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Unconditional crystal structure generation with diffusion models
faces challenges in identifying symmetric crystals as the unit cell
size increases. We present the crystal host-guided generation
(CHGGen) framework to address this challenge through conditional
generation using an inpainting method, which optimizes a fraction
of atomic positions within a predefined and symmetrized host
structure to improve the success rate for symmetric structure
generation. By integrating inpainting structure generation with a
foundation potential for structure optimization, we demonstrate
the method on the ZnS—-P,Ss and Li—Si chemical systems, where the
inpainting method generates a higher fraction of symmetric struc-
tures than unconditional generation. The practical significance of
CHGGen extends to enabling the structural modification of crystal
structures, particularly for systems with partial occupancy or inter-
calation chemistry. The inpainting method also allows for seamless
integration with other generative models, providing a versatile
framework for accelerating materials discovery.

1 Introduction

Crystal structure prediction (CSP) is a foundational tool in com-
putational materials discovery with wide-ranging applications in
energy storage," drug design,” and superconductors.® The ability to
predict stable atomic arrangements for a given chemical composi-
tion is critical for materials design, yet remains a challenge due to
the high dimensionality of chemical and configurational space.”
Traditional computational approaches using density functional
theory (DFT) calculations have achieved notable successes, such as
random structure searches,” genetic algorithms,® particle-swarm
optimization,” substitution models,® and exact lattice model
approaches.’ However, DFT-based search algorithms can become
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New concepts

Graph neural network-based diffusion models suffer from locality bias,
generating reasonable local environments but failing to propagate long-
range crystallographic order. We demonstrate that crystal-host guided
inpainting generation (CHGGen) can mitigate this issue. The inpainting
method is a conditional generation originally developed in computer
vision for context-based image generation. In crystal structure prediction
problems, it optimizes atomic positions within symmetrized host struc-
tures rather than generating complete structures unconditionally. Our
approach achieves higher symmetry compared to unconditional meth-
ods, particularly for polyanion systems. Beyond structure prediction,
CHGGen enables structural modification of materials with partial occu-
pancy or intercalation chemistry. By integrating with foundation poten-
tials for structure optimization, CHGGen provides a modular, practical
framework for accelerating materials discovery across diverse chemical
spaces.

computationally prohibitive, especially when applied to multi-
component systems with complex compositional spaces.'®
Recent advances in graph neural network (GNN)-based
machine learning models have introduced promising alterna-
tives to traditional CSP methods, with a key milestone being the
development of foundation potentials, or universal machine
learning interatomic potentials-offering accurate and trans-
ferable modeling across diverse material systems."'™* These
foundation potentials trained on millions of DFT calculations
demonstrate remarkable generalizability in exploring vast
chemical spaces for materials discovery.>*® Another emerging
direction is deep-generative models, particularly diffusion
models, which learn the data manifold or probabilistic distri-
bution and generate new configurations via stochastic or
variational approaches.’® " Xie et al.>* introduced CDVAE that
uses a variational autoencoder to sample lattice parameters
and compositions and a diffusion model to optimize atomic
coordinates. Although promising, CDVAE-generated structures
are predominantly thermodynamically unstable or lack sym-
metry.>*** Kurz et al.>® introduced a wrapped normal distribution
to effectively couple lattice diffusion with fractional coordinates,
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a strategy that was successfully implemented in DiffCSP.
et al.®® further adapted the scheme with edge features for lattice
scores in the MatterGen framework that enables diffusions on
lattices, fractional coordinates, and chemical species. By learning
from materials datasets such as Materials Project (MP)*° and
Alexandria,*® MatterGen is capable of conducting scalable and
universal exploration in high-dimensional design space and
achieves excellent performance in structural stability, uniqueness,
and novelty, albeit with an observed limitation to a smaller scale
(eg, Natom < 20). Beyond GNN-based models, other approaches
such as U-net-based diffusion models,>" optimization of subcell
structures from amorphous configurations,* and large language
models®**?* have shown promise in crystal structure generations
without the need to limit structure sizes.

In this work, we extend GNN-based diffusion models to enable
fractional crystal structure design via inpainting generation—that
is, given a host or substrate structure, we optimize the placement
of additional ‘guest’ atoms within the existing framework. This
application is particularly valuable in several material domains,
e.g., defective materials, intercalation electrodes,®> molecular
absorption on catalyst surfaces,*® and interfacial solid reactions
where surfaces reconstruct while bulk structures remain
unchanged.’” We first summarize the fundamentals of diffu-
sion models and inpainting generation, and discuss the locality
bias of GNN-based diffusion models, particularly as a key
challenge when generation is performed at large scales. To
address these gaps, we introduce crystal host-guided genera-
tion (CHGGen), which integrates inpainting generation based
on symmetrized frameworks and a foundation potential for
structure optimization. We demonstrate the effectiveness of
host-guided generation through a case study on CSP within the
ZnS-P,Ss chemical space, and showcase the broader applic-
ability of CHGGen across the continuous chemical space of the
Li,-Si alloy system. Finally, we discuss the limitations and
potential opportunities of applying CHGGen with state-of-the-
art generative models for CSP problems in future directions.

2 Theory

We first briefly recap the concepts of diffusion models with
score-based denoising and then introduce inpainting as a
conditional generation method for the structural modification
of crystal structures.

2.1 Diffusion model

Generating samples from a probability density function p(x) in
high-dimensional space R¢ can be achieved by modeling the
gradient of the log-probability density, known as the score
function V,logp(x) in diffusion models. Song et al.*® demon-
strated that both the diffusion process and its reverse can be
formulated as stochastic differential equations (SDE)

dx = f(x,t)dt + g(¢)dw, (1)

dx = [f(x,8) — g°(6)V.logp(x)Jdt + g(t)dw, (2)
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where w and W represent the standard Brownian motion
process and its time-reversed analogue, respectively. f(x,t) is
the drift coefficient and g(¢) is the diffusion coefficient of x(t).
Pex) denotes the probability density of x(¢). Here ¢ is the time
variable te [0,T] to describe the diffusion process {x(¢)}~o-

Eqn (1) describes the forward process to corrupt the data
distribution x(0) ~ po(x) to obtain the prior distribution x(7) ~
pr(x), which follows a uniform distribution. Eqn (2) describes
the reverse process to sample x(0) by solving the reverse SDE with
the score term V, logp(x). For crystal structure generation, we
adopt the variance-exploding (VE) diffusion scheme for the atomic
coordinates, where the process {x({)}~, is given by the SDE

2
dx = %dw (3)

Here {o()} is a sequence of exponentially increasing standard devia-
tions given G, = 01,. . .,07 = Omax. The VE-SDE is particularly suitable
for atomic coordinates in crystals, as VE-SDE does not induce dis-
connected graphs at the large noisy limit under periodic boundary
conditions.

The samples can be generated using ancestral sampling,
where successive states are sampled according to:

0r—12(012 - 0'1—12)

5 (4)

Xio1 =X, + (0,2 — a,,lz)s(» (x,0)+z .
t

where x7 ~ N(0,67°I), and z~ N(0,I). In the continuous
limit, y/0,-1?/a/ ~ 1. The implementation is achieved using a
predictor-corrector sampling strategy with the Langevin correc-
tor. We refer the readers to ref. 38 for mathematical details of
score-based SDE and sampling strategies.

Unconditional generation. Inputs: randomly initialized atomic
positions xr7. Signal-to-noise ratio 6. Number of predictor steps T;
number of corrector steps M.
fort=T,...,1do

Xeoq — X+ (07 — 60-1)s0(x0t)

z~ N(0,T)

ot gy [P =),

ot

forj=1,.,Mdo
z~N(0,1)
g« Solxs_ 1t — 1)
& —2(V35/llgll,)’
Nio1 — X1 +eg +V2ez
end for
end for

2.2 Denoising score matching

To estimate the score function V,log p,(x), we use score match-
ing (SM) to optimize the model parameters 0* by minimizing

Loy = Epo [Iso(x(0).1) = Vilogp ()2, (5)
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E, v [] represents the expectation value with respect to the
probability distribution p,(x), which can be approximated by a
Gaussian transition probability p(x(¢)|x(0)) oc e ¥ ~ x(O)f*120°
such that eqn (5) is formulated as denoising score matching

(DSM) with®**
ell?
Lpsm = Ex0)Ex(s))x(0) |:HSH(X(I)7 H+ ;H } (6)

Here x(0) ~ po(x) and x(¢) ~ p(x(¢)|x(0)), so(x(t),t) is the score
function predicted by the GNN model, e represents the normal-
ized noise [x(t) — x(0)] /o ~ N (0,1). In the training process, o is
sampled uniformly from the interval [0yin,0max] to perturb the
configuration x(0) and obtain the noisy configuration x(¢) to
construct the DSM loss in eqn (6).

2.3 Inpainting

Inpainting is a conditional generation process where a model
completes missing elements within a given context. Inpainting
has demonstrated significant applications in materials and
chemistry, including the discovery of chemical reaction transi-
tion states*’ and the generation of symmetry-constrained 2D
materials.*> In CSP, inpainting enables the optimal placement
of additional atoms (termed guest atoms) within a predefined
host crystal structure, where a binary masking strategy applies
different noise treatments to known regions (host structure)
and unknown regions (areas to be inpainted - guest atoms).

Unlike training a certain distribution of the mask, Lugmayr
et al.*® introduced the repaint algorithm (inpainting + resam-
pling) for high-quality 2D image inpainting using diffusion
models. One can simply train the diffusion model with DSM
to learn the joint distribution. During inference, the condi-
tional distribution is approached using the resampling techni-
que for inpainting generation. As shown in the Algorithm, in
addition to the unconditional generation steps, (the resampling
repeatedly “jumps back’” in the diffusion process and resam-
ples the unknown regions multiple times with r steps) at each
timestep ¢, with a mask m to separate the host and guest atoms.
This resampling procedure helps harmonize the generated
content with existing regions by allowing multiple attempts at
generating coherent inpainted content. For detailed implemen-
tation and theoretical foundations, we refer readers to ref. 43
and 44 for details of this approach.

Inpainting generation. Inputs: atomic positions of unperturbed
host structure with randomly initialized guest atoms x5°;
atomic positions of all atoms sampled randomly in the unit cell
x7; mask for guest atoms m; signal-to-noise ratio J; number of
predictor steps T; number of corrector steps M; number of
resampling steps r.
fort=T, ..,1do

forn=1,...,rdo

Xeq < Xt (Utz - Ut—lz)s()(xt,t)

z ~N(0,T)

0'1—12 (Utz - 0':—12)

o2

Xi—1 — Xp—1 +
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forj=1,.,Mdo
z~N(0,1)
g < Solxe—1,t — 1)

e —2(v38/llgll,)’

Xi—1] <= Xp—1 e+ \/ZZ
end for

x?fit - ngSt

0412
Xop = (1 =m) @ xS 4+ m o x,

ifn < rand ¢ > 1 then

z~N(0,1)
X = X1 +VoP -0 Pz
end if
end for
end for

Fig. 1 illustrates the iterative sampling procedure for
inpainting generation. During each reverse diffusion step, the
process follows several distinct stages: first, the atoms in the
host structure are perturbed using Gaussian noise determined
by the noise scheduler of the subsequent step o,_; (process A):

host host
X,_p =Xy +t0-1z,

z~N(0,1) 7)

This ensures that both the guest atoms and host structure in
the current configuration x,_, maintain comparable noise
scales. The GNN model then computes the score using all
atoms and executes the reverse diffusion via eqn (4) (process
B). In our notation, x** contains atomic positions of all atoms
(including the framework and guest atoms) for indexing con-
sistency. We apply masks (1 — m) to x"** and m to x (process C)
to construct x,_; (process D):

= (1=m) Ox"% +mex, (8)

Through this iterative reverse diffusion process, the noise
scale {o,} gradually decreases, resulting in a final crystal struc-
ture that is closely aligned with the original host structure with
minimal deviation (e.g., Gmin = 0.001 A). The positions of the
guest atoms are therefore determined by the distribution con-
ditioned on the host structure.

3 Results

We developed an SE(3)-equivariant graph neural network (GNN)
based on the NequlP architecture to predict the score function for
both unconditional and inpainting diffusion processes. The model
training followed the DSM scheme described in eqn (6), where the
dataset was prepared using crystal structures from the MP data-
base with energy above hull Ey,; <0.1 eV (see Methods in SI).

In the following sections, we first examine the locality bias
encountered when generating structures with large unit cells
through unconditional generation. These insights led to the
development of the CHGGen framework. We demonstrate the
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Fig. 1 Illustration of the iterative sampling strategy for structure inpainting with a host framework. Process (A): add noise to the host framework. Process
(B): denoise atomic configuration from x; to x;_; using scores {sy(x,)} predicted by the GNN. Process (C): apply masks to the host structure and the guest

atoms. Process (D): combine the host structure and guest atoms to form the configuration x, for the next iteration. Note that the symbol x

host contains

atomic positions of all atoms (including both host and guest atoms). The gray crosses on the guest atoms indicate that their information is not used in the

processes but is retained for indexing consistency.

effectiveness of CHGGen on two example chemical systems:
Zn-P-S and Li-Si, which are complemented by CHGNet as a
foundation potential for iterative structural optimizations and
thermodynamic stability screening. Additionally, we also
demonstrate example studies of CSP of 16 compositions used
in DiffCSP*” and solid-solid interface in SI.

3.1 Locality bias of GNN-based generative models

To investigate the limitations of unconditional generation

(Li4S,-P,S5)s with the parametrized diffusion models. Fig. 2(a)
shows a snapshot of the generated structures, where the long-
range periodicity is absent and an amorphous configuration is
exhibited. Fig. 2(c) and (d) present the radial distribution
functions (RDF) of the generated structures and the structures
from the MP database, showing similar major peaks in both
RDF plots. The RDF suggests that the generated structures
exhibit physically reasonable Li-S and P-S bonding environ-
ments, which represent the learned local distribution from the

at large scales, we generated 10 supercell configurations of dataset.
- e 0.8
—e— Li-S L
| o— P-S 5*0'6 I
C
9]
Generated 204 Generated
(]
l *0.2
o 2 4 6 8 10 %03 4 5 6 7 8
r(A) Coordination Number
f 1.0
—— Li-S 08 B Li
P-S > : I
§ 0.6
Materials Project 50.4 Materials Project
i
0.2
! 0.0
SE(3)-GNN 0 2 4 6 8 10 3 4 5 6 7 8
r(R) Coordination Number

Fig. 2 Analysis of the locality bias in GNN-based diffusion models. (a) A generated supercell structure of Liz;P16Sse exhibiting an amorphous
configuration. (b) Illustration of SE(3)-equivariant graph neural networks, where the score function {sy(x;)} is predicted as a vector from each graph
node (red arrows). (c) and (d) Radial distribution functions (RDF) of Li—S and P-S in generated structures compared with database structures from the MP.
(e) and (f) Comparison of local chemical environments grouped by coordination number between generated structures and MP structures.
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We evaluated local coordination environments using the
LocalGeometryFinder toolkit** and classified the local environ-
ments based on coordination numbers. In Fig. 2(e), P atoms
predominantly occupy tetrahedral sites (4-coordinated), consis-
tent with known Li-P-S crystal structures.’® In contrast, Li
exhibits a broad distribution of coordination numbers, with
peaks at 5-fold (~40%), 4-fold (~25%), and 6-fold (~30%)
geometries. Notably, these coordination statistics qualitatively
align with patterns observed in the MP training dataset
(Fig. 2(f)), where P atoms maintain rigid tetrahedral coordina-
tion while Li atoms display more variable environments.

Based on the successful learning and reconstruction of local
distribution from the generative model, we hypothesize that the
failure to propagate long-range order in generated structures
stems from two interrelated factors: (1) locality bias in GNNs:
while the model effectively captures short- to medium-range
atomic correlations, its finite receptive field constrains the
learning of global crystallographic patterns. (2) Stochasticity
in reverse diffusion: the stochastic differential equation for
reverse diffusion processes inherently samples from a learned
distribution of the entire dataset. Without coupling the atomic
arrangements and supercell parameters, the diffusion process
tends to sample from the entire distribution of the dataset in
the generated structures, rather than from a narrowed distribu-
tion in specific crystal systems. Consequently, structures with
large unit cells manifest as “mosaics” of local structure motifs
rather than coherent crystalline structures. These limitations
may be universal even with lattice diffusion, as the GNN
architecture lacks explicit mechanisms to maintain long-
range crystallographic order when featuring the atomic config-
urational space.”’

Random positions
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3.2 Crystal host-guided generation

Motivated by our observation that GNN-based diffusion models
struggle to generate crystalline structures with long-range per-
iodic structures, we developed the CHGGen framework as a
targeted approach to mitigate this limitation. CHGGen inte-
grates three key components: (1) unconditional structure gen-
eration, (2) inpainting generation based on symmetry-refined
host structure, and (3) structural optimization using the
CHGNet.

Fig. 3 illustrates the CHGGen computational workflow. The
process begins with sampling various Bravais lattices at a fixed
volume through a random search over lattice constant ratios
and angles (see Methods in SI). The unit cell volume is
determined as N x V,, where N represents the number of atoms
and V, denotes the atomic volume. The V, can be initialized
either from related crystalline phases or predicted by
composition-based regression models.*® This atomic volume
serves as prior information subject to optimization in subse-
quent steps. Following lattice determination, fractional coordi-
nates for all atoms are initialized with random numbers drawn
from A(0, 1). The diffusion process then proceeds by solving
the reverse SDE using scores predicted by the SE(3)-GNN
(unconditional generation). Given that the volumes and lattices
of the generated structures are drawn from simple priors and
random search, the CHGNet is employed for structure relaxa-
tion to optimize both unit cells and atomic coordinates. This
process represents a well-defined local energy minima search
task and does not suffer from the locality bias encountered
during the diffusion process.

The next phase is initiated by removing atoms that exhibit
broad local environment distributions (e.g., Li). The remaining

Mask frame & guest atoms

[TTTTT ; ol ; rTTo ; Yo i O
! 1 1 .(9 1 ] 0 ' @ @ |Inpaint , @ @ ! 1 Q.. @ .
: ;o 'Y ! Q&% I~ 1 S0 1 | e l0
] 1 1 . 1 1 : 1 . ‘ : 1 . ‘ ! 1 . ‘ 1
Lo i v 1 S e MO 1 I | - { R — L §
Random search l Diffusion m T (1-m) Relax & refine
Bravais lattices (small tol)
e N : ®--@-@ @
1 1 1 ud e - 1 cd
CHGGen %99 | Foc? ! i Te?! 4%2e?e
9 N 1 S N WL L
/o "o/ | @ ‘: N "L ].”‘:
Crystal Host-Guided t--O--' tbmmmmmmm- e e s D
Generation Struct refine
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Fig. 3 Computational workflow of CHGGen. The process begins with a random search for Bravais lattices containing a specified number of atoms,
followed by an unconditional generation with reverse diffusion and structure relaxation using CHGNet. Structure refinement is applied after removing
guest atoms to obtain a symmetrized framework. Inpainting generation is then performed based on this refined framework to guide the creation of
complete crystal structures. Finally, the generated structures undergo relaxation to determine decomposition energy, with promising candidates (those
exhibiting low decomposition energy) selected for DFT verification. The dashed circles represent crystallographically equivalent atomic positions in a

crystal structure.
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structure (framework) undergoes symmetry refinement using
spglib through incremental structural matching tolerance to
obtain a space group with higher symmetry (i.e., until the space
group is not P1). Since the guest atoms exhibit diverse local
environment distributions, refinement without them is more
feasible for obtaining the symmetric structure. The fractional
coordinates of the removed guest atoms are then reinitialized
from N (0,I) within the symmetrized framework, and inpaint-
ing generation is performed using masks m and (1 — m) for the
guest and framework atoms, respectively.

The inpainting-generated structures are further relaxed
using CHGNet and structure refinement is performed with a
small tolerance to obtain the space group. The CHGNet-
calculated energy for the relaxed structure is used to determine
the decomposition energy E4 relative to the MP phase diagram
at the GGA/GGA+U level of accuracy. Finally, structures with E4
within a specified threshold (e.g., Eq4 < 0.1 eV per atom) are
submitted for DFT calculations to obtain more accurate ther-
modynamic stability assessments. In our studies, we used the
r’SCAN functional to evaluate the DFT decomposition energy
against the MP r’SCAN phase diagram.

3.3 Example: Zn-P-S

The first example predicts the crystal structure in the ZnS-P,Ss
chemical space, which represents a logical extension of the
related Li-P-S system that exhibits various stable and meta-
stable polymorphs along the Li,S-P,S; compositional line.*’

View Article Online

Materials Horizons

Understanding phase stability in analogous Zn-based systems
is important for advancing Zn-based solid-state batteries.

We focused on the CSP of ZnP,S¢ and Zn,P,S; using
CHGGen. To assess the local stability of the generated struc-
tures, we evaluated the structural and energetic differences
between the initially generated structures and their CHGNet-
relaxed counterparts. In Fig. 4(a) and (b), we present the energy
and geometrical differences between the relaxed structures and
generated structures. Most of the generated structures exhibit
energy changes of AE < 0.1 eV per atom, with a median value
of 0.08 eV per atom. The geometric differences, quantified by
maximum pair-wise root-mean-squared distance (RMSD), show
a median value of 0.10 A between relaxed and generated
structures. As illustrated in Fig. 4(a) and (b), outliers with large
energy changes correspond to RMSD values exceeding 0.3 A,
indicating that most of the generated structures are close to the
local minima and can be reasonably searched using foundation
potential structure relaxation.

Fig. 4(c) presents the CHGNet-predicted decomposition
energies (E4) to quantify the thermodynamic stability. The
distribution shows a median E4 of 0.07 eV per atom, indicating
that the majority of generated structures are metastable in this
chemical space, while 6.5% of the generated structures are
identified as stable with E5 < 0 at the CHGNet level of accuracy.

After r*SCAN-DFT calculations and reevaluation of E4 with
respect to the MP-r’SCAN phase diagram, the structure with
negative E4 was confirmed to be metastable. This discrepancy
can be attributed to CHGNet’s approximate 30 meV per atom

a 043 d 02 e 0.2
s B Median: 0.08 I E4-CHGNet I E4-CHGNet
$0.22 = Egr?SCAN | H = E4r?SCAN ’7
£ 011 Znp,s, 011 20,5,
%00 02 04 06 08 10 E e € o6
AE from relaxation (eV/atom) % : % '
S >
2 0.02 _H 2 0.02
o o
w i] W
-0.02 -0.02
cr (:L’L'L T o a® A A
f g - Q Jv -
B
max RMSD (A) I uncond
@ inpaint O Zn
C T ZnP>Sg
s Median: 0.07 oP
© os
© !
i H Zn,P,S, /
0.0 . p ©
0 0.05 0.10 0.15 0.20

Ey (eV/atom) 0.00

0.25 050  f 4
Sym Success Rate &% ZnP,S,

Zn,P,S; ©

Fig. 4 Generation results in the Zn-P-S system demonstrating local stability, global stability, and capability for identifying symmetric structures.
(@) Energy change (AE) following structure relaxation. (b) Maximum pair-wise root-mean-squared displacement (RMSD) representing differences
between generated and relaxed structures. (c) Distribution of decomposition energies (Eg) of generated structures relative to the MP phase diagram as
predicted by CHGNet. (d) and (e) Comparison of decomposition energies predicted by CHGNet (blue) and r’'SCAN-DFT (orange) relative to the MP phase
diagram at GGA/GGA+U (blue) and r’SCAN (orange) levels of accuracy. (f) Success rate of identifying symmetric crystal structures using unconditional vs.
inpainting generation. (g) Examples of generated structures with the lowest DFT decomposition energy in ZnP,Sg (C2, E4 = 0.015 eV per atom) and

Zn,P,S; (Cm, E4 = 0.046 eV per atom).
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prediction error, which may alter the predicted phase stability
when Ey values are small. As illustrated in Fig. 4(d) and (e),
while CHGNet demonstrates good overall agreement with DFT,
it systematically underestimates the decomposition energy for
structures with high values (Eq > 0.1 eV per atom), consistent
with the known softening effect of foundation potentials.”®
This finding suggests that practitioners could consider using
a lower threshold (e.g., Eq < 30 meV per atom) when screening
generated structures for DFT validation.

To evaluate how diffusion models perform in generating
symmetric crystal structures, we define a simple metric sym-
metry success rate as the fraction of generated structures
possessing space groups with higher symmetry than P1 or P1
after relaxation and refinement (see Methods in SI). Fig. 4(f)
compares the symmetry success rates from unconditional
(blue) and inpainting (orange) generations. The inpainting
approach uses the refined P-S frameworks to achieve signifi-
cantly higher success rates compared to the unconditional ones
(<5%), which highlights the effectiveness and practical advan-
tages of conditional generation with structural priors. The
structures with the lowest-E4 for ZnP,Se and Zn,P,S, are illu-
strated in Fig. 4(g). While the generated structures are pre-
dicted to be metastable by DFT calculations, this example
demonstrates CHGGen’s potential for exploring crystal structures
in the chemical space that is currently absent from existing
databases.

3.4 Example: Li-Si alloys

The second example extends to a binary system - Li-Si alloys.
The Li-Si system has particular significance as a high-capacity
anode in Li-ion batteries.”’ The MP database contains 13
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DFT-calculated structures, of which 4 are thermodynamically
stable (Enun = 0) at zero K.

To demonstrate the effectiveness of identifying low-energy
polymorphs, we performed structure generation for Li-rich
phases (Li,Si,, where x > y, a composition range known to
contain many stable phases®?) following the workflow outlined
in Fig. 3 (see Methods in SI). After CHGGen generation and
r?SCAN-DFT calculations, we constructed the phase diagram
using DFT formation energies from both MP structures and the
generated structures. In Fig. 5(a), green circles represent new
stable polymorphs identified by CHGGen, while blue squares
indicate the reported stable MP structures. We calculated
decomposition energies using the MP phase diagram (without
the on-the-hull structure of Li;Si,). Negative values of E4 there-
fore indicate compounds that break the existing MP convex
hull. Notably, CHGGen successfully predicted LisSi, (R3m,
Eq = —7 meV per atom) as a thermodynamically stable poly-
morph beyond the known MP stable structures (Fig. 5(b)).
Interestingly, this structure had also been identified through
previous studies, including work by Tipton et al.>® using genetic
algorithms and Morris et al.>® using random structure search
coupled with DFT calculations.

Using generative models, one can also identify metastable
polymorphs with low decomposition energies in related com-
positions. For example, structures for compositions corres-
ponding to LisSi, (Eq = —0.006 eV per atom), Li,Si (Eq =
0.003 eV per atom), and Li,Si (Eq = 0.010 eV per atom) with
C2/m space group are shown in Fig. 5(c). These low-energy
polymorphs with different local structure motifs provide a more
detailed mapping of the potential energy landscape, which
benefits the training of MLIPs to understand the Si network

b Stable € OO%OO
%% o OOO°°
4:::§_‘; e : °°
% Li55|2 C2/m
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Fig. 5 Formation energies and crystal structures in the Li—Si chemical system. (a) Formation energy phase diagram calculated with generated structures
in the Li—Si chemical system using r’'SCAN-DFT. Blue squares represent stable structures from the MP database, green dots indicate stable compounds
on the formation energy convex hull, and the diamonds are the metastable compounds above the convex hull. (b) Stable generated structure (LisSi,,
R3m) confirmed by DFT calculations (E4 = —0.007 eV per atom). (c) Generated metastable structures with C2/m space group in LisSi,, Li>Si, and LisSi

compositions, respectively.
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aggregation and its effect on Li transport kinetics.> The case study
illustrates how practitioners can benefit from combining diffusion
models and foundation potentials to explore continuous unknown
chemical spaces, such as those encountered in alloy design.

4 Discussion

Recent advances in diffusion models have shown their promise
for crystal structure prediction (CSP), leveraging their ability
to learn geometric features beyond elemental substitution
heuristics.>® Graph neural networks have emerged as the pre-
ferred architectural choice for diffusion-based approaches,
primarily due to their inherent capability to incorporate rota-
tional equivariance.””®® A particularly significant theoretical
insight is that the score function derived from the GNN-based
diffusion models is mathematically equivalent to interatomic
forces under harmonic potential approximation.®* This equiva-
lence reveals that denoising pretraining provides substantial
benefits for interatomic potential modeling,*® which enhances
the efficiency of local energy minima exploration as evidenced by
the leading performance in MatBench Discovery benchmarks.*>®"

Based on this concept, diffusion models with GNNs repre-
sent a logical framework for generating reasonable local struc-
ture motifs (e.g,, atomic bonding patterns), which proves
valuable when optimizing local atomic arrangements in CSP
problems. Nonetheless, their inherent locality bias limits their
ability to capture long-range periodic orders. Gong et al*’
revealed that state-of-the-art GNNs fall short of accurately
capturing the periodicity of crystal structures, i.e., lattice para-
meters. This fundamental limitation explains the diminished
performance of GNN-based diffusion models when generating
structures with large unit cells, where long-period crystallinity
is significant but hard to capture. This locality bias is exacer-
bated for species that can adapt to diverse local environments
(e.g., Li), which have a broad distribution of stable coordination
geometries. The unconditional generation defaults to produ-
cing a disordered “mosaic” of these competing local motifs
rather than a coherent crystal structure.

The practical advantage of host-guided generation with inpaint-
ing is to augment the symmetric structure generation. To evaluate
this, we compared the success rates of obtaining symmetric crystals
across different approaches in Zn-P-S and Li-Si chemical spaces:
MatterGen (green), CHGGen with unconditional generation (blue),
and CHGGen with inpainting generation (orange). MatterGen
demonstrates superior performance compared to our baseline
model for Li-Si alloys (Fig. 6(b)), highlighting the importance of
explicitly modeling lattice diffusion in conjunction with atomic
arrangements. However, for more complex systems such as Zn-P-S
that contain polyanions, MatterGen performs less effectively when
the number of atoms exceeds 10, with success rates lower than
CHGGen with inpainting generation. This highlights the impor-
tance of inpainting generation when dealing with chemical systems
involving polyanions. Notably, MatterGen exhibits declining suc-
cess rates as system size increases in both cases, suggesting that it
is likely all GNN-based diffusion models face scalability challenges.
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Fig. 6 Comparison of success rates for identifying symmetric crystal
structures in (a) the Zn—-P-S system and (b) the Li-Si system (blue:
unconditional generation with CHGGen; orange: inpainting genera-
tion with GHGGen; green: MatterGen with chemical-system-guidance
generation).

This scalability constraint potentially limits their ability to predict
complex structural prototypes (e.g;, NASICON-type frameworks)
across various solid-state materials.

Although CHGGen has not yet achieved industry-level per-
formance as MatterGen in stability or general symmetry success
rate, it shows clear improvements in generating symmetric crystal
structures compared to unconditional generation methods. Asses-
sing crystallographic symmetry in generated structures is critical
for CSP, as discovering new structural prototypes is a key step
toward materials discovery.”®> These prototypes can subsequ-
ently guide elemental substitution strategies'> or evolutionary
searches® for compositional optimization. The inpainting-based
generation approach samples from the conditional distribution of
unknown structural components within a given framework, yield-
ing more well-defined local atomic arrangements than de novo
sampling from a fully unconstrained distribution. Importantly,
this inpainting strategy is simple to implement, as both condi-
tional and unconditional generation operate within the same
unified model—distinguished only by the masking strategy used
during the reverse diffusion process. This modular design enables
seamless integration with existing foundational generative models
and provides a flexible mechanism for enforcing symmetry con-
straints during structure generation.

In addition, we highlight the practical significance of
CHGGen for the structural modification of materials, which
often relys on existing database structures. A notable example is
the superionic conductor Lig 3ggTa0 238la0.475Cl3, discovered
through lithiation of the LaCls-type host structure with
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additional aliovalent substitution.®> CHGGen framework offers
a probabilistic approach to such design task that circumvents
the need for topological analysis®* or additional inputs such as
DFT-derived charge densities,®® which are often computation-
ally prohibitive or not universally applicable.

Finally, while our framework demonstrates useful augmen-
tation to diffusion-based generative models, the current sym-
metry refinement approach remains preliminary as it relies on
spglib by simply increasing the tolerance threshold. As a proof-
of-concept, this method predominantly yields structures with
moderate symmetry (e.g., C2, Cm in monoclinic systems), which
may limit the discovery of novel structure prototypes (see
Fig. S1 and S2). Looking forward, several promising approaches
have emerged for novel framework generation, including
symmetry-constrained diffusion® and prototype-based genera-
tion using Wyckoff position-based representations.®®*® The
integration of these advanced symmetry handling strategies
with CHGGen could enhance the discovery of crystal structures
particularly with intercalation chemistry.

In summary, we present CHGGen as an integrated framework
that combines unconditional and inpainting generation with foun-
dation potential optimization for CSP. While challenges in scaling
complexity persist, the inpainting method provides a useful
approach for generating symmetric crystals and incorporating
intercalants into existing database structures. We anticipate broad
adoption of this framework as the modular design of the inpainting
methodology enables seamless integration with emerging diffusion
models, which will ultimately accelerate materials discovery across
diverse chemical spaces.
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