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Discovery of metal–organic frameworks for
inverse CO2/C2H2 separation by synergizing
molecular simulation and machine learning†

Daohui Zhao, Mao Wang, Zhiming Zhang and Jianwen Jiang *

Separation of carbon dioxide (CO2) from acetylene (C2H2) represents a significant challenge in the

petrochemical industry, primarily due to their similar physicochemical properties. By synergizing molecular

simulation (MS) and machine learning (ML), in this study, we aim to discover top-performing metal–organic

frameworks (MOFs) for inverse CO2/C2H2 separation. Initially, the adsorption of a CO2/C2H2 mixture in

MOFs from the Cambridge Structural Database (CSD) is evaluated through MS, structure–performance

relationships are constructed, and top-performing CSD MOFs are shortlisted. Subsequently, ML models are

trained by utilizing pore geometry, framework chemistry, as well as adsorption heat and Henry's constant

as descriptors. The significance of these descriptors is quantitatively assessed through Gini impurity

measures and Shapley additive explanations. Finally, the transferability of the ML models is evaluated

through out-of-sample predictions for CO2/C2H2 separation in the computation-ready experimental

(CoRE) MOFs. Notably, a handful of CoRE MOFs are found to outperform the best CSD MOFs and their

performance is further compared with existing literature. The synergized MS and ML approach in this study

is anticipated to accelerate the discovery of MOFs in a large chemical space for CO2/C2H2 separation and

other important separation processes.

1. Introduction

As a crucial chemical feedstock in the petrochemical
industry, acetylene (C2H2) is predominantly produced by the
partial combustion of natural gas and the steam cracking of
hydrocarbons, with carbon dioxide (CO2) being a main
impurity.1 Separation of CO2 from C2H2 is of paramount
importance, however, it presents a significant challenge due
to their close boiling points (189.3 K for C2H2 and 194.7 K for

CO2) and nearly identical molecular sizes (both with a kinetic
diameter of 3.3 Å, as detailed in Table S1†).2 Currently,
C2H2/CO2 separation is primarily achieved through solvent
extraction and cryogenic distillation, both of which are
energy intensive. Therefore, there is considerable interest in
developing environmentally friendly and cost-effective
methods for this separation. In this context, adsorption
separation utilizing porous materials is regarded as a more
economically feasible and energy-efficient alternative to
conventional heat-driven separation technologies.

Traditional adsorbents including zeolites, silicas and
activated carbons have been tested for C2H2/CO2 separation,
yet their effectiveness remains limited. Constructed from
inorganic metal nodes and organic linkers, metal–organic
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Design, System, Application

As a unique class of nanoporous materials, metal–organic frameworks (MOFs) have attracted tremendous interest. With readily tuneable structures and
chemical functionalities, they have been considered promising for a wide variety of applications, such as storage, separation and catalysis. The nearly
infinite combinations of metal nodes and organic linkers have led to the synthesis of over 120 000 experimental MOFs and the construction of millions of
hypothetical counterparts. It is infeasible to identify the best candidates in the immense chemical space of MOFs for a specific application via trial-to-error
experiments. In this work, MOFs are rapidly screened via a hierarchical approach for CO2/C2H2 separation, which is a crucial and challenging separation
process in the chemical industry. First, the adsorption properties of CO2/C2H2 mixture in CSD MOF dataset are predicted via molecular simulation. The
relationships between separation performance metrics and structural factors are established. Then, machine learning (ML) models are developed and
physically interpreted. Finally, the ML models are applied to predict and screen top-performing MOFs from another database (CoRE MOF). Good
transferability is found for the ML models from the CCD to CoRE MOFs. The hierarchical approach in this study is useful for the rapid screening and
rational design of MOFs for many other important separation processes.

Pu
bl

is
he

d 
on

 2
8 

Ju
ly

 2
02

5.
 D

ow
nl

oa
de

d 
by

 Y
un

na
n 

U
ni

ve
rs

ity
 o

n 
8/

5/
20

25
 4

:4
2:

10
 A

M
. 

View Article Online
View Journal

http://crossmark.crossref.org/dialog/?doi=10.1039/d5me00060b&domain=pdf&date_stamp=2025-07-28
http://orcid.org/0000-0003-2661-2147
http://orcid.org/0000-0001-9444-8479
http://orcid.org/0000-0003-1310-9024
https://doi.org/10.1039/d5me00060b
https://doi.org/10.1039/d5me00060b
https://doi.org/10.1039/d5me00060b
https://pubs.rsc.org/en/journals/journal/ME


Mol. Syst. Des. Eng. This journal is © The Royal Society of Chemistry and IChemE 2025

frameworks (MOFs) have garnered tremendous interest for
many potential applications. By meticulously optimizing pore
accessibility and chemistry to enhance host–guest interactions
through crystal engineering and reticular chemistry, MOFs
have demonstrated great potential for the separation of gas
mixtures, such as C2H2/C2H4, C2H4/C2H6, and C3H6/C3H8.
Furthermore, the periodic networks of MOFs provide an
excellent platform for elucidating structure–performance
relationships, thereby promoting the advancement of new
functional MOFs for specific applications.

Since the first report of a prototypical C2H2-selective MOF
in 2005,3 a multitude of MOFs have been synthesized and
investigated for C2H2/CO2 separation. In general, most MOFs
preferentially adsorb C2H2 over CO2, attributed to strong acid–
base interaction or hydrogen bonding between C2H2 and
frameworks. This preference is further supported by the fact
that C2H2 possesses a larger quadrupole moment (20.5 × 10−40

C m2) than CO2 (13.4 × 10−40 C m2).2 Practically, CO2 as an
impurity is a minor component in a C2H2/CO2 mixture. C2H2-
selective separation necessitates a subsequent desorption
process to obtain C2H2, which consequently leads to increased
energy consumption and secondary CO2 pollution. By
contrast, adsorbents with large CO2 adsorption capacity and
high CO2/C2H2 selectivity are practically more advantageous,
as they can effectively remove CO2 in a single adsorption
process. Unfortunately, MOFs with the capability of such
inverse CO2/C2H2 separation are scarce. To date, only a limited
number of CO2-selective porous materials have been reported,
such as [Mn(bdc)(dpe)],4 SIFSIX-3-Ni,5 CD-MOF-1, CD-MOF-2,6

AlFFIVE-1-Ni,7 PCP-NH2-ipa, PCP-NH2-bdc,
8 Cd-NP,9 and

Ce(IV)-MIL-140-4F.10 Notably, [Mn(bdc)(dpe)] was the first MOF
with CO2-selective behavior via guest discriminatory gating
effect, achieving a selectivity of 8.8 for an equimolar CO2/C2H2

mixture (v/v = 1 : 1) at 273 K and 10 bar.4 A selectivity of 7.7
was observed in SIFSIX-3-Ni for a CO2/C2H2 (v/v = 1 : 2) mixture
at 298 K and 1 bar.5 Based on the ideal-adsorption solution
theory (IAST), selectivity values of 6.6 and 16.0 were reported
for CO2/C2H2 (v/v = 1 : 2) separation in CD-MOF-1 and CD-
MOF-2, respectively, at 298 K and 1 bar.6 Additionally, Ce(IV)-
MIL-140-4F exhibited remarkable inverse CO2/C2H2 (v/v = 1 : 2)
separation, with selectivity values reaching 9.5 and 41.5 at 298
K and 273 K, respectively.10 Despite high selectivity reported, a
persistent trade-off exists between adsorption capacity and
selectivity. For instance, PCP-NH2-bdc was found to have a
CO2 uptake of 68 cm3 g−1 at 298 K and 1 bar, but with a low
selectivity of 4.4.8 Currently, there are no established
guidelines for the rational design of pore microenvironments
that would yield ideal inverse CO2/C2H2 separation. Most
research efforts have focused on physisorption-based
molecular sieving effect for CO2/C2H2 separation, in relation
to pore size and electrostatic interaction.

With readily chemical and topological tunability,
thousands of MOFs (>120 000) have been synthesized to date.
This vast material space presents an optimal platform for
optimizing and identifying promising MOFs for targeted
applications. However, traditional trial-and-error experiments

are impractical to test such a large number of possible
candidates. While molecular simulation (MS) has been
applied to computationally screen top-performing MOFs and
establish quantitative structure–property relationships for
many gas separation applications, the exhaustive brute-force
computations are often time-consuming. Recently, data-
driven machine learning (ML) has emerged as a disruptive
tool for design, screening and development of new materials,
and it has been increasingly used for separation in MOFs.11,12

For example, over 670 000 MOFs were screened for xenon/
krypton separation using a random forest (RF) regressor.13

CH4/H2 separation was examined via deep learning in a
dataset of 134 185 hypothetical MOFs.14 With various ML
algorithms, C2H2 adsorption performance was assessed in
MOFs on the basis of architectural, chemical and structural
features.15 ML models were also trained for C2H6/C2H4

separation in hypothetical MOFs.16 A hierarchical strategy
synergizing MS and ML was proposed for the rapid screening
of MOFs for C3H8/C3H6 separation.17 A genetic algorithm-
based inverse design approach was proposed for C2H4/C2H6

separation in MOFs.18 By integrating discarded experimental
data with structural descriptors, an efficient ML model was
develop to predict the separation performance of CO2/C2H2

and C2H2/C2H4 in anion-pillared MOFs.19

Despite the above-mentioned studies, there has been
limited ML research on inverse CO2/C2H2 separation in
MOFs. By synergizing MS and ML, our primary objective in
this study is to discover top-performing MOFs for such an
important application. As depicted in Fig. 1, a hierarchical
workflow is adopted. First, CSD MOFs were analyzed, their
performance for inverse CO2/C2H2 separation was evaluated
by Monte Carlo (MC) simulation, and top-performing
structures were shortlisted. Then, ML models were trained,
validated and interpreted. Finally, the ML models were used
to predict the performance in CoRE MOFs for CO2/C2H2

separation. Following this introduction, section 2 describes
the MOF datasets, MS method, MOF featurization, ML
training and prediction. In section 3, the structure–property
relationships for CO2/C2H2 separation in CSD MOFs are first
discussed, top CSD MOFs are identified; then the predictive
accuracy of the ML models trained upon CSD MOFs is
examined and feature importance is analyzed; finally, the
transferability of the ML models is examined by predicting
CO2/C2H2 separation in CoRE MOFs, and top CORE MOFs
are identified and compared with top CSD MOFs, as well as
experimentally reported MOFs. The concluding remarks are
summarized in section 4.

2. Methodology
2.1. MOF datasets

Two experimental MOF databases were curated to construct
datasets for this study. As listed in Table S2:† (1) the
Cambridge Structural Database (CSD),20 comprising about
10 636 ordered MOFs, was employed to generate simulation
data for ML training and validation; (2) the updated
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computation-ready, experimental MOF (CoRE MOF 2019)
database,21 containing 10 143 ordered structures, was utilized
for out-of-sample prediction. As illustrated in Fig. 1, MOFs
with open metal sites (OMS) tend to interact strongly with
the CC bond of C2H2, thus they were identified via
open_metal_dectector (https://github.com/emmhald/open_
metal_detector/) and removed from each database. Then, the
geometric features of remaining MOFs, including the largest
cavity diameter (LCD), pore-limiting diameter (PLD), pore size
distribution (PSD), density (ρ), accessible volumetric surface
area (VSA), probe-occupiable pore volume (PV), and void
fraction (ϕ), were estimated by using Zeo++.22 Those with
PLD ≤ 3.3 Å (i.e., the kinetic diameter Dk of both CO2 and
C2H2) were excluded, as incapable of accommodating CO2

and C2H2. Finally, atomic charges of MOFs were assigned
using PACMOF.23 After these steps, 3712 CSD MOFs and 1896
CoRE MOFs were retained.

2.2. Molecular simulation

Adsorption of a CO2/C2H2 mixture (v/v = 1 : 2) in MOFs at 298
K and 1 bar was simulated by using grand canonical MC
(GCMC) method via RASPA 2.0 package.24 The interactions
between gas molecules and frameworks were characterized
by Lennard–Jones (LJ) potential and electrostatic potential.
The potential parameters for framework atoms were derived
from the universal force field (UFF),25 as detailed in Table
S3,† while those for CO2 and C2H2 were provided in Table
S4.† The cross-interactions were calculated using the
Lorentz–Berthelot mixing rules.26 The LJ interactions were
truncated at a distance of 12 Å with tail corrections, while
electrostatic interactions were calculated using the Ewald
summation method. It was assumed that the influence of
framework flexibility was negligible on adsorption, as the
pore size exceeded Dk of both gases; therefore, all the MOFs
were treated as rigid. For each MOF, the length of simulation
cell was extended to at least 24 Å along each dimension, and
periodic boundary conditions were imposed in all three
dimensions. Each GCMC simulation ran a total of 100 000

cycles, with the initial 25 000 cycles for initialization and the
subsequent 75 000 cycles for ensemble averages. A cycle
consisted of N steps (N: the number of gas molecules) and it
would be equal to 20 if N < 20. Five distinct types of trial
moves were employed randomly, including translation,
rotation, reinsertion, swap, and identity change.
Furthermore, the isosteric heats of adsorption (Q°) of CO2

and C2H2 at infinite dilution, as well as the Henry's constants
(KH), were determined using the Widom insertion method.
CO2 adsorption capacity (NCO2

, mmol g−1) and CO2/C2H2

selectivity (SCO2/C2H2
) were used as metrics to assess the

separation performance. SCO2/C2H2
was defined as (NCO2

/NC2H2
)/

(yCO2
/yC2H2

), with yCO2
and yC2H2

denoting the mole fractions of
CO2 and C2H2 in the mixture, respectively.

2.3. MOF featurization

For ML, MOFs should be featured into machine-readable
descriptors. We utilized physically intuitive and
computationally viable descriptor types, including pore
geometry, framework chemistry, as well as energy-related Q°
and KH. (1) Pore geometry. PLD and LCD were commonly used
geometric descriptors for MOFs in ML studies. Additionally,
pore size distribution (PSD) was incorporated to account for
pore heterogeneity, as it was revealed to be important.17 The
PSDs from 3.5 to 12 Å were divided into small bins with a
spacing of 0.5 Å, while the PLD < 3.5 Å or >12 Å was
amalgamated into a single bin. In such a way, 19 “PSD_bins”
were obtained. Together with PLD and LCD, there were 21
geometric descriptors. (2) Framework chemistry. To
accommodate the various hybridization and connectivity
types of framework atoms, the densities of distinct atom
types were formulated and enumerated using the
lammps_interface27 under the UFF4MOF nomenclature.28,29

For carbon, different atom types were identified based on
their bonding characteristics, categorized as single, double,
triple and aromatic bonds, represented as C_1, C_2, C_3 and
C_R, respectively. For metals, Zn3f2 and Cu4+2 were used to
describe the tetrahedrally coordinated Zn2+ and paddlewheel-

Fig. 1 Hierarchical workflow for screening of CSD MOFs, ML training, and ML prediction of CoRE MOFs.
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like Cu2+, respectively. To ensure applicability across diverse
MOF datasets, all 221 atom types from the UFF4MOF
collection were employed as descriptors. It should be noted
that atomic densities were calculated from dividing the
quantity of distinct atom types by a unit volume, thereby
characterizing an intensive property. Additionally, revised-
autocorrelations (RACs)30 were utilized to characterize
framework chemistry. The RACs included metal clusters,
organic linkers and functional groups derived from the
product or difference of atomic heuristics, such as Pauling
electronegativity, connectivity and covalent radii, all of which
were computed from molecular or crystal graphs. In total,
156 RAC descriptors were generated using the Molsimplify.31

(3) Energy descriptors. To describe the framework-adsorbate

affinity, the isosteric heat of CO2 adsorption Q°CO2

� �
and the

ratio of Henry's constants K°CO2=C2H2

� �
were used as energy

descriptors. Table S5† lists the three types of descriptors,
used as different descriptor sets in Table S6† to train ML
models.

2.4. ML model training

With the above descriptors, ML models were trained for two
targets NCO2

and SCO2/C2H2
generated from GCMC simulations.

As illustrated in Fig. S1,† both NCO2
and SCO2/C2H2

exhibit
markedly skewed distributions. Thus, we adopted a Box–Cox
transformation32 to transform the two target variables into
Gaussian-like distributions. The simulation data were
randomly split into two subsets, with 90% for training and
10% for test. The RF regressor, as implemented in the scikit-
learn toolkit,33 was applied for the training. As illustrated in
Fig. S2,† RF regression is a typical tree-based algorithm that
employs an ensemble of decision trees for predictive
modeling.34 In RF regression, hyperparameter optimization
was conducted through a random grid search across
parameter space (Table S7†), rather than an exhaustive grid
search. For different combinations of descriptor sets, the
optimal hyperparameters yielding the highest validation
score are presented in Table S8.† To mitigate the risk of
overfitting, five-fold cross-validation was employed. The
VarianceThreshold method was initially applied to eliminate
features with zero variance, followed by recursive feature
elimination with cross-validation to further reduce
descriptors. The model accuracy was quantified by the
determination coefficient (R2), mean absolute error (MAE),
and Spearman rank correlation coefficient (SRCC). It should
note that R2 quantifies the linear correlation between
predicted and actual values, while MAE indicates the
deviation of predicted from actual values. SRCC measures the
rank correlation between predicted and actual values,
providing insight into rank similarity and model
generalization. Higher R2 and SRCC, along with lower MAE,
signify better predictive accuracy of ML models. Additionally,
Shapley additive explanations (SHAP)35 were utilized to
quantify the influence of various features on model

predictions, both in terms of magnitude (significant or
insignificant) and direction (positive or negative).

2.5. ML predictions

To test the transferability of the ML models developed upon
CSD MOFs, they were used to predict CO2/C2H2 separation in
CoRE MOFs, allowing for rapid screening of CoRE MOFs.
These out-of-sample predictions were then validated through
GCMC simulations. Concurrently, top-performing CoRE
MOFs were compared with CSD MOFs and experimentally
reported MOFs.

3. Results and discussion

First, we analyze the simulation results pertaining to inverse
CO2/C2H2 separation in CSD MOF dataset, with the aim of
uncovering significant structure–property relationships and
identifying top-performing CSD MOFs. Subsequently, we
assess the accuracy of the trained ML models, interpret
feature importance, and elucidate critical factors governing
the separation. Finally, the ML predictions for CO2/C2H2

separation in CoRE MOF dataset are presented, with top-
performing CoRE MOFs identified.

3.1. Separation in CSD MOFs

Thorough understanding of the relationships between
structural features and performance metrics is essential for
identifying potential MOFs and aiding in the design of new
MOFs for CO2/C2H2 separation. Fig. 2a illustrates the
relationship of NCO2

∼ VSA in CSD MOFs with different ϕ.
Generally, a positive correlation is observed between ϕ and
VSA, though it is not distinctly strong. MOFs with substantial
NCO2

(>1.7 mmol g−1) typically possess moderate VSA in a
broad range from 110 to 3000 m2 cm−3, and moderate ϕ

ranging from 0.3 to 0.7. Low NCO2
is distinctly noted when

VSA reaches 3000 m3 cm−3 or when ϕ exceeds 0.7, suggesting
that neither SA nor ϕ serves as the sole determinant of NCO2

.
Q° is commonly used to characterize the affinity between
adsorbate and framework. As depicted in Fig. 2b, there is a
“volcano” in the relationship of NCO2

∼ Q°CO2
. For MOFs with

large pores or high ϕ, the guest–host interactions are
relatively weak, resulting in small Q°CO2

not conducive to CO2

adsorption. Conversely, large Q°CO2
occurs in MOFs with small

pore size or low ϕ. MOFs with high NCO2
> 1.7 mmol g−1

exhibit moderate Q°CO2
ranging from 18.06 to 91.15 kJ mol−1.

However, many MOFs possessing this rang of Q°CO2
display

low NCO2
. This indicates that, similar to VSA and ϕ, Q°CO2

is

not the sole determinant of NCO2
. Fig. 2c shows the

relationship of SCO2/C2H2
∼ LCD. The majority of CSD MOFs

are identified as C2H2-selective (i.e., SCO2/C2H2
< 1). For LCD

in a small range (4.02–8.72 Å), ϕ varies considerably (0.07–
0.64), reflecting diverse structural characteristics. Meanwhile,
SCO2/C2H2

spans widely (0.0018–19.74), suggesting that the
separation performance of these MOFs does not correlate
strongly with a single characteristic such as LCD, ϕ, VSA or
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Q°CO2
, but rather with the complex interplay of many factors.

High SCO2/C2H2
is predominantly associated with small LCD,

as small pores/cages impose a strong confinement effect and
facilitate selective adsorption. However, MOFs with
excessively large LCD can readily adsorb both CO2 and C2H2

molecules, resulting in non-selective adsorption. A total of 15
MOFs are identified with SCO2/C2H2

> 10, with the highest
SCO2/C2H2

of 19.74 in borlom_P1. Overall, a single structural
descriptor (like VSA or LCD) or energy descriptor (like Q°CO2

)

fails to adequately describe the performance of MOFs, as it
overlooks the synergy among various descriptors. Fig. 2d
shows the relationships of SCO2/C2H2

∼ NCO2
. The most

promising candidates for C2H2/CO2 separation are located in
the upper right quadrant of the plot. If we set NCO2

> 1.7
mmol g−1 and SCO2/C2H2

> 3.0, 53 CSD MOFs can be
considered top-performing. As tabulated in Table S9,† these
MOFs possess 4.02 Å < LCD < 8.51 Å, 112.63 m2 cm−3 < VSA
< 1946.46 m2 cm−3, 0.139 < ϕ < 0.581, and 27.93 kJ mol−1 <

Q°CO2
< 57.21 kJ mol−1.

3.2. ML models

The preceding discussion highlights that the performance of
MOFs for inverse CO2/C2H2 separation is governed by a
multitude of factors, including pore size, framework
chemistry, and affinity. The interplay creates a complex
multi-dimensional feature space that cannot be intuitively
elucidated. To examine the nonlinear multi-dimensional
relationships between these features and separation
performance, we trained two ML models with NCO2

and

SCO2/C2H2
as distinct targets based on the simulation data in

CSD MOFs. Such models would facilitate more efficient
predictive capability. The model accuracy and interpretability
are discussed below.

3.2.1. Model accuracy. We systematically examine the
model accuracy from various combinations of descriptor sets.
As listed in Table S6,† “Geo” refers to a descriptor set with six
geometric descriptors (PLD, LCD, VSA, PV, ϕ, ρ) that are
commonly employed in ML studies of MOFs, albeit providing
only coarse understanding of geometric characteristics.
“PSD_bins” incorporates pore morphology by specifying
upper and lower limits of pore size and their relative
distributions, demonstrating sensitivity to minor variations
in pore dimensions. The combination of “Geo” and “PSD” is
denoted as “Geo + PSD_bins”, which can combine with
distinct chemical descriptor set “atomic” or “RACs” to
become “Geo + PSD_bins + atomic” or “Geo + PSD_bins +
RACs”. Furthermore, “Geo + PSD_bins + RACs + energy”
includes an energy descriptor. Table 1 presents the accuracy
of ML models from various combinations of descriptor sets
for both training and test sets in CSD MOF dataset. The
accuracy was assessed by R2, MAE and SRCC, as calculated by
averaging 50 ML predictions for NCO2

and SCO2/C2H2
by

randomly selecting training/test sets. The predictive accuracy
of “Geo”, which relies solely on basic geometric descriptors,
is notably inadequate when applied to the test set, as
evidenced by the low R2 values of 0.667 and 0.506,
respectively. This observation underscores the difficulty and
limitation in differentiating CO2 and C2H2 gases with similar
physical properties, through mere adjustment of pore

Fig. 2 Relationships of (a) NCO2
∼ VSA, (b) NCO2

∼ Q°
CO2

, (c) SCO2/C2H2
∼ LCD, and (d) SCO2/C2H2

∼ NCO2
. The color scaling in (a–d) denotes different ϕ.
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geometry. “Geo + PSD_bins” yields only a marginal
improvement in accuracy, suggesting that the inclusion of
PSD has an insignificant effect on the model performance.
Prior ML research has emphasized the significance of
chemical features in ML of MOFs,17,36,37 and notable
improvement is also observed here. When combining the
atomic densities of “atomic” set into “Geo + PSD_bins”, R2

values in the test set increase from 0.692 to 0.733 for NCO2

and from 0.505 to 0.637 for SCO2/C2H2
. There is further

improvement when RACs are used instead of “atomic” in
“Geo + PSD_bins + RACs”, suggesting that RACs more
effectively captures pertinent chemistry of MOFs. Moreover, it
is found that the inclusion of “energy” descriptors Q°CO2

and
K°CO2=C2H2

results in the most accurate predictions, with R2 of
0.827 and 0.756 for NCO2

and SCO2/C2H2
respectively in the test

set. This is because that Q°CO2
quantifies CO2-framework

interaction and K°CO2=C2H2
implies the selectivity of CO2/C2H2

at infinite dilution. They provide additional information
between gas and framework, which is not available in other
descriptors like Geo + PSD_bins + RACs. Additionally, the
learning curves for NCO2

prediction are shown in Fig. S3† by
varying the size of training set. With increasing the ratio of
training/test sets, R2 rises while MAE drops, and each tends
to approach a constant when the ratio is around 90/10.

Fig. 3 shows the parity plots between ML predicted and
GCMC simulated NCO2

and SCO2/C2H2
. The ML predictions are

based on the combination of “Geo + PSD_bins + RACs +
energy”. Satisfactory predictive accuracy is found. The MAE
for NCO2

are 0.09 mmol g−1 and 0.21 mmol g−1 in the training
and test sets, respectively; for SCO2/C2H2

, the MAE are 0.10 and
0.26. The R2 for NCO2

is 0.83 in the test set, while it is 0.76 for
SCO2/C2H2

as attributed to the imbalanced distribution of
training data. Overall, the rankings of MOFs in ML predicted
NCO2

and SCO2/C2H2
are strongly correlated with simulation

Table 1 Accuracy of ML models from various combinations of descriptor sets

Target Combination

Training set Test set

R2 MAE SRCC R2 MAE SRCC

NCO2
Geo 0.937 0.131 0.975 0.667 0.293 0.818
Geo + PSD_bins 0.944 0.123 0.980 0.692 0.280 0.838
Geo + PSD_bins + atomic 0.952 0.111 0.984 0.733 0.252 0.865
Geo + PSD_bins + RACs 0.941 0.121 0.979 0.753 0.239 0.878
Geo + PSD_bins + RACs + energy 0.967 0.091 0.986 0.827 0.207 0.915

SCO2/C2H2
Geo 0.908 0.164 0.978 0.506 0.404 0.578
Geo + PSD_bins 0.907 0.166 0.976 0.505 0.405 0.571
Geo + PSD_bins + atomic 0.925 0.141 0.984 0.637 0.339 0.731
Geo + PSD_bins + RACs 0.929 0.133 0.985 0.647 0.318 0.755
Geo + PSD_bins + RACs + energy 0.957 0.103 0.981 0.756 0.260 0.831

Fig. 3 Parity plots for ML predicted versus GCMC simulated (a) NCO2
and (b) SCO2/C2H2

. The ML predictions are based on the descriptor
combination of “Geo + PSD_bins + RACs + energy”.
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data, yielding SRCC of 0.91 and 0.83 in the test set,
respectively. This indicates that the models based on “Geo +
PSD_bins + RACs + energy” are suitable for predicting new
MOFs, as elaborated below.

3.2.2. Model interpretability. It is instructive to
quantitatively elucidate the significance of various features in
ML models for separation. Based on the mean decrease in
Gini impurity, Fig. 4 shows the 10 most important features in
the optimal ML models for NCO2

and SCO2/C2H2
. Interestingly,

the relative feature importance differs between NCO2
and

SCO2/C2H2
. For NCO2

, the geometric descriptor PV contributes
the most, followed by Q°CO2

, K°CO2=C2H2
, ϕ and density. The pore

size parameters including LCD and PLD, along with specific
chemical properties (f-lig-Z-0, f-lig-chi-0, and mc-Z-2-all), also
play a role in NCO2

. For SCO2/C2H2
, energy descriptor K°CO2=C2H2

is

as the most influential, as it is indeed equivalent to SCO2/C2H2

at the infinite dilution. The second influential factor affecting
SCO2/C2H2

is LCD, as discussed earlier in the relationships of
SCO2/C2H2

∼ LCD. Additionally, CO2-framework affinity (i.e.,
Q°CO2

), other chemical and geometric features also contribute
to governing SCO2/C2H2

. The analysis indicates that NCO2
and

SCO2/C2H2
predictions are significantly influenced by the

incorporation of energy and geometric descriptors in the ML
models, alongside with chemical descriptors.

The SHAP analysis is utilized to quantitatively assess how
various features affect model outputs.38 The significance of a
feature is represented by the absolute value of SHAP score.
Fig. 5a shows the summary plot of top 10 important features
for NCO2

. It is evident that PV exerts the most substantial
influence. A high PV is generally associated with a positive
SHAP score, which correlates with an increased probability of
NCO2

. This observation is similarly applicable to other
features such as K°CO2=C2H2

, Q°CO2
and ϕ. Conversely, a large

LCD or PLD corresponds to a negative SHAP score, thus
negatively correlated with NCO2

. For illustration, Fig. 5b and c
present SHAP force plots in two MOFs namely xewcua_P1_H

and fonkea_P1. The former exhibits the highest NCO2
among

CSD MOFs, while the latter has the lowest. It is apparent that
high PV and Q°CO2

in xewcua_P1_H positively affect NCO2
,

whereas low PV and K°CO2=C2H2
in fonkea_P1 possess negative

effect. For SCO2/C2H2
, as discussed above and shown in Fig.

S4a,† K°CO2=C2H2
is clearly the most significant influential,

followed by Q°CO2
, LCD, and PLD, and f-lig-Z-0. K°CO2=C2H2

,

Q°CO2
and density demonstrate a positive effect on SCO2/C2H2

,

while LCD and PLD exhibit a negative effect. Fig. S4b and c†
further illustrate the SHAP force plots in borlom_P1 with the
highest SCO2/C2H2

and in fonkea_P1 with the lowest SCO2/C2H2
.

Obviously, high K°CO2=C2H2
and Q°CO2

in borlom_P1 have

positive effect on SCO2/C2H2
, whereas low K°CO2=C2H2

in

fonkea_P1 exhibits a negative effect.

3.3. Predictions in CoRE MOFs

The ML models trained upon CSD MOFs were used to
conduct out-of-sample predictions for CO2/C2H2 separation
in 1689 CoRE MOFs, with the descriptor combination of
“Geo + PSD_bins + RACs + energy”. As shown in Fig. 6, the
predicted NCO2

and SCO2/C2H2
agree fairly well with GCMC

simulation data. For NCO2
, the R2, MAE and SRCC values are

0.81, 0.24 and 0.91, respectively. Notably, many low-ranking
CoRE MOFs are located near the parity line; however, a
significant disparity is evident among high-ranking CoRE
MOFs. For SCO2/C2H2

, the R2, MAE and SRCC values are 0.73,
0.28 and 0.84, respectively. There are discrepancies between
predictions and simulations at both low- and high-value
regions of SCO2/C2H2

. It is evident that high CO2-selective MOFs
exhibit comparable rankings in both predictions and
simulations. To a certain extent, the ML models exhibit
transferable capability from CSD MOFs to CoRE MOFs.
Among 1689 CoRE MOFs, 40 were found to exceed the
thresholds (NCO2

> 1.7 mmol g−1 and SCO2/C2H2
> 3), which

Fig. 4 Top 10 important features in the ML models for (a) NCO2
and (b) SCO2/C2H2

.
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Fig. 5 SHAP analysis for NCO2
. (a) Summary plot of top 10 important features. (b) Force plot for NCO2

in xewcua_P1_H (the highest NCO2
among

CSD MOFs), (c) force plot for NCO2
in fonkea_P1 (the lowest NCO2

among CSD MOFs).

Fig. 6 ML predicted versus GCMC simulated (a) NCO2
and (b) SCO2/C2H2

in CoRE MOFs.
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were also used above to identify best CSD MOFs. After
comparing with GCMC simulations, 26 out of these 40 were
verified to truly surpass the thresholds. The top seven (as
listed in Table 2) possess SCO2/C2H2

values ranging from 28.60
to 82.36, which is significantly higher than that in top CSD
MOFs (Table S9†). Notably, XISLAM_clean has a SCO2/C2H2

of
82.36, along with a substantial NCO2

of 3.76 mmol g−1,
positioning it as a promising MOF for CO2/C2H2 separation.

The predictions reveal that the ML models trained upon
CSD MOFs have a fairly good transferability to CoRE MOFs.
To fundamentally understand, we explore the structural
similarity and diversity between the two datasets by using the
t-distributed stochastic neighbor embedding (t-SNE)
technique. Fig. 7a and b illustrate the t-SNE maps based on
the descriptor combination “Geo + PSD_bins + RACs +
energy” for the two datasets. The t-SNE maps provide a clear
visualization of the distribution of MOFs. Each MOF is
represented by a separate point and a cluster of proximate
points possesses similar structures. We can observe
significant similarity between CSD MOF and CoRE MOF
datasets across a broad spectrum of the t-SNE maps.
However, notable diversity is seen based on the feature
spaces of performance metrics NCO2

and SCO2/C2H2
in

Fig. 7c and d. The CSD MOFs encompass a slightly wider
range of NCO2

than CoRE MOFs, because the number of
MOFs differs. Specifically, there are 3229 CSD MOFs and
more than 1689 CoRE MOFs, suggesting that the former may
possess greater geometric and chemical diversity.

3.4. Comparison with experiments

In the existing body of literature, several CO2-selective MOFs
were experimentally reported for inverse CO2/C2H2

separation, as detailed in Table 3. These studies typically
measure the adsorption capacity of pure CO2 and estimate
CO2/C2H2 selectivity using the IAST. Fig. 8 compares the top-
performing CSD and CoRE MOFs identified in this work with
experimental MOFs. The well-established trade-off is
observed between adsorption capacity and selectivity. Based
on experimental measurements, MUF-16,39 MUF-16(Mn),39

MUF-16(Ni),39 Cd-NP,9 and Mg-NH4-ZM
40 show good

performance and located in the upper right quadrant of the
plot, indicating a favorable balance between adsorption
capacity and selectivity. At 298 K and 1 bar, notably Cu-F-
pymo41 yields IAST selectivity of 105 for equimolar CO2/C2H2

mixture, which is substantially highest as listed in Table 3
and outperforms benchmark CO2-selective materials such as
MUF-16 (ref. 39) (510 at 293 K), PMOF-1(irra)42 (694 at 273 K)
and Cu(hfipbb)(H2hfipbb)0.5 (ref. 43) (696 at 298 K).
Nevertheless, its NCO2

is only 1.19 mmol g−1. The 53 CSD
MOFs predominantly exhibit SCO2/C2H2

< 20, rendering them
not optimal despite their NCO2

ranging from 1.71 to 5.35
mmol g−1. In contrast, the seven top-performing CoRE MOFs
have SCO2/C2H2

> 20 and high NCO2
ranging from 2.8 to 4.3

mmol g−1. Overall, the CoRE MOFs exhibit superior
separation performance as predicted by the ML models and
surpass many experimentally reported MOFs in terms of NCO2

and SCO2/C2H2
, indicating their significant potential for inverse

CO2/C2H2 separation. This underscores the advantage of
applying ML to identify top-performing MOFs.

4. Conclusions

We have synergized MS and ML to identify top-performing MOFs
for the inverse separation of a CO2/C2H2 mixture. Initially, 3712
CSD MOFs are evaluated for their separation performance

Table 2 Predicted top-performing CoRE MOFs

CoRE MOF NCO2
(mmol g−1) SCO2/C2H2

PLD (Å) LCD (Å) VSA (m2 cm−3) ϕ Q°CO2
(kJ mol−1)

XISLAM_clean 3.76 82.36 3.64 4.34 367.54 0.27 51.51
TAWHOO_clean 3.98 44.48 3.64 4.39 93.43 0.33 47.75
TUYLIJ_clean 4.30 42.86 3.71 4.52 501.42 0.36 49.04
QOLVET_clean 2.80 33.19 3.97 4.18 446.70 0.30 53.78
MORZID_clean 2.96 28.85 3.97 4.20 452.74 0.30 53.12
CAVSUP_clean 3.66 28.61 5.47 6.03 926.71 0.35 61.76
IRAHUF_clean 2.95 28.60 3.66 4.41 402.13 0.35 44.55

Fig. 7 T-SNE maps based on the descriptor combination “Geo +
PSD_bins + RACs + energy”. (a) CoRE MOFs in orange and (b) CSD
MOFs in yellow. The gray color illustrates the overall feature space of
CoRE MOFs and CSD MOFs; each point on the map corresponds to a
MOF. The feature spaces are based on (c) NCO2

and (d) SCO2/C2H2
.
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through GCMC simulations. The structure–performance
relationships are established for geometric and energetic
descriptors (LCD, ϕ, VSA and Q°CO2

) with performance metrics

(NCO2
and SCO2/C2H2

). It is found that the separation performance
is governed by a complex interplay of multiple factors. With the
thresholds of NCO2

> 1.7 mmol g−1 and SCO2/C2H2
> 3.0, 53 top-

performing CSD MOFs are identified, with their respective LCD,
VSA, ϕ, and Q°CO2

values ranging from 4.02 to 8.51 Å, 112.63 to

1946.46 m2 cm−3, 0.139 to 0.581, and 27.93 to 57.21 kJ mol−1.
Subsequently, ML models are developed upon the simulation
data in CSD MOFs, utilizing geometrical, chemical and energetic
features. The model performance is evaluated in terms of both
accuracy and interpretability. The inclusion of pore size
distribution in the ML models yields only marginal
improvement in predictive accuracy; however, large
improvement is observed if chemical and energy-related
descriptors are included. Feature importance analysis indicates
that energy-related Q°CO2

and K°CO2=C2H2
are more significant for

accurate predictions than geometrical and chemical descriptors.
The transferability of the ML models is assessed by predicting
the performance for CO2/C2H2 separation in CoRE MOFs. The
out-of-sample predictions in CoRE MOFs agree fairly well with

Table 3 Experimentally reported MOFs for inverse CO2/C2H2 separation

MOF
Condition
(T/K, P/kPa) NCO2

(mmol g−1)
NC2H2

(mmol g−1)

Q°CO2

(kJ mol−1)

Q°C2H2

(kJ mol−1)
Selectivity
(50/50)*

MUF-16 (ref. 39) 293, 100 2.13 0.18 32.3 25.8 510
MUF-16 (Mn)39 293, 100 2.26 0.44 36.6 N.A. 31
MUF-16 (Ni)39 293, 100 2.13 0.32 37.3 N.A. 46
[Mn(bdc)(dpe)]4 273, 91 2.08 0.32 29.5 27.8 8.8
SIFSIX-3-Ni (ref. 5) 298, 100 2.80 3.30 50.9 36.7 7.5a/7.7b

K2[Cr3O(OOCH)6(4-ethylpyridine)3]2 [α-SiW12O40]
(ionic crystal)44

278, 100 0.50 0.10 38.0 30 5.6a

CD-MOF-1 (ref. 6) 298, 100 2.87 2.23 41.0 17.6 5.7a/6.6b

CD-MOF-2 (ref. 6) 298, 100 2.65 2.03 67.2 25.8 12.8a/16.0b

Cd-NP (ref. 9) 298, 100 2.59 0.43 27.7 N.A. 85
[Tm2(OH-bdc)2(μ3-OH)2(H2O)2]

45 298, 100 5.83 2.10 45.2 17.8 18.2a/17.5b

[Tm2(OH-bdc)2(μ3-OH)2]
45 298, 100 6.21 5.25 32.7 26.0 1.65

[Zn(odip)0.5(bpe)0.5(CH3OH)]·0.5NMF·H2O (ref. 46) 298, 100 118.7d 39.8d 42.3 35.0 13.2
Cu-F-pymo41 298, 100 1.19 0.10 28.8 N.A. >105

CeIV-MIL-140-4F10 298, 100 4.92 1.85 39.5 27.4 9.5b

PCP-NH2-ipa8 298, 100 3.21 1.93 36.6 26.8 6.4a

PCP-NH2-bdc8 298, 100 3.03 1.90 34.57 25.6 4.4a

PMOF-1(bef)42 273, 100 47.5d 9.5d N.A. N.A. 50
PMOF-1(irra)42 273, 100 53.3d 7.5d N.A. N.A. 694
[Zn(atz)(BDC-Cl4)0.5]

47 285, 100 34.6c 18c 32.7 25.4 2.4a

[Cu(hfipbb)(H2hfipbb)0.5]
43 298, 100 0.74 0.10 25.5 N.A. 696a

Co(HLdc)48 195, 100 239.5d 140d N.A. N.A. N.A.
AlFFIVE-1-Ni7 298, 100 2.76 4.6 47 38 N.A.
NbOFFIVE-1-Ni7 298, 100 2.16 2.4 54.6 34 N.A.
en-Mg2(dobpdc)

49 298, 100 4.48 2.43 71.2 22.3 N.A.
nmen-Mg2(dobpdc)

49 298, 100 4.73 2.38 62.32 23.9 N.A.
een-Mg2(dobpdc)

49 298, 100 4.85 1.84 68.77 23.4 N.A.
MFU-4 (ref. 50) 300, 100 3.17 N.A. 24.2 NA 3363*
ZU-610a51 298, 100 1.51 0.12 27.3 NA 207/1840*
Y-bptc52 298, 100 2.48 1.17 31.5 NA 4.1/114*
Mg-NH4-ZM (ref. 40) 298, 100 3.12 0.44 65 NA 98.0

a IAST selectivity for CO2/C2H2 mixture (v/v = 1 : 1). b IAST selectivity for CO2/C2H2 mixture (v/v = 1 : 2). c Uptake in unit of cm3 cm−3. d Uptake
in unit of cm3 g−1. Value marked with * is the kinetic selectivity (calculated from the ratio of diffusive time constants), while unmarked is the
IAST selectivity for CO2/C2H2 mixture (v/v = 1 : 1).

Fig. 8 Comparison of top-performing MOFs identified in this work for
CO2/C2H2 mixture (v/v = 1 : 2) with experimental MOFs reported in the
literature for CO2/C2H2 mixture (v/v = 1 : 1).

MSDEPaper

Pu
bl

is
he

d 
on

 2
8 

Ju
ly

 2
02

5.
 D

ow
nl

oa
de

d 
by

 Y
un

na
n 

U
ni

ve
rs

ity
 o

n 
8/

5/
20

25
 4

:4
2:

10
 A

M
. 

View Article Online

https://doi.org/10.1039/d5me00060b


Mol. Syst. Des. Eng.This journal is © The Royal Society of Chemistry and IChemE 2025

simulation results, with seven CoRE MOFs predicted to surpass
the performance of top CSD MOFs and comparable to many
experimentally reported MOFs. The ML models developed in this
study are useful for the development of new MOFs for inverse
CO2/C2H2 separation and many other important applications.
On the other hand, we are aware of the key limitations in our
simulations for constructing datasets. First, the widely used
universal force field is adopted here; however, its generalizability
and transferability to the adsorption of CO2/C2H2 mixture needs
to be further verified. Second, the frameworks are assumed to be
rigid and hence possible structural flexibility is not taken into
account. In this regard, it is desired to develop more accurate
force fields (e.g., ML potentials) and incorporate structural
flexibility for future improvement.
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