinase activation is
suppressed.13 The tyrosine kinase inhibitors, on the other
hand, target EGFR by inhibiting its phosphorylation and thus
blocking the downstream signalling cascades. These
medications offer an advantage over monoclonal antibodies as
they are also effective in treating cancers associated with
mutations in EGFR.14–16 EGFR is an important drug target to
cure cancer, and efforts are still ongoing to come up with novel
and more effective anti-EGFR inhibitors or medications.17–20
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Computer-aided drug discovery (CADD) strategies are
essential in identifying and developing novel drug-like
molecules. CADD techniques can be combined with other
computational methods for more accurate findings.21,22

Chang et al. applied a machine learning-based virtual
screening setup to identify a new generation of EGFR tyrosine
kinase inhibitors. They synthesized novel small molecules
from the knowledge obtained from the structural molecular
descriptors. Their identified molecules were active against
some mutated kinases.23 In another report by Nada et al.,
novel small molecules were reported as potent candidates for
treating breast cancer by inhibiting EGFR. They used rational
drug design strategies coupled with artificial intelligence
applications. The identified compounds showed promising
anti-proliferative activity in cancer cell lines.24 Huo et al.
developed a ligand-based virtual screening protocol and
obtained active structures by screening a library of ∼5
million compounds. Structure–activity relationship (SAR) and
quantitative structure–activity relationship (QSAR) models
developed using an SVM-based approach further filtered the
most active EGFR inhibitors, which showed potential anti-
EGFR activity in the experimental validations.25 Eissa et al.
also reported a novel theobromine derivative as a potent
EGFR inhibitor based on the findings of a computational
investigation. The identified compound was initially tested in
silico and showed tremendous potential. The lead compound
was validated for its anti-EGFR activity using in vitro
experiments. It showed very high activity against cancer cell
lines and low potency against regular ones. The identified
compound had optimal ADMET properties and was selective
against EGFR.26

EGFR has a huge role in effective cancer management,
and many scientific investigations are conducted to develop
novel EGFR inhibitors. The present work introduces a
machine learning-based tool that depicts small molecules'
biological activities (pIC50) against EGFR. A set of 2D
molecular descriptors was calculated for the previously
reported EGFR inhibitors. The inhibitors were segregated
based on their activity against EGFR and were used to
prepare predictive regression models. The models were built
using the extra trees (ET) regression algorithms in Python's
machine learning modules. The files needed to run the app
on any local machine can be accessed publicly at https://
github.com/amarinderthind/EGFR-ap. The knowledge derived
from this tool can be decisive in developing potent inhibitors
targeting EGFR.

2. Materials and methods
2.1. Dataset preparation

For the present work, 16 715 EGFR inhibitors (File S127) were
initially retrieved from the ChEMBL database (https://www.
ebi.ac.uk/chembl/).28 ChEMBL is a meticulously curated
database housing bioactive molecules exhibiting drug-like
characteristics. It amalgamates chemical, bioactivity, and
genomic data, facilitating the seamless translation of

genomic insights into innovative pharmaceuticals.29 The
retrieved file contained various features regarding these
inhibitors, such as ChEMBL IDs, canonical smiles, activities
(IC50), references, etc. The raw file was cleaned, the duplicate
molecules and molecules with approximate activities were
removed, and only relevant information was retained. The
remaining inhibitor dataset (9508 EGFR inhibitors) was
divided into three categories based on the IC50 values. These
categories were active (IC50 ≤ 1000 nM), intermediately active
(IC50 > 1000 nM ≤ 10 000 nM), and inactive (IC50 ≥ 10 000
nM) EGFR inhibitors (File S227). Only the active and inactive
inhibitors (8102 inhibitors) were then taken up for further
analysis. The IC50 values of the inhibitors were converted to
pIC50 values (negative logarithm of IC50 values), which
facilitates the comparison of different inhibitors at the same
molar levels (File S327).

2.2. Molecular descriptor computation

2D molecular descriptors were calculated using the PaDELPy
module in Python. This module aids in calculating a variety
of fingerprints and 2D descriptors for small molecules.
PaDELPy is a Python wrapper for the PaDEL-Descriptor
molecular descriptor calculation software.30 It provides
seamless Python access to the PaDEL-Descriptor command-
line interface, enabling direct utilization.

2.3. Dataset curation and feature selection

The activity (pIC50) of the EGFR inhibitors was considered a
dependent variable, and the descriptors were independent
variables. Data curation and feature selection were performed
for independent variables, improving the feature-to-sample
ratio. Feature selection allows the choice of essential features
for ML model-building, which reduces the complexity of ML
models while avoiding overfitting.31 Firstly, the rows
containing “missing” or “infinite” values were deleted. The
next step was to remove the empty descriptor columns from
the dataset. This was followed by removing the descriptors
with at least 25% missing observations. After initial data
curation, the dataset underwent exhaustive filtering to reduce
the number of molecular descriptors for final model training.
Next, the correlation between the dependent and
independent variables was computed, and descriptors with a
correlation of less than 0.25 with the dependent variable were
subsequently removed from the dataset to ensure that only
features with a meaningful relationship with the target were
retained. To mitigate multicollinearity, we removed highly
correlated descriptors. A correlation matrix of the molecular
descriptors among themselves was generated. Redundant
descriptors were identified by detecting correlations of 0.8 or
higher among themselves. Only one representative molecular
descriptor was kept for such high correlations, while others
were dropped from the dataset. Further, the dataset was
investigated to detect outliers, and capping was performed to
address extreme values.
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2.4. Model building

After feature selection, the dataset was scaled to perform
multivariate modelling. The dataset was randomly split into
training and test sets for model building. 80% of the data
was treated as a training set, and the remaining 20% was
treated as a test set. Forty-two machine learning linear
regression algorithms were used for model building and
evaluated using root mean squared error (RMSE) and
R-squared (R2) values (Fig. 1). This was achieved using the
lazy regressor module of the Sci-kit learn (sklearn) Python
library. The algorithms were compared, and the algorithm
performing well on these parameters was selected for final
model building.

2.5. Model validation

The trained models were further tested for their accuracy and
fitness. Statistical features like training R2 score, testing R2

score, RMSE training, RMSE testing, and correlation between
the experimental and predicted activities (pIC50) were
performed on the developed models. Initially, the model was
validated using a test set constituting 20% of the total
dataset. The model was checked for overfitting using the
k-fold (k =10) cross-validation technique. Finally, the
correlation between the experimental and predicted pIC50

values was also calculated to establish the robustness of the
cross-validation run.

2.6. In silico validation

After validating the model predictions, the app was deployed
and used to predict the pIC50 of 10 standard EGFR drugs.
The predictions from the app were then compared with the
experimental activities of these EGFR drugs to get insights
into the efficiency of the projections. The top 2 active EGFR
drugs, almonertinib and gefitinib (based on the app's
predictions), were prepared for further structure-based drug
design experiments. The experimental setup included two
other molecules from the CHEMBL (Comp1 and Comp2)
database reported as active EGFR inhibitors from the model
validation stage (Fig. 2).

2.6.1. Molecular docking. Molecular docking is a well-
established structural drug design strategy widely used.32 A
high-resolution (1.98 Å) 3D structure of EGFR (PDB ID:
8SC7)33 was obtained from the protein data bank.34 The
initial inhibitor structures were prepared using ChemDraw
software and were optimized using a DFT-based protocol35 in
the BIOVIA Discovery Studio suite36 before commencing the
structure-based experiments. DFT-based methods perform
structural optimization of the small molecules by correcting
their molecular geometries and electronic structures.37–42

Fig. 1 Plots showing (A) R-square (R2), and (B) RMSE to complete the computation by different ML algorithms.
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After structural optimization, these ligands were docked in
the EGFR active site, which was defined using the co-
crystallized ligand in the EGFR receptor crystal structure as a
reference. The default parameters in Discovery Studio's
CDOCKER utility were implemented for the molecular
docking experiment.43 The ligands were treated as flexible
molecules, while the protein structure was pre-set to be rigid.
The protein–ligand complexes were later subjected to detailed
interaction analysis to explore the binding patterns and to
identify the key interacting amino acids at the EGFR active
site.

2.6.2. Molecular dynamics simulations. The best ligand
conformations were selected for more refined classical
molecular dynamics-based experiments using the GROMACS
package.44–46 The protein topology was generated using the
CHARMM36 force field,47 and ligand topology was obtained
using a web-based tool called CgenFF.43 The TIP3P water
model was used for the solvation of the protein–ligand
complexes, followed by the addition of counter ions to
neutralize the systems. The steepest descent algorithm was
used for energy minimization, followed by a 1000 ps
equilibration step utilizing the NVT and NPT ensembles.
During the equilibration process, the Parrinello–Rahman
method maintained a constant pressure of 1 bar. At the same
time, the Berendsen thermostat was applied to regulate the
temperature at 300 K. The Energy was minimized, and
equilibrated protein–ligand systems were then subjected to a
500 ns production MD run. The particle mesh Ewald (PME)
algorithm, widely used for long-range electrostatic
interactions, was employed in the calculations. Real-space
interactions were considered within a 1.0 nm cutoff, while
reciprocal-space interactions were determined using a Fourier
transform with optimized grid spacing and fourth-order
B-spline interpolation.48 Van der Waals interactions,
classified as short-range with a 1 nm cutoff, were computed
using the Lennard-Jones potential. Meanwhile, the linear
constraint algorithm (LINCS) was utilized to constrain all
covalent bond lengths, including hydrogen bonds.49 The

simulation trajectories were analyzed using built-in
GROMACS scripts.

2.6.3. Per-residue decomposition energy (PRDE) analysis.
After analyzing the simulated protein–ligand systems for
structural stability, the key amino acids involved in
intermolecular interactions with the EGFR inhibitors were
identified through detailed interaction analysis. The per-
residue decomposition energy (PRDE) analysis was done to
understand the energetic contribution of the interacting
amino acids towards the binding energy. In PRDE analysis,
the individual energetic contribution of the amino acid
residues is computed by breaking the overall binding Energy
of a protein–ligand system into van der Waals, electrostatic
and non-polar solvation energy terms.50 It provides a
quantitative account of the energetics of ligand–amino acid
binding in terms of the energy contribution of the amino
acids along with their backbone and side chains. This is an
established method to understand the binding mechanism of
protein–ligand and protein–protein systems.51

3. Results and discussion

Here, we present a machine learning-based tool that can be
important in identifying novel leads and optimizing existing
medication strategies to treat cancers targeting EGFR.
Various machine learning models of Python were explored to
prepare this tool and further validate it before it was
operational. The cleaned dataset consisted of 8102 EGFR
inhibitors. This dataset was subjected to a series of
operations to achieve the proposed objective.

A set of 2D molecular descriptors was computed for the
inhibitor dataset. A total of 1444 2D descriptors were
obtained for the inhibitors. The raw data was
multidimensional and was cleaned before model building.
The data curation and feature selection were automated
using various machine-learning modules available in Python.
We carefully examined the raw data and found a few rows
containing only “missing” or “infinite” values in the cells.

Fig. 2 2D chemical structures of the EGFR inhibitors considered for the in silico validation.
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These were removed in the first step of the feature selection
procedure, and we were left with 8098 EGFR inhibitors in the
dataset (File S427). We performed a Murcko scaffold analysis
on the remaining dataset to understand chemical diversity.
This analysis revealed that the dataset contains more than
2000 unique Murcko scaffolds, suggesting rich chemical
diversity. The Supplementary Figure file27 presents the top 10
most frequent MURCKO scaffolds.

Next, the descriptor columns were inspected for any
meaningless data. Few descriptors had only missing values in
the observation cells and thus were removed from the data.
After this step, we were left with 1435 molecular descriptors
subjected to the next feature selection round (File S527).
Later, the data was again checked for any missing values,
and it was seen that some columns had nil observations in
many cells, which needed to be taken care of. So, in the next
phase, we selected the complete dataset and explored it to
highlight and remove the molecule descriptor columns where
at least 25% of the observations were missing. Eliminating
columns with missing values is recommended to enhance
data quality and relevance. It helps reduce noise and data
sparsity, thereby improving the statistical integrity of the
dataset. Simplifying models by removing such columns
prevents overfitting and boosts computational efficiency,
ultimately improving model performance.52,53 After this
feature selection procedure, we were left with 900 molecular
descriptors (File S627).

Next, we checked for the relationship between the
remaining molecular descriptors and the pIC50 of the EGFR
inhibitors. A correlation matrix was prepared, and the
descriptors showing a correlation of less than 0.25 with the
pIC50 of the inhibitors were eliminated. The whole motive
behind this step was to remove the molecular descriptors that
did not direct the EGFR inhibitors' inhibitory potential to
improve our tool's predictions. After eliminating such
descriptors, we were left with 41 features in our dataset (File
S727). In addition, multicollinearity among independent
variables (features) can exacerbate model complexity without
substantially augmenting its informational value. To deal with
multicollinearity, we prepared a correlation matrix depicting
the correlation among the remaining independent features.
On analyzing the matrix, features showing a correlation of 0.8
or more among each other were reported, and only one
feature was kept in the dataset as their representative. In data
analysis, choosing a single feature from a set of highly
correlated features is advised to minimize redundancy, avoid
multicollinearity, and streamline models. This approach
improves model interpretability and boosts computational
efficiency.54–56 Finally, our dataset consisted of only 15
molecular descriptors for model building (File S827). The
cleaned data file was inspected to detect and treat outliers so
they did not affect the predictions. Also, the distribution plots
of the untreated features were plotted to unravel their
distribution patterns (Fig. 3).

Fig. 3 Distribution and box plots to show the distribution pattern of the uncapped data. (A) AATS2i, (B) BIC3, (C) ETA_BetaP_s, (D) GATS6m, (E)
IC2, (F) JGI3, (G) MDEN-22, (H) MIC2, (I) MLFER_BO, (J) SssNH, (K) WTPT-5, (L) maxHother, (M) maxaaN, (N) maxssNH, and (O) nT6HeteroRing.
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The first (Q1) and third quartiles (Q3) and the
interquartile range (IQR) for the variables in the dataset were
calculated initially. The values falling below the lower limit
(Q1 − 1.5 × IQR) and the upper limit (Q3 + 1.5 × IQR) were
identified as outliers for each molecular descriptor. These
outliers were then treated using the data capping technique.
The outliers were then replaced with the values of the Q1 and
Q3 for the lower and higher outliers, respectively (File S927).

The capped values were plotted again to compare the
capped and untreated data distributions (Fig. 4). The figures
show a smooth distribution in the case of the capped data;
thus, we proceeded with the model-building process.

The data now consisted of 1 dependent variable (pIC50)
and 15 independent variables, which included AATS2i, BIC3,
ETA_BetaP_s, GATS6m, IC2, JGI3, MDEN-22, MIC2,
MLFER_BO, SssNH, WTPT-5, maxHother, maxaaN, maxssNH,
nT6HeteroRing. These variables represent various 2D
molecular descriptors utilized for model building. Here,
AATS2i and GATS6m are the autocorrelation descriptors
based on molecular graph theory and describe the
interdependence of atomic properties and similarity among
molecules. IC2, MIC2, and BIC3 are information content
descriptors representing information about chemical
structure bonds and symmetry. JGI3 is a topological charge
representing molecular descriptors, and MDEN-22 represents
molecular distance descriptors. WTPT-5 is the weighted path
descriptor, and it is used to calculate the molecular
branching of the chemical structures.57 These descriptors are

primarily based on graph theory and compute the
physicochemical properties of the molecules by considering
the molecule structure as a graph and the atoms as nodes
and vertices.58,59

The dataset was scaled so that the final variables were on
a similar scale (File S1027). The dataset was segregated into a
training and a test set for model building. The different
machine learning regression algorithms were then evaluated
for their performance to check which algorithms give the
finest predictions for the dataset (the detailed information is
provided in Files S11 and S1227). The extra trees regressor
(ET) algorithm showed the best results for all these
parameters for the training at the test set and was selected
for future model building. Extra trees, short for extremely
randomized trees, constitutes an ensemble machine learning
technique rooted in decision trees. This approach involves
generating numerous unpruned decision trees from the
provided training dataset.

The regression predictions are determined by averaging
the outcomes of these decision trees. The aggregated
predictions and arithmetic averaging of the trees determine
the regression predictions.60–62 The ET algorithm showed an
R2 value of 0.997, an RMSE value of 0.08, and the time taken
to complete the prediction was 0.036 seconds for the training
dataset. The test set R2 value was observed to be 0.62, the
RMSE was 0.97, and the time taken was 2.67 seconds. The
final model-building protocol was then initiated. After
splitting up the data, the essential statistical parameters were

Fig. 4 Distribution and box plots to show the distribution pattern of the capped data. (A) AATS2i, (B) BIC3, (C) ETA_BetaP_s, (D) GATS6m, (E) IC2,
(F) JGI3, (G) MDEN-22, (H) MIC2, (I) MLFER_BO, (J) SssNH, (K) WTPT-5, (L) maxHother, (M) maxaaN, (N) maxssNH, and (O) nT6HeteroRing.
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set. The final model gave an R2 score of 0.99, an RMSE value
of 0.07, an MAE of 0.009 and a Pearson correlation coefficient
of 0.99 between the predicted and experimental pIC50 for the
training data (Fig. 5). These values suggested that the
developed model was robust and the predictions for the
training set were accurate.

These findings were then subjected to validation using the
external test set, and we observed an R2 value of 0.67, an RMSE
value of 0.89, an MAE of 0.61 and the Pearson correlation
coefficient between the test pIC50 and predicted pIC50 was 0.82.
These numbers suggested that the developed model predicted
well for the training set and could be used to predict the
biological activities of untested compounds against EGFR.

The model was then tested for overfitting using k-fold cross-
validation. Cross-validation refers to evaluating the learning

models to see if there is any overfitting. The k-fold cross-
validation is one of the most widely used cross-validation
techniques. It involves partitioning the total data into equal k
chunks or folds. This is followed by k iterations of model
building, such that in every run, k-1 folds are treated as the
training set and the remaining fold as the test set.63 Here, the
10-fold cross-validation and the statistical features were inferred.
The cross-validation R2 score and the RMSE were observed to be
0.63 and 0.94, respectively. The Pearson correlation coefficient
between the experimental pIC50 and predicted (cross-validation)
pIC50 was reported to be 0.79 (Fig. 6). These figures suggest that
the developed model performed well in the cross-validation run
and was not affected much by the training and test set
variations. This indicates that the model was not over-fitted and
could be used for predictions.

We also performed a comparison between the already
reported ML-based tools and EGFRAP to understand how the
tool performs. The comparison between the statistical
parameters obtained for the EGFRAP tool and other reported
machine learning-based tools for EGFR inhibitory activity
prediction is provided in Table 1.

The tool presented in this work held well during the
rigorous development and validation protocols. It provides
an advantage for the medicinal chemist in rational drug
design targeting EGFR. It can predict the biological activities
of small molecules based on their 2D structural properties.
The tool calculates the pIC50 values for a subset of well-
known EGFR drugs. EGFRAP efficiently predicted the activities
of these EGFR drugs, and a correlation of 0.86 was observed
between the experimental PIC50 values and the PIC50 values
predicted by the EGFRAP tool (Table 2).

These observations further highlight the accuracy of the
EGFRAP tool predictions. After the satisfactory performance
of the developed model in the validation stage, we performed
a series of structure-based drug design experiments to see if
the app's predictions held well in the experiments. Molecular
docking studies were conducted first to understand the
manner of binding of the inhibitors at the EGFR active.

Fig. 5 Prediction plot of the ET algorithm for the training set EGFR
inhibitors.

Fig. 6 Prediction plots representing the Pearson correlation coefficients between the experimental and predicted pIC50 for (A) the training set, (B)
the test set and (C) the cross-validation run.

RSC Medicinal Chemistry Research Article

Pu
bl

is
he

d 
on

 1
0 

Ju
ly

 2
02

5.
 D

ow
nl

oa
de

d 
by

 Y
un

na
n 

U
ni

ve
rs

ity
 o

n 
8/

1/
20

25
 1

0:
33

:4
1 

A
M

. 
View Article Online

https://doi.org/10.1039/d5md00361j


RSC Med. Chem. This journal is © The Royal Society of Chemistry 2025

Molecular docking revealed a similar binding pattern for the
standard EGFR drugs and the considered inhibitors.
However, the interactions formed by these inhibitors varied.
Almonertinib formed hydrogen bond interactions with
Lys745 and Met793, and a salt bridge was observed with
Glu762. Meanwhile, Leu718, Ala743, Thr790, Asp800, Tyr801
and Leu844 showed hydrophobic interactions with
Almonertinib (Fig. 7(a)). In the case of Gefitinib, no
electrostatic interactions were seen; however, a hydrogen
bond with Met793 and hydrophobic interactions with
Leu718, Ala743, Lys745 and Thr790 were observed (Fig. 7(c)).

Comp1, on the other hand, showed the maximum
hydrogen bond interactions at the EGFR active site. It showed
hydrogen bond interactions with Lys745, Glu762, Thr854 and
Asp855 and a strong electrostatic interaction with Lys745 was
also observed (Fig. 7(b)). Similarly, Comp2 was also involved
in forming a hydrogen bond with Met793 and a couple of
hydrophobic interactions with Leu718, Val726 and Thr790
(Fig. 7(d)). An interaction propensity graph was also
prepared, and it was observed that Comp1 showed the
maximum number of hydrogen bond interactions, followed
by almonertinib, and the other EGFR inhibitors, gefitinib
and Comp 2, showed a single hydrogen bond each. The
number of hydrophobic interactions was higher in
almonertinib, followed by gefitinib Comp2 and Comp1,
which showed the least hydrophobic interactions (Fig. 7(e)).

These findings suggest that the EGFR drugs and the
molecules reported as active EGFR inhibitors by the EGFRAP

tool showed almost similar patterns of intermolecular
interactions at the EGFR active site, highlighting effective
binding. The amino acids reported here are shown to be

crucial for effective inhibitor recognition and binding at the
EGFR active site in existing scientific literature. In one such
article, 39 amino acids were reported near the ATP binding
site in EGFR; Leu718, Val726, Ala743, Met793 and Leu844
were reported as crucial for inhibitor binding.64 Thr790, on
the other hand, is referred to as the gatekeeper of the EGFR
active site, and its mutations have resulted in the loss of
action of traditional EGFR inhibitors by increasing the ATP
affinity of EGFR.65 These findings suggest that the EGFRAP-
predicted molecules effectively bind and mimic the
interaction pattern crucial for EGFR inhibition.

Table 1 Comparison between the predictive capabilities of the EGFRAP tool and other previously reported tools

S.
no. Source/publication

Training
R2

Training
RMSE/RMSD/MSE

Validation
R2 Algorithm used

Test
RMSE/RMSD/MSE

1. EGFRAP 0.99 0.07 0.67 Extra tree regressor 0.39
2. ACS Omega, 2023, 8(35), 31784–31800 0.959 0.717 Random forest —
3. New J. Chem., 2023, 47, 21513 0.93 0.24 SVM-random forest 0.24
4. ACS Omega, 2024, 9(2), 2314–2324 0.853 0.147 0.745 Support vector regression 0.255
5. J. Chem. Inf. Model., 2020, 60(10), 4640–4652 0.93 0.75 SVM 0.55
6. J. Bio. Str. Dyn., 41(22), 12445–12463 0.83 0.54 0.69 Random forest 0.46

Table 2 The EGFRAP predictions for a set of well-known EGFR drugs

EGFR drugs EGFRAP pIC50 Experimental pIC50

Abivertinib 6.81 6.19
Almonertinib 7.21 8.47
Brigatinib 7.03 7.17
Erlotinib 6.80 5.99
Icotinib 7.19 8.30
Lapatinib 7.17 7.97
Neratinib 6.79 7.04
Osimertinib 7.03 6.03
Vandetanib 6.67 6.30
Gefitinib 7.85 9.29

Correlation 0.86

Fig. 7 Binding poses and intermolecular interactions observed at the
EGFR active site post molecular docking for (a) Almonertinib, (b)
Comp1, (c) Gefitinib, (d) Comp2. The H-bond interactions are
represented as solid blue lines, salt bridges with red dotted lines, and
hydrophobic interactions as dotted light green lines. Here, (e)
represents the propensity of the interactions formed by the inhibitors
considered in the study.
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These protein–ligand complexes were then prepared for a
500 ns simulation production run, and the resulting
trajectories were analyzed. Firstly, the simulated complexes
were analyzed for structural stability using the root mean
square deviation (RMSD) and root means square fluctuations
(RMSF) analysis. The RMSD of the complexes is calculated by
measuring the overall deviation of the atoms from the initial
structure throughout the simulation run time. It provides

crucial insights regarding the structural stability and
equilibration of the protein–ligand systems. Fig. 8(A) shows
the RMSD graphs of the complexes considered here. It is
evident from the graphs that the trajectories stabilized after
around 200 ns of the simulation run, suggesting that the
protein–ligand systems reached equilibration around this
time. The EGFRAP predicted molecules showed a slightly
lower RMSD profile than the standard EGFR drugs,

Fig. 8 (A) The root-mean-square deviation (RMSD) plots generated from the trajectories obtained after the MD simulations. (B) The root mean
square fluctuations (RMSF) plots for the protein–ligand complexes. The green boxes represent the amino acid regions involved in inhibitor
recognition/binding or structural maintenance of the protein structures. Almonertinib is represented by black; gefitinib is red; Comp1 is
represented by blue; and Comp2 is represented by yellow.

Fig. 9 Binding poses and intermolecular interactions observed at the EGFR active site post-MD simulations for (a) almonertinib, (b) Comp1, (d)
gefitinib, (e) Comp2. The solid blue lines represent H-bond interactions, and red dotted lines show salt bridges with and hydrophobic interactions
are represented as dotted light green lines. Here, graphs (c) and (f) represent the individual energetic contributions of the interacting amino acids
in the form of per-residue decomposition energies (PRDE) in kJ mol−1.
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suggesting comparable structural stability. Similarly, RMSF
was calculated to evaluate the flexibility of the protein by
calculating the amino acid fluctuations during the
simulation. It helps identify the flexible and rigid regions in
a protein structure. The areas showing lesser fluctuations
represent the amino acids involved in the protein's inhibitor
binding or structural maintenance. From the RMSF graphs,
the amino acids involved in inhibitor binding (post
molecular docking) do not show any significant fluctuation
in the simulated protein–ligand complexes throughout the
simulation. These areas are represented in green boxes in the
RMSF graphs (Fig. 8(B)); this suggests that these amino acids
were involved in various intermolecular interactions with the
ligands throughout the simulations. These patterns were
similar for the predicted molecules and the standard EGFR
drugs.

These complexes were again explored for post-MD
simulation interaction analysis to see how the interaction
patterns changed after the simulations. It was observed that
although the structural stability was comparable in all the
protein–ligand complexes, the interacting amino acids
varied. Almonertinib, which showed few hydrogen bonds
pre-MD simulations, now interacted only with hydrophobic
interactions. It showed hydrophobic interactions with
Phe723, Val726, Ile759, and Leu788 (Fig. 9(a)). In the case
of Gefitinib, the hydrogen bond interaction with Met793
was retained; however, the hydrophobic interactions
dropped drastically and were observed only with Val726
(Fig. 9(d)). In the case of the predicted molecules, Comp1
showed three hydrogen bond interactions with Asp855 and
several hydrophobic interactions with Leu718, Val726,
Lys745, Leu788, thr790, Leu844 and Thr854 (Fig. 9(b)).
Comp2 also exhibited hydrogen bond interaction post-MD
simulations with Asp855 and hydrophobic interactions with
Leu718, Ala743, Lys745, and Thr790 (Fig. 9(e)). These amino
acids are crucial for efficient EGFR inhibition, as per the
earlier reports mentioned in the manuscript. These results
suggest that the predicted molecules could bind effectively
at the EGFR active site without losing their structural
integrity and might be explored to identify novel EGFR
inhibitors. The individual energetic contribution of these
interacting amino acids was then computed using the per-
residue decomposition method. The residues showing
negative contribution suggest favourable interactions and
vice versa. As evident from Fig. 9(c) and (f), it is clear that
Leu718, F723, Gly724, Val726, Ala743, Leu788, Thr790,
Met793, Leu844 and Thr854 showed negative energetic
contributions for all the complexes suggesting their role in
effective EGFR inhibition. Lys745 and Asp855 show many
crucial interactions, but their positive, energetic
contribution suggests that they might form unfavourable
interactions, possibly due to steric clashes due to structural
constraints. All these structural experiments suggest that
the molecules predicted as active EGFR inhibitors by the
EGFRAP app have comparable in silico profiles as the
standard EGFR rugs considered in the study. They further

reinforce the findings of the developed tool, suggesting its
applicability in rational drug design.

This tool can be utilized to develop novel medications to
manage a variety of cancers. While the EGFRAP tool yields
encouraging results, it is vital to highlight a few
limitations. First, the tool's performance is based on the
quality and diversity of the training dataset, which may
cause biases or limit the predictions for novel compounds
outside the chemical space in the publically available
datasets. Although the present tool is highly
computationally efficient, its applicability to researchers
with fewer computational capabilities is limited. In future
versions of EGFRAP, a multi-target approach will be adopted
to predict the activities of related receptor tyrosine kinases.
Additional datasets from other small molecule databases
will be integrated to ensure broader coverage of diverse
chemical scaffolds.

4. Conclusions

This work presents the EGFRAP tool to predict the pIC50

values for ligands against EGFR. The tool was developed
using various machine-learning modules in Python. It is
based on a learning model developed using an efficient
protocol. EGFRAP gives the user an advantage in computing
more than 1400 2D molecular descriptors for the input
molecules and predicting their biological activities against
EGFR. The model performed well in the learning and
validation stages; thus, its findings are reliable. It showed a
Pearson correlation coefficient (r) of 0.82 between the
experimental and predicted pIC50 values of the external test
set, highlighting its efficiency. The structure-based drug
design experiments further reinforced the accuracy of the
EGFRAP predictions, where the application's leads showed a
comparable binding profile as the standard EGFR drugs
considered in the study. EGFRAP is light and can be run on
most machines with the minimum hardware and software
requirements. These findings suggest that the EGFRAP tool
can identify novel lead compounds or aid in modulating the
activity of the existing EGFR drugs. The findings presented
here can be of significant interest to the medicinal chemists
developing novel cancer medications.
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