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Abstract: 

Breast cancer constitutes a primary cause of mortality among women. Existing therapeutic targets and 

treatment modalities are often confronted with drug resistance and the considerable financial expense 

associated with the development of new therapies, for which the results can be uncertain. Hormone 

therapy, mainly focused on inhibiting aromatase as a pivotal enzyme in estrogen biosynthesis, remains 

the preferred approach for treating this type of female cancer while minimizing costs thanks to advanced 

computer-aided drug design (CADD) methods. In this work, the strategy combines 3D-QSAR, artificial 

neural networks (ANN), molecular docking, ADMET analysis, molecular dynamics (MD) simulations, 

and retrosynthesis was applied to design novel anti-breast cancer agents and study their interactions with 

aromatase to identify potential inhibitors. The predictive models underwent rigorous internal and 

external validations based on significant statistical parameters, confirming their robustness and 

friability. As a result, 12 new drug candidates (L1-L12) were designed against breast cancer. Based on 

the results of virtual screening techniques, only one hit (L5) showed significant potential compared with 

the reference drug (Exemestane) and previously designed drug candidates (Ligand 5 and C2). 

Subsequent stability studies and pharmacokinetic evaluations reinforced L5's potential as an effective 

aromatase inhibitor. Retrosynthesis was used to optimize the synthesis of this candidate, which required 

in vitro and in vivo validation.

Keywords: Cancer; CADD; ANN; molecular docking; ADMET; molecular dynamic; retrosynthesis
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1. Introduction

Breast cancer remains a primary global health concern, being the second leading cause of 

cancer-related mortality worldwide, as reported by the World Health Organization (WHO) 1. 

Despite significant advancements in therapeutic approaches, including surgery, radiotherapy, 

and chemotherapy, these modalities have not substantially improved survival rates 2,3. The 

urgency of developing new treatment options is further underscored by the increasing 

prevalence of drug resistance and severe adverse effects associated with current therapies 4. 

Breast cancer is predominantly a hormone-dependent disease, with estrogen playing a key role 

in its initiation and progression. Given that women are primarily affected by this malignancy, 

targeting estrogen biosynthesis has been established as an effective therapeutic strategy 5. 

Aromatase6–10, a key enzyme in estrogen biosynthesis, catalyzes the conversion of 

androstenedione into estrogen, making it a critical therapeutic target in the treatment of 

hormone-dependent breast cancer, particularly in postmenopausal women 11. Current aromatase 

inhibitors, such as Exemestane, have demonstrated efficacy in reducing estrogen production; 

however, they are often associated with challenges such as drug resistance and adverse effects, 

limiting their long-term clinical success 12. Moreover, the high costs and lengthy development 

timelines of novel drug candidates further highlight the need for efficient, cost-effective 

strategies in anti-cancer drug discovery. Therefore, identifying new molecules with optimized 

pharmacological profiles, reduced toxicity, and improved affordability remains an urgent 

priority in breast cancer research 13. In this context, Benzoxazole derivatives have demonstrated 

significant potential as pharmacological agents, particularly in anticancer applications. Their 

unique structural framework, featuring an electron-rich aromatic core and hydrogen bond 

acceptor sites, allows for strong binding affinity and enhanced specificity toward biological 

targets such as aromatase 14. The flexibility of this scaffold supports strategic modifications to 

optimize potency, selectivity, and pharmacokinetic properties while minimizing off-target 

effects. Additionally, their cost-effective and straightforward synthesis makes them practical 

candidates for drug development. These advantages position them as promising molecules for 

advancing breast cancer treatments through efficient and innovative therapeutic strategies 15–17.

Computational approaches, especially in silico techniques, are crucial to enhance the potential 

of drug candidates while minimizing development costs. Computer-aided drug design (CADD), 

which integrates structure-based (SBDD) and ligand-based drug design (LBDD) 

methodologies, leverages advanced algorithms to accelerate the discovery of new therapeutic 

agents 18. Machine learning algorithms, a core component of LBDD, have proven highly 
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effective in predicting and optimizing potential drug candidates 19–21. Additionally, SBDD 

employs algorithms for molecular docking and molecular dynamics simulations to analyze 

ligand interactions within enzyme active sites, enabling the identification of key structural 

features essential for enhancing drug efficacy and specificity 22. Quantitative structure-activity 

relationship (3D-QSAR) models, particularly those using comparative molecular field analysis 

(CoMFA) and comparative molecular similarity index analysis (CoMSIA), can identify the 

influence of key molecular descriptors on therapeutic efficacy, guiding the discovery of 

promising drug candidates 23. To ensure the reliability of descriptors selected by generated 

predictive models, advanced artificial intelligence techniques such as artificial neural networks 

(ANNs) are used for validation and optimization 24. For this purpose, each model is rigorously 

validated internally and externally by comparing relevant descriptors with binding interactions 

via molecular docking simulations 25,26. In addition, pharmacokinetic profiling through 

ADMET (absorption, distribution, metabolism, excretion, and toxicity) assessments provide 

essential information on the similarity and suitability of drug candidates 27. The molecular 

dynamics simulations (MD) validate the docking results 28, providing insight into the stability 

of the protein-ligand complexes studied 29,30. Finally, retrosynthesis proved decisive in defining 

viable synthetic pathways for the selected candidates, accelerating the development of new 

inhibitors against the investigated pathology for in vitro and in vivo evaluation 31,32.

This study aims to accelerate the development of new aromatase inhibitors for treating 

hormone-dependent breast cancer by adopting a comprehensive computational approach, while 

optimizing research costs. To achieve this, the therapeutic relevance of 24 benzoxazole 

derivatives was examined through a combination of advanced in silico methods. Techniques 

such as 3D-QSAR modeling (CoMFA and CoMSIA), artificial neural networks (ANN), and 

molecular docking were applied to identify structural features associated with anticancer 

activity and to explore how these compounds interact with the aromatase active site. Molecular 

dynamics (MD) simulations were then used to assess the structural stability of the most 

promising protein–ligand complexes, employing key indicators like RMSD, RMSF, principal 

component analysis (PCA), and MM-PBSA binding free energy estimates. Pharmacokinetic 

and toxicity properties were predicted using ADMET profiling, helping to filter the best 

candidates. Additionally, retrosynthetic analysis was performed to evaluate the feasibility of 

synthesizing these molecules for future experimental validation in vitro and in vivo.
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2. Material and methods

2.1. Data sets 

In order to build predictive 3D-QSAR models from a series of 24 benzoxazole derivatives (as 

shown in Table 1) 14, the dataset of molecular structures with experimental anti-breast cancer 

activities was divided into two distinct subsets: one for model training and the other for model 

validation 33,34.

Table 1. Structures of 24 derivatives, IC50, pIC50 and CoMFA/CoMSIA fields (*: test set)

        O

N
NH2

                                               
N

O
NH

HN
Ar

S

                                 N

O
N

NN

R

                  1                                                                                           2 /3                                                                             4-7

      N

O

N
NN
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N
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S

O
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N

O
N

NN

H
N S

NO

N
N

R               N

O
N

NN

H
N

OR

            8-14                                                                                              15-18                                                                   19-24

N° Structure IC50
(µM)

pIC50 CoMFA S E H D A

1
132.190 3.879 84.000 3.122 0.304 3.092 0.927 0.930

2

N

O
NH

HN
S

42.016 4.377 124.000 4.158 0.464 3.822 0.933 0.928
3

N

O
NH

NH
S

219.894 3.658 138.000 4.341 0.471 4.033 0.917 0.930
4

N

O
N NN

Br

7.647 5.117 114.000 3.584 0.640 3.472 0.000 1.306
5*

N

O
N NN

OH

1.000 6.000 112.000 3.624 0.638 3.190 0.399 1.876
6

N

O
N

NN

N 23.860 4.622 148.000 4.449 0.671 3.449 0.000 1.333
7*

N

O
N

NN

N

O

0.271 6.567 142.000 4.336 0.710 3.551 0.000 1.982
8

N

O
N

NN

H
N S N

S

O 26.642 4.574 168.000 4.576 0.939 3.668 0.671 2.229
9

N

O
N

NN

H
N

S N

S

O 39.321 4.405 172.000 4.799 0.951 3.786 0.663 2.221

N

O

NH2
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10

N

O

N
NN

H
N

S

N

S

O

N

3.782 5.422 202.000 5.105 0.996 4.247 0.652 2.184
11

1.179
5.928 210.000 5.230 1.000 4.334 0.657 2.212

12

N

O
N NN

NH

S N

S

O
N

Br
5.465 5.262 212.000 5.419 0.993 4.898 0.666 1.923

13

N

O
N

NN

H
N

S N

S

O

N

O

132.619 3.877 218.000 5.352 1.015 4.120 0.648 2.203
14* N

O

N
NN

NH

SN

S

OO

1.206 5.919 172.000 4.745 0.945 3.893 0.659 2.661
15

N

O
N

NN

H
N S

NO

N
N

Br 12.395 4.907 160.000 4.444 0.965 3.734 0.671 2.396
16 N

O
N

NN

N
H

SN

O

N
N

HO 5.631 5.249 158.000 4.460 1.064 3.474 0.839 2.626
17 N

O
N

NN

N
H

SN

O

N NN

O
8.273 5.082 184.000 5.032 1.124 3.863 0.672 2.877

18

N

O

N

N N
HN

SN O
N N

H
N

N

O

5.415 5.266 234.000 5.348 1.112 4.608 0.935 2.572
19

N

O

N
NN

H
N O

HN

33.054 4.481 140.000 4.218 0.730 3.446 0.942 1.679
20*

N

O
N

NN

H
N O

HN

3.293 5.482 160.000 4.411 0.823 3.665 1.054 2.291
21*

N

O
N

NN

N
H

OHN

1.071 5.970 160.000 4.563 0.736 3.818 0.935 1.676

N

O

N

NN

H
N

S

N

S

O

N
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22

N

O N NN

H
N

O N
3.665 5.436 164.000 4.708 0.832 3.587 0.671 2.287

23
N

O
N

NN

N
H

O N
N

483.306 3.316 174.000 5.308 0.883 4.403 0.659 2.259
24

N

O
N

NN

N
H

O N
O

5.495 5.260 156.000 4.597 0.857 3.831 0.671 2.722

pIC50=-log IC50

2.2. Methodology

2.2.1. CADD using LBDD and SBDD approaches

Building CoMFA and CoMSIA models using partial least squares (PLS) regression necessitates 

accurate molecular alignment 35,36. For this, the molecular structures were designed with 

SYBYL-X.2.1, optimized using the Tripos force field and Gasteiger-Hückel charges, and 

stabilized through the Powell gradient method 37. CoMFA utilized an sp3 carbon probe to 

generate steric and electrostatic fields, while CoMSIA employed a probe atom to derive 

additional descriptors, including hydrophobicity, hydrogen bond donor and acceptor properties, 

steric, and electrostatic fields, with specific initial attenuation and column filtering settings 38. 

Various PLS regression models were developed to correlate these fields with biological 

activity39.  Artificial neural networks (ANN) were deployed to assess descriptor significance 

and validate those identified by the 3D-QSAR model 40. 

Validation of the models was conducted through multiple techniques, including cross-

validation and data partitioning 41. Model performance was evaluated using statistical metrics 

such as the coefficient of determination (R²), mean squared error (MSE), Fisher’s value, p-

value, and cross-validated coefficient of determination (Q²) 42. Predictive accuracy was 

determined by the external coefficient of determination (R²pred)43. Robustness was verified via 

Y-randomization tests, comparing the results of randomized models with non-randomized 

counterparts, and additional validation criteria were applied 44–46. The applicability domain 

(AD) was established using the leverage approach and William's plot, identifying the chemical 

space for reliable predictions 47. 

Molecular docking simulations were used to study ligand interactions with the 

aromatase active site (PDB: 3S7S) 48. Receptor preparation and docking analyses were 

conducted using Discovery Studio and AutoDock 49. To validate the docking procedure, the co-
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crystallized ligand was re-docked, and the root mean square deviation (RMSD) was calculated, 

aiming for a value of less than two angstroms 50.

Pharmacokinetic properties of the drug candidates were assessed using pkCSM 51 and 

SwissADME 52 were used to examine drug similarity characteristics and address aspects of 

absorption, distribution, metabolism, excretion, and toxicity (ADMET). To this end, in silico 

predictions were merged concerning intestinal absorption, blood-brain barrier permeability, 

central nervous system penetration, biotransformation, clearance, and AMES testing for 

potential drug candidates 53.

The stability of newly designed candidates has been compared with Ligand 5 54 and C2 55, 

which are prominent compounds from previous studies, as well as the reference drug in breast 

cancer hormone therapy (Exemestane) 56. To achieve this, dynamic evaluations were conducted 

on optimal docking poses to assess and compare the stability of protein-ligand interactions 57. 

Input files for MD calculations were generated via the CHARMM-GUI solution generator, 

using CHARMM force field parameters for proteins. The Param-Chem server established 

Ligand topology using the general CHARMM force field. The CHARMM-GUI solution 

generator comprises a sequence of five steps. In the first step, the tool reads the coordinates of 

the protein-ligand complex. The second step involves solving the protein-ligand complex and 

determining the shape and size of the system. Na+ and Cl- ions are introduced in this step to 

neutralize the system. The third step defines periodic boundary conditions (PBC) to mimic an 

extended system using a unit cell replicated in all directions. The simulation exclusively 

considers the atoms inside the PBC box, eliminating erroneous contacts by brief minimization. 

The fourth and fifth steps include system balancing and production. Balancing takes place in 

the NVT and NPT assemblies to achieve the desired temperature and pressure. Input files for 

balancing and production are acquired, and adjustments are made, such as the definition of MD 

execution steps, trajectory save frequency, and energy calculation. All MD calculations, 

balancing, and production cycles were performed using GROMACS 2020.2. Initially, all 

complexes were immersed in a cubic box of TIP3P water. Na+ and Cl- ions were randomly 

substituted for the water molecules to neutralize the system's net atomic charge. PBC was 

applied, considering the system's shape and size. Unbound interactions were managed with a 

cut-off distance of 12 Å, while the neighbor search list was buffered using Verlet's cut-off 

scheme. Long-range electrostatic interactions were handled using Ewald's particle mesh method 

(PME). The protein-ligand complex adhered to the CHARMM36 force field. Before production 

simulation, the system underwent energy minimization via the steepest descent algorithm (5000 
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steps). Next, balancing was performed using the NVT and NPT packages, simulating for 125 

ps at 300.15 K with positional constraints of 400 kJ/mol.nm2 and 40 kJ/mol.nm2 on the 

backbone and side chains. Finally, the complex was subjected to a 100 ns production simulation 

in an NPT assembly at 300.15 K and 1 bar. The Hoover nose thermostat maintained 

temperature, and the Parrinello-Rahman barostat maintained pressure. H-bonds were 

constrained using the LINCS algorithm based on CHARMM-GUI data. A V-scale thermostat 

at 300 K with a coupling constant of 1 ps was used, and trajectories were saved every 2 ps 

during 100 ns simulations in the NPT assembly 58,59. GROMACS tools were employed to 

scrutinize molecular dynamics (MD) simulations, enabling a comprehensive understanding of 

the dynamic behavior of atoms within the protein-ligand complex 60. The gmx_rms subprogram, 

known for its precision, facilitated the computation of the root mean square deviation (RMSD) 

between the positions of protein and ligand atoms. Additionally, the gmx_rmsf function was 

applied to assess the root mean square fluctuations (RMSF) centered on the C-alpha atoms of 

the protein 61. Furthermore, the gyration radius of each protein atom was accurately determined 

using the gmx_gyrate tool. The calculation of hydrogen bond occurrences within the protein-

ligand interaction was carried out with the gmx_hbond tool. Additionally, throughout the 

simulation, the center of mass distance between the protein and ligand was systematically 

assessed using gmx_distance 62. To gain further insights into the system's behavior, the VMD 

molecular graphics application was utilized for trajectory analysis and to investigate the 

frequency of protein-ligand interactions, offering valuable information about the system's 

dynamic behavior 30. 

The selected systems for further investigation were subjected to Molecular Mechanics/Poisson-

Boltzmann Surface Area (MM/PBSA) calculations using the g_mmpbsa tool within the 

GROMACS software suite, as outlined in Eq. 1 63 : 

( )binding complex protein ligandG G G GD = D - D +D
             (Eq. 1)

Here, ∆G complex signifies the overall free energy of the protein-ligand complex, while ∆G 

protein and ∆G ligand concurrently represent the total free energy of the separated protein and 

ligand in the solvent, respectively. The g_mmpbsa tool enables the determination of each 

residue's energy contribution to the binding energy, offering a breakdown of the binding energy. 

Specifically, ∆EMM, ∆Gpolar, and ∆Gnon-polar are individually computed for each residue. 

These values are then aggregated to ascertain the cumulative contribution of each residue to the 

overall binding energy. Notably, the g_mmpbsa tool is proficient in handling files generated by 
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specified GROMACS versions; thus, GROMACS 5.1.4 was employed to recreate the binary 

run input file (.tpr). The molecular structure file (.gro), topology file (.top), and MD-parameter 

file (.mdp), all derived from the MD process, serve as inputs to regenerate the binary run input 

file  64. 

2.2.2. Retrosynthesis of new drug-candidates

Retrosynthesis method was employed to design synthetic pathways for the drug candidates. 

This approach, based on the structural breakdown of target compounds, allows the identification 

of multiple synthetic routes 65,66. For this, we used advanced computational tools, including the 

IBM RXN for Chemistry database, reflecting the progress in computer-assisted synthesis 

planning 67,68.

3. Results and discussion

3.1.  Alignment of molecular structures

Molecular 7 was chosen as the template compound, illustrated in Fig. 1, to align the chemical 

compounds studied and create contour maps for CoMFA and CoMSIA analyses of reliable 3D-

QSAR models.

Fig. 1. Alignment of compounds

3.2. Generation of 3D-QSAR models

In this research, ten different field combinations were utilized to create the CoMFA and 

CoMSIA models. The detailed statistical performance of these models is presented in Table 2. 

The selection of the best model was based on the highest coefficients of determination (𝑅2) and 
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10

cross-validation values (𝑄2), coupled with the lowest standard error of estimation (SEE), 

number of principal components (N), and F-test significance level.

Table 2. Models’ statistical parameters and fields of models (S: Steric - E: Electrostatic- H: 
Hydrophobic- D: Donnor of HBond - A: Acceptor of HBond) 

Fields of models (CoMFA/CoMSIA) 𝑸𝟐 N SEE 𝑹𝟐 F

 S-E (CoMFA) 0.391 1 0.396 0.696 38.855

S-E-H 0.483 2 0.275 0.862 49.911

S-E-D 0.476 2 0.300 0.836 40.733

S-E-A 0.417 1 0.416 0.646 33.644

E-H-A 0.546 2 0.084 0.989 244.998

S-E-H-D 0.523 2 0.268 0.869 53.080

S-E-H-A 0.465 2 0.284 0.853 46.410

S-E-D-A 0.441 2 0.308 0.827 38.246

E-H-D-A 0.492 2 0.285 0.851 45.837

S-E-H-D-A 0.489 2 0.279 0.857 48.135

Analysis of the statistical parameters presented in Table 2 indicates that the model with the 

highest Q² (0.546) and R² (0.989), the lowest standard error of estimate (SEE) (0.084), and the 

most notable F-value (244.998) with two principal components demonstrated optimal 

performance. This model incorporated electrostatic, hydrophobic, and hydrogen bond acceptor 

(HBA) fields and achieved the highest coefficient of determination for external prediction (

𝑅2
𝑝𝑟𝑒𝑑= 0.915). In contrast, the CoMFA model and other CoMSIA models were excluded due 

to their insufficient internal validation parameters (Q² less than 0.5) and high SEE value (0.396).

To validate the descriptors selected using the CoMSIA/EHA model, the artificial neural 

network (ANN) technique with a 3-3-1 architecture was employed, and the parameter ρ was 

calculated using equation (Eq. 2) as follows 69:

                   ρ = 𝑁
𝐻(𝐼+𝑂+1)+𝑂

                        (Eq. 2)

Here, N, H, I, and O represent the number of molecules in the training set, the hidden 

layers, the input layers, and the output layers.
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A ρ value of 1.25 indicates that the number of hidden layers (3) must be proportional to the 

number of descriptors (input layers) to predict pIC50, which is represented by a single output 

layer (Fig. 2)70–72. 

Fig. 2. ANN architecture

The substantial coefficient of determination (R² = 0.754), low mean square error (MSE = 0.127) 

and high validation-test coefficient (𝑅2
𝑡𝑒𝑠𝑡 = 0.887) collectively confirm the effectiveness of the 

ANN model in predicting the biological activities studied. As a result, the CoMSIA/EHA model 

may exhibit a remarkable degree of stability and predictability. To assess the predictive power 

of optimal models (3D-QSAR and ANN), it is imperative to compare predicted pIC50 values 

with observed values, as shown in Table 3.

Table 3. Compounds’ predicted pIC50  (pIC50 pr. ) for training and test set (*)

N° pIC50 pIC50 pr.

(CoMSIA)

pIC50 pr.

(ANN)

- N° pIC50 pIC50 pr.

(CoMSIA)

pIC50 pr.

(ANN)

- N° pIC50 pIC50 pr.

(CoMSIA)

pIC50 pr.

(ANN)

1
3.879 4.018 3.861

- 9 4.40
5 4.461 4.657

- 17
5.082 5.139 4.598

2
4.377 4.212 4.371

- 10 5.42
2 5.476 5.443

- 18
5.266 5.288 5.331

3
3.658 3.634 3.753

- 11 5.92
9 5.909 5.834

- 19
4.481 4.444 4.749

4
5.117 5.111 4.959

- 12 5.26
2 5.308 5.311

- 20*
5.482 5.493 5.749

5*
6.000 5.982 5.981

- 13 3.87
7 3.822 4.867

- 21*
5.970 5.983 6.209

6
4.622 4.620 4.714

- 14* 5.91
9 5.651 5.947

- 22
5.436 5.311 5.227

7*
6.567 6.582 6.545

- 15 4.90
7 4.848 4.664

- 23
3.316 3.389 3.464

8
4.574 4.555 4.578

- 16 5.24
9 5.258 4.458

- 24
5.260 5.318 5.279

To assess the accuracy of the models studied, it is conventional to construct a graphical 

representation of predicted values (pIC50pred) versus observed biological activities (pIC50). A 

line graph represents a favorable result in the positive quadrant of the pIC50 and pIC50pred axes. 
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Furthermore, the almost equal slopes of each model confirm the strength of the correlation, 

indicating a high correlation. This correlation is visually demonstrated in Fig. 3 (A, B) for the 

training and test sets.

  

(A)                                                                             (B)
Fig. 3. Graphical comparison of observed vs. predicted pIC50 values for CoMSIA/EHA model (A) 

and ANN model (B)

As shown in Fig. 3 (A, B) and reported in Table 3, there is a notable correlation between 

observed and predicted pIC50 values. This highlights the model's robust ability to predict pIC50 

values for new compounds suitable for breast cancer treatment.

Before implementing the optimal model for predicting new breast cancer drug candidates, it is 

imperative to validate its predictive ability according to the statistical criteria established by 

Golbraikh, Tropsha, and Roy (Table 4).

Table 4.  CoMSIA/EHA statistical criteria

Indicator of statistics  Score Threshold Validation Score
𝑅2

𝑝𝑟𝑒𝑑 0.915 > 0.600 Validated 
2

0R  0.915 > 0.600 Validated 
' 2
0R  0.915 > 0.600 Validated 

2 ' 2
0 0R R- 0.000 < 0.300 Validated 

2 2
0

2

R R
R
- 0.075 < 0.100 Validated 

2 '2
0

2

R R
R
- 0.075 < 0.100 Validated

K 1.001 0.850 1.150Kp p Validated
K’ 0.992 '0.850 1.150Kp p Validated

22 2 '2

0(1 ( )mR R R R= - - 0.718 > 0.600 Validated
2' 2 2 ' 2

0(1 ( )mR R R R= - - 0.718 > 0.600 Validated

3
3.5

4
4.5

5
5.5

6
6.5

7

3 3.5 4 4.5 5 5.5 6 6.5 7

Active Validation

Pred(pIC50) / pIC50

pI
C 5

0

Pred(pIC50)

3
3.5

4
4.5

5
5.5

6
6.5

7

3 3.5 4 4.5 5 5.5 6 6.5 7

Active Validation

Pred(pIC50) / pIC50

PI
C 5

0

PRED (PIC50)
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2
0R : Determination coefficient for the zero-intercept line in the plot comparing predicted versus 

observed activities.

' 2
0R  : Determination coefficient for the zero-intercept line in the plot comparing observed versus 

predicted activities.

K:   Zero-intercept slope for the relationship between predicted and observed activities in the test 

set.

K’:   Zero-intercept slope for the relationship between observed and predicted activities in the test 

set.

In accordance with the statistical criteria described in Table 4, the CoMSIA/EHA model is 

considered validated, to the exclusion of any characterization as a random model. To ensure 

this, an assessment of the stability of the proposed CoMSIA/EHA model was carried out using 

the Y randomization test, as shown in Table 5.

Table 5. Statistics data of Y-randomization test

Random statistical parametersY-randomization Iterations (It.)

𝑸𝟐
𝒓𝒂𝒏𝒅 𝑹𝟐

𝒓𝒂𝒏𝒅 𝒄𝑹𝟐
𝒑

It.1 0.174 0.523 0.675
It. 2 -0.063 0.401 0.758
It. 3 0.077 0.422 0.745
It. 4 -0.306 0.326 0.656
It. 5 -0.645 0.424 0.743

The results shown in Table 5 validate the reliability of the model. Specifically, the values of 

𝑄2
𝑟𝑎𝑛𝑑, 𝑅2

𝑟𝑎𝑛𝑑  and 𝑐𝑅2
𝑝 demonstrate that the model's predictions are not due to random 

correlation. Therefore, the model is considered reliable for predicting the efficacy of potential 

new drug-candidates for breast cancer within a specified applicability domain.

3.3.    Applicability domain of CoMSIA/EHA model

The applicability domain (AD) of the CoMSIA/EHA model was assessed using William's plot 

(Fig. 4), which analyzes leverage and normalized residuals for each compound in both the 

training and test sets. The analysis indicates that, with the exception of one outlier, compound 

3, which shows an unusual, normalized residual, the leverage values for all other compounds 

are below the alert threshold (h* = 0.632). This confirms that all compounds fall within the 

model's applicability domain. Consequently, the reliability of the predicted activity values for 

the compounds under study is affirmed, allowing for further analysis.
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Fig. 4. Applicability domain of the  model

3.4.  Contour maps visualization of CoMSIA/EHA model

The most accurate 3D-QSAR model was illustrated through CoMSIA/EHA contour maps, 

using the most active compound (7) as the reference. Fig. 5 (a-c) displays the electrostatic (a), 

hydrophobic (b), and hydrogen bond acceptor (c) fields. The electrostatic field is depicted with 

blue and red contours; blue contours highlight regions with positive electrostatic interactions, 

while red contours indicate areas with negative electrostatic interactions. The hydrophobic field 

is illustrated with yellow and white contours, where yellow contours represent regions that favor 

hydrophobic interactions, and white contours denote areas with less steric influence. The 

hydrogen bond acceptor field is shown with magenta and cyan contours, with magenta 

representing regions conducive to hydrogen bond acceptance and cyan indicating regions that 

are less favorable for such interactions. These maps are crucial for understanding the molecular 

interactions within the system..
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(a)                                                                                                      (b)

(C)

Fig. 5.  CoMSIA/EHA Fields of the Most Active Molecule (14): (a) Hydrophobic Interactions (Blue: 

Favored, Red: Disfavored), (b) Electrostatics (Yellow: Favored, White: Disfavored), and (c) H-Bond 

Acceptors (Cyan: Favored, Magenta: Disfavored)

Examining the electrostatic field contour maps from CoMSIA shows a clear alignment with 

those from CoMFA. The blue contour surrounding the altered R group suggests that electron-

withdrawing groups could boost biological activity, indicating that strongly electronegative 

atoms or groups may enhance the desired effect. In contrast, the red contour around the 1,2,3-

triazole ring implies that substituting hydrogen with electron-donating groups might improve 

activity, suggesting that electropositive groups in this area could increase the compound’s 

effectiveness against breast cancer. Yellow contours around the modified R group suggest that 

introducing hydrophobic groups in this area could decrease activity. White contours around 

regions distant from bulky groups indicate a preference for smaller substituents to potentially 

enhance anti-breast cancer activity. Cyan contours at the 1,2,3-triazole ring near the R group 

suggest that adding a hydrogen bond acceptor in these positions could improve breast cancer 

inhibition. Similarly, magenta contours suggest that placing a hydrogen bond acceptor in the 

most critical positions, away from the R group, could further boost activity. These observations 

are clarified by the fact that the most potent compound (7), whose molecular size is smaller 

than that of the least active molecule (23), has a more electrostatic, hydrophobic and hydrogen-
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bond-acceptor group in the R position that is less steric. In contrast, the less effective compound 

(23) has a less electrostatic group at the larger, more voluminous R-position, which may crowd 

the 1,2,3-triazole ring (the most hydrogen-bond-acceptor).

According to the results of Fig. 5 and based on the CoMSIA field fraction significance values 

presented in Table 6, enhancing acceptor hydrogen bonding and hydrophobic and electrostatic 

interactions at a smaller group level could potentially increase efficacy against breast cancer. 

This can be achieved by substituting the most active molecule's modified (R) group.

Table 6. Comparative fraction analysis of selected fields 

COMSIA/ EHA Fields Fraction

ELECTROSTATIC  (E) 0.431
Hydrophobic   (H)              0.221

ACCEPTOR (A) 0.348

3.5.  Studies via molecular docking method

Molecular docking was performed to validate the CoMSIA/EHA analysis results and to 

thoroughly examine the binding interactions between various compounds and the aromatase 

enzyme. We first focused on the interactions between the reference ligand (exemestane) and 

the receptor (3S7S), which were visualized using Discovery Studio software, as illustrated in 

Fig. 6. Study identified the active site of the target protein (PDB ID: 3S7S) and highlighted key 

amino acids, including ARG115, MET374,  ILE133, PHE134, PHE221, LEU477, VAL370, 

VAL373, ALA306, and TRP224. These amino acids are crucial for understanding the binding 

mechanism and assessing the docking interactions, as detailed in prior literature.

(A)                                                             (B)

Fig. 6.  Interactions 3D (A) and 2D (B) of the 3S7S-Exemestane complex
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Fig. 6 shows that exemestane, the standard aromatase inhibitor, exhibits significant hydrogen-

bonding and hydrophobic interactions with key amino acids, which is vital for its effectiveness 

in breast cancer treatment. Redocking with a new co-ligand was conducted at the same active 

site (PDB ID: 3S7S) to verify the accuracy of the molecular docking approach used in this 

study. Grid maps were created with dimensions of size_x = 48, size_y = 52, and size_z = 44, 

employing a default grid spacing of 0.375 Å. The central grid box coordinates were set to 86.031 

Å, 54.004 Å, and 46.404 Å, based on the ligand's initial position. Subsequently, a 3D 

visualization of the binding interactions between the superimposed ligands and the protein was 

generated using Discovery Studio software, as depicted in Fig. 7.

                  

Fig. 7. Docking validation via superposition re-docked (green) and original (red) ligands

To evaluate the accuracy of the molecular docking procedure, we compared the lowest energy 

conformation obtained from the docking simulations with that of the original ligand. Root-

mean-square deviation (RMSD) between the superimposed structures of these two ligands was 

calculated to be 0.251Å, indicating that the docking method is reliable for subsequent analyses. 

Consequently, we selected the most active molecule (7) and the least active molecule (23) for 

docking studies to elucidate their key interactions and various binding modes with the 

aromatase enzyme, which could contribute to breast cancer inhibition, as illustrated in Fig.8 .
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 (A)

 (B)

Fig. 8. 2D /3D interactions of the most active molecule 7 (A) and least active molecule 23 (B) 
with the enzyme’s binding site

Fig. 8 depicts the interactions of selected compounds with the aromatase enzyme, 

showcasing their hydrogen bonding, π-interactions, electrostatic, and hydrophobic 

interactions with critical amino acids within the enzyme's active site. The most active 

molecule (7) established three conventional hydrogen bond acceptors, one π-donor 

hydrogen bond interaction, and three electrostatic and multiple hydrophobic interactions 

with essential amino acids in the active site, as shown in Fig. 8(A). In contrast, the less 

active molecule (23) interacted with the same active site through one hydrogen bond 
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acceptor interaction, one electrostatic interaction, and various hydrophobic interactions, 

including π-alkyl, π-π, π-sigma, and alkyl interactions, as illustrated in Fig. 8(B). 

Additionally, the analysis revealed that the more active molecule (7) had a lower binding 

energy (-8.900 kcal/mol) compared to the less active molecule (23) with a binding 

energy of -8.400 kcal/mol, correlating with its higher experimental pIC50 value. Hence, 

improved affinities for hydrogen bonds (conventional hydrogen bond acceptor and 

unconventional hydrogen bond donor (C and pi)) and electrostatic interactions, as well 

as enhanced hydrophobic interactions, may enhance the breast cancer-fighting activity 

of newly designed agents. These results reinforce and complement CoMSIA's current 

findings (the best CoMSIA/EHA model) in terms of reliability for the discovery of the 

most potent drug candidates.

3.6. Identification of new anti-beast cancer candidates

3.6.1. Novel molecules as drug-candidates and selection of hits

To optimize bioactivity and streamline drug development, 12 compounds (L1-L12) were 

designed based on predictive models and computational data. The zinc database provided a rich 

source of chemically viable and non-toxic molecular fragments, minimizing the risk of adverse 

effects 73. These fragments were carefully aligned with the predictions of the generated models 

to enhance activity through targeted substitutions. Indeed, using well-characterized fragments 

from the database guarantees the feasibility of synthesis and simplifies retrosynthetic analysis. 

This approach reconciles improved pharmacological potential, reduced toxicity, and cost-

effective synthesis, making these compounds suitable candidates for further experimental 

validation. Subsequently, the newly designed ligands were optimized and aligned within a 

database to predict their activities and facilitate comparison with the reference drug, 

Exemestane, as well as previously designed drug candidates, Ligand 5 and C2 (Fig. 9a, Fig. 9b 

and Table 7) 54–56.
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Fig. 9a.  Structural requirements based on CoMSIA/EHA contour maps and molecular 
docking interactions

O

O

H

H H

    

N

O
O

N
H
N NH2

NH

Cl
O

             Exemestane                                   Ligand 5                                                          C2

Fig. 9b.  Structurs of reference drug, Ligand 5 and C2 used for comparison

The results indicated that most newly designed drug candidates demonstrated significant 

biological activity (Table 7). It is crucial to note that derivatives falling outside the acceptable 

applicability domain (where hi exceeds h*) are excluded from consideration as viable drug 

candidates. Additionally, drug similarity was assessed using Lipinski's rule of five, and 

synthetic accessibility (SA) was evaluated with the SwissADME online tool. These evaluations 

are critical in the pharmaceutical industry when selecting promising drug candidates. Table 7 

summarizes the biological activities, applicability domain values (hi), and the desirable drug-

like properties predicted for the designed ligands, including Lipinski's rule validation and 

synthetic accessibility.

O

N
N

N

SH

NH

O
HN
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Table 7.  Straucture and pIC50 of drug-candidates, hi, Lipinsky’validation  and SA 

N° Structure pIC50pred hi AD (h*= 0.632) Lipinski SA

L1

N

O
N

NN

N
N

N O

6.010 0.461 Inside (h1 less than h*) Validated 3.450

L2

N

O
N

NN

N
N

Cl

6.530 0.252 Inside (h2 less than h*) Validated 3.240

L3

N

O

N

NN

N
N

HN

6.180 0.528 Inside (h3 more than h*) Validated 3.210

L4

N

O

N

NN

N
N

HN

6.758 0.626 Inside (h4 more than h*) Validated 3.500

L5

N

O

N

NN

O

N

N N

N

7.200 0.560 Inside (h5 less than h*) Validated 4.610

L6

N

O
N

NN

N
O

N

N

N

N

6. 508 0.081 Inside (h6 less than h*) Validated 4.370

L7

N

O
N

NN

N

S

N

N

N

N

6.841 0.174 Inside (h7 less than h*) Validated 4.350
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L8

N

O
N

NN

N NH

N
H

NH
O

O

6.506 0.372 Inside (h8 less than h*) Validated 3.440

L9

N

O
N

NN

N O

N
H

NH
O

O

6.380 0.544 Inside (h9 less than h*) Validated 3.650

L10

N

O
N

NN

NO

O
NHO

HN

6.089 0.064 Inside (h10 less than h*) Validated 3.850

L11

N

O

N

NN

N
O

Br
Br

6.270 0.222 Inside (h11 less than h*) Validated 3.320

L12 6.250 0.203 Inside (h12 less than h*) Validated 3.500

Table 7 indicates that all 12 proposed ligands (L1-L12) conform to Lipinski's Rule of Five. 

Furthermore, the synthetic accessibility values for these compounds range from 3.380 to 3.960, 

which is within the acceptable range of 1 to 10. This suggests that the compounds are feasible 

for synthesis and have potential as drug candidates. All the designed molecules (L1-L12) also 

meet the criterion for leverage values (hi), which must be less than the threshold value of h* 

(h* = 0.632), confirming their suitability within the domain of applicability (DA). Comparison 

of pIC50 values reveals that ligands L4, L5, and L7 exhibit higher anti-breast cancer activity 

compared to molecule 7. These compounds show promise as potential new drug candidates 

against breast cancer and require further investigation into their binding interactions with the 

aromatase active site using molecular docking, as well as stability assessments through 

molecular dynamics simulations and in silico ADMET evaluations.

N

O
N

NN

NS

Cl
OH
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3.6.2. Molecular docking studies of hits compounds

To enhance the reliability of docking interpretations, a validated 3D grid, previously utilized 

for docking validation, was employed to dock all the most effective ligands to the aromatase 

active site. Fig. 10 and Table 8 explain the interactions with the aromatase target and binding 

energies of L4, L5 and L7, as well as reference molecule 7.

 

L4

L5

L7

Fig. 10. 2D/3D interactions between aromatase and the newly developed ligands (L4, L5 and L7)
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Table 8. Kinds  of interactions between aromatase and designed ligands, molecule 7 and exemestane

 HB- interactions Hydrophobic interactions Electrostatic 
Interactions

Ligands
Ligand - 3S7S Energy of 

Binding 
(Kcal /mol) HB 

Acceptors 

HB 

Donors

(C and Pi)

Alkyl and Pi 
(Hydrophobic/ Steric)

Pi-ions/ Pi-
Sulfur

L 4 L 4 - 3S7S -9.200
2GLY 439 ;
ALA 438 ;
CYS  437

GLY 439

VAL 373 ;2 LEU 372 ;
LEU 477 ; 2PHE 134 ;
2VAL 370 ; 3ILE 133 ;
2 CYS 437 ; MET 303 ;
PHE 203 ; ALA 443 ;
ALA 307 ; MET 446 ;
ILE 442 ;2LEU 152 ;
3 ALA 306 ; 
2 ALA 438 ;
2GLY 439

MET 374 ;
2 ARG 115

L 5 L 5 - 3S7S -10.700 2 ALA 438 ;
3 GLY 439

3 CYS 437;
THR 310

ALA 443 ; THR 310 ; 
4 ALA 306 ; CYS 437 ;
 ALA 438 ; 3 VAL 370 ;
LEU 152 ; 2 PHE 134 ;
2 LEU 372 ; 2 LEU 477 ;
VAL 373 ; 4 ILE 133

2 MET 311 ;
3 ARG 115 ;
MET 374 

L 7 L 7 - 3S7S -10.300

ARG 115;
ALA 438;
ARG 115;
THR 310;
ER 314

2 ALA438;
2 CYS 437;
GLY 439;
2 VAL 370

ALA 438; 2 GLY 436;
ILE 133; ILE 132;
GLY 435; ALA 307;
3 PHE 430; MET 311;
ILE 398; 2 PRO 429;
3MET 364; 2 ALA 443;
2 THR 310; 2 ALA 306;
CYS 437; 2 PRO 368;
2 VAL 369; GLN 367; 
VAL 370; MET 449

2 ARG 115 ;
ARG 145 ;
CYS 437 ;
MET 311

Molecule 7 Molecule 7 - 3S7S -8.900
CYS 437 ;
ALA 438 ;
GLY 439

CYS 437

CYS 437 ; 2ALA 306 ;
3 ILE 133 ; LEU 152 ;
2 VAL 370 ; 2 PHE 134 ;
VAL 373 ; LEU 477 ;
2 LEU 372

2 ARG 115 ;
MET 374

Exemestane Exemestane - 3S7S -8.800

MET 374 ;

ARG 115 ;

ALA 306

-

PHE 134 ; 2 LEU 477 ;

4 VAL 370 ; 2 PHE 221 ;

TRP 224 ; 2 ILE 133

-

 In this study, the binding energy of the reference molecule was found to be lower (-8.900 

kcal/mol) compared to that of the proposed candidates, which had binding energies of -9.200 

kcal/mol, -10.700 kcal/mol, and -10.300 kcal/mol for L4, L5, and L7, respectively. This 

difference implies that the higher pIC50 values observed for L4 (6.758), L5 (7.200), and L7 

(6.841) relative to the reference molecule (7) with a pIC50 of 6.567 may be due to the enhanced 
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stability of the ligand-receptor complexes with lower binding energies. The increased stability 

is likely a result of the types and number of interactions between these ligands and the active 

site of the receptor. Specifically, the stability and biological efficacy of the ligand-receptor 

complex are strongly correlated with the number of hydrogen bonds (acceptors, C-donors, and 

pi-donors), as well as electrostatic and hydrophobic interactions with key amino acids that 

contribute to breast cancer inhibition. The designed ligands (L4, L5, and L7) demonstrate a 

higher number of these interactions compared to the reference molecule. These results are 

consistent with findings from previous 3D-QSAR and docking studies.

3.6.3. Study of pharmacokinetic properties

To investigate the pharmacokinetic characteristics of compounds L4, L5 and L7, as well as 

reference molecule 7 and exemestane, the pkCSM online tool was used 42,49. Table 9 

summarizes the ADMET values for these compounds. Human intestinal absorption (HIA) was 

categorized into three ranges: low (0-20%), moderate (20-70%), and high (70-100%). The high 

absorption rates observed for the designed ligands suggest they have strong potential for 

effective absorption in the human intestine. Regarding the volume of distribution (VDss), a 

value exceeding 0.45 indicates significant distribution capability. Thus, all the designed 

compounds are expected to have considerable distribution potential throughout the body. For 

central nervous system (CNS) permeability and blood-brain barrier (BBB) penetration, 

substances with a LogBB value below -1 are unlikely to distribute well in the brain, whereas 

those with a LogBB value above 0.3 are more likely to cross the BBB. Similarly, compounds 

with a LogPS value above -2 can generally penetrate the CNS, while those with a LogPS value 

below -3 might face challenges in doing so. Therefore, only some of the proposed compounds 

are anticipated to effectively cross these physiological barriers. 

Among the enzyme families involved in drug metabolism, CYP3A4 is an important inhibitor. 

In contrast to reference molecule 7, the ligands designed (L4, L5 and L7) proved to be either 

inhibitors or substrates of CYP3A4. Drug clearance, which assesses the efficiency with which 

substances are eliminated from the body, is not a problem for these compounds according to 

Table 9. Toxicity assessment, a critical step in early drug development, was conducted using 

the AMES test. The results in Table 9 indicate that the designed ligands are non-toxic, whereas 

the most active compound (molecule 7) exhibited some level of toxicity. Overall, according to 

the ADMET analysis, the most promising ligands (L4, L5 and L7) show favorable 

pharmacokinetic properties, with L5 standing out as the most active candidate, requiring further 

study of its stability in relation to the therapeutic target.
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Table 9. Selected compounds' ADMET properties, with molecule 7 and exemestane

ADMET Proprieties
Absorption Distribution Metabolism Excretion Toxicity

CYP Total clearance AMES 
toxicityIntestinal absorption

Substrate Inhibitor
VDss BBB CNS

2D6 3A4 1A2 2C19 2C9 2D6 3A4

Ligands

Numeric
(% Absorbed) Numeric 

(Log L/kg)
Numeric

(Log BB)
Numeric 
(Log PS) Categorical (Yes/No) Numeric 

(log mL min-1 kg-1)
Categoical 
(Yes/No)

L4 100 0.335 -1.054 -2.444 No Yes Yes Yes Yes No Yes 0.866 No

L5 100 -0.043 -1.979 -3.634 No Yes No No Yes No Yes 0.733 No

L7 100 0.009 -2.081 -3.380 No Yes No Yes Yes No Yes 0.520 No

Molecule 7 98.684 0.850 -0.715 -2.448 No Yes Yes No No No No 0.835 Yes

Exemestane 100 0.472 0.142 -2.267 No Yes No Yes No No No 1.015 No
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3.7. Binding stability assessment for ligand- protein complexes

Binding stability of the 3S7S protein complexes with Ligand5, Exemestane, C2, and L5 was 

assessed using molecular dynamics (MD) simulations over a period of 100 nanoseconds at 

ambient temperature. The analysis following these simulations indicated that all ligands 

remained consistently bound within the ligand-binding groove of the protein pocket. Stability 

evaluations for each complex included measurements of the radius of gyration, root mean 

square fluctuation (RMSF), root mean square deviation (RMSD), average center of mass 

(COM) distance between the protein and ligand, hydrogen bonding, and binding free energy 

(MM/PBSA).

Fig. 11A illustrates the RMSD values for the protein-ligand complex, the protein backbone, and 

the ligand structures. The RMSD curves for both the complex and the backbone indicate 

stability, with low values observed after 10 nanoseconds. The RMSF of the protein complex, 

calculated using the GROMACS algorithm and focusing on 'C-alpha' atoms, typically remains 

below 2.0 Å, except at residues corresponding to loops or turns (Fig. 11B). Analysis of the 

radius of gyration (Fig. 11C) shows minimal variation in Rg values (less than 1 Å) throughout 

the simulation, reflecting the compactness and stability of the protein-ligand system, with Rg 

values ranging from 22.4 Å to 23.2 Å. Fig. 12A depicts the total number of hydrogen bonds 

formed between the ligand and protein during the 100-nanosecond simulation. Exemestane and 

C2 exhibit predominantly weak hydrogen bond interactions with noticeable intervals of 

separation. Ligands Ligand5 and L5 maintain average hydrogen bond counts of 3.85 and 2.439, 

respectively.

The average center-of-mass distance separating the ligand from the protein over the 100 ns 

simulation is shown in Fig. 12B. The COM distance fluctuates minimally within 2-3 Å, 

suggesting that the ligands remain bound to their binding sites, as confirmed by visual 

inspection of the trajectories.

To further assess the binding interactions between the 3S7S protein and Ligand5, contact 

frequency (CF) analysis was performed using VMD software. The contact frequency was 

calculated using the contactFrEquation.tcl module, defining a contact as an amino acid within a 

4 Å cutoff distance. Fig. 13 presents the contact frequency analysis results for the 3S7S protein 

with Ligand5, as well as comparative data for Ligand5, Exemestane (reference drug), and C2. 

The analysis highlights protein residues with significant hydrogen bonding and high CF%, 

notably Phe116, Met364, Pro429, and Met447.
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For complex re-evaluation, the MM/PBSA method was chosen for its efficiency in calculating 

binding free energy using force-field approaches. It offers greater computational efficiency 

compared with other free energy calculation methods, such as free energy perturbation (FEP) 

and thermodynamic integration (TI). The g_mmpbsa tool from the GROMACS suite was used 

to perform these calculations, the results of which are detailed in Table 10.

Table 10. Energies’ values of compared compounds 

Complexes Energies’ values [kJ/mol]

3S7S-Ligands ∆𝑮 Van der Waal Electrostatic Polar solvation SASA 

3S7S-Exemestane -132.023 +/- 
22.179

-133.406   +/-   
11.864

-78.462   +/-   
23.651

96.561   +/-   
13.790

-16.716 +/-    
0.957

3S7S-Ligand5 -154.206 +/- 
53.601

-171.208+/-   
12.197

-113.278 +/- 
100.473

153.019   +/-   
20.303

-22.738 +/-  
  0.845

3S7S-C2 -177.903 +/-   
18.150

-209.937   +/-   
17.614

-102.209 +/-   
19.365

157.542   +/-   
28.670

-23.299 +/- 
1.471

3S7S -L5 -201.756 +/- 
44.840

-228.020   +/-   
24.529

-194.342 +/-   
59.192

245.125   +/-   
27.196

-24.519 +/- 
1.034

Page 28 of 39New Journal of Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

N
ew

Jo
ur

na
lo

fC
he

m
is

tr
y

A
cc

ep
te

d
M

an
us

cr
ip

t

Pu
bl

is
he

d 
on

 2
5 

Ju
ly

 2
02

5.
 D

ow
nl

oa
de

d 
on

 8
/5

/2
02

5 
11

:4
3:

06
 P

M
. 

View Article Online
DOI: 10.1039/D5NJ02417J

https://doi.org/10.1039/d5nj02417j


29

(A)                                                                    (B)                                                     (C)                  

Fig. 11.  RMSD (A), RMSF(B), and Radius of gyration (C) during 100ns MD simulation. Rows 1 (Exemestane), 2 
(Ligand 5), 3 (C2) and 4 (L5)
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(A)                                                                        (B)

Fig. 12. Hbonds (A) and Average distance between Ligand and the Protein (B). Rows 1 
(Exemestane), 2 (Ligand 5), 3 (C2) and 4 (L5)
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Fig. 13. Contact Frequency Analysis

According to molecular dynamics (MD) simulation results and our previous findings with 

Ligand5 and C2, Ligand L5 emerges as the most promising candidate for inhibiting aromatase. 

Its superior stability and more consistent interactions with the aromatase active site, confirmed 

by MD simulations, highlight its potential as a highly effective inhibitor. The stable hydrogen 

bonds formed between L5 and key residues in the active site throughout the simulations further 

strengthen its binding affinity, making it stand out compared to Exemestane and the other drug 

candidates.

Identifying drug candidates like L5, which improve binding stability and enhance selectivity 

and drug-likeness, is crucial for advancing breast cancer treatment. In silico methods, such as 

those used to refine binding affinity and pharmacokinetic properties, significantly contribute to 

minimizing development costs and time. This demonstrates the importance of computational 

approaches in streamlining the drug discovery process.

Furthermore, incorporating techniques such as retrosynthesis in drug development can facilitate 

the synthesis of promising candidates like L5, making the transition to in vitro and in vivo 

testing more efficient. Combining in silico strategies with synthetic chemistry can accelerate 

the identification and optimization of novel, effective drug candidates, with L5 serving as an 

exemplary model of how these methods can enhance drug development.

3.8.  Retrosynthesis of selected drug-candidate 

As indicated by the significant value of the synthetic acceptability parameter confirming the 

possibility of synthesis, and to facilitate this task, we employed the retrosynthesis of L5 using 

the IBM RXN for Chemistry platform. From the available routes, we selected the one with the 

highest score. As described in Fig. 14, the methodology consists of three main steps (A, B, and 
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C), adapted from analogous synthetic strategies described in the literature. In the initial step, 

the Bromo-Stille coupling reaction is carried out between the compound 7-((2R,5R)-5-((1-(4-

bromophenyl)-1H-1,2,3-triazol-4-yl)methyl)tetrahydrofuran-2-yl)-7H-purine and 2-

(tributylstannyl)benzo[d]oxazole 74. The second step involves Huisgen's azide-alkyne 

cycloaddition, in which 7-((2R,5R)-5-(prop-2-yn-1-yl)tetrahydrofuran-2-yl)-7H-purine reacts 

with 3-(4-bromophenyl)triaz-1-en-1-ide to form the triazole derivative 75. Finally, the third step 

involves deprotecting the protected alkyne group in 7-((2R,5R)-5-(3-(trimethylsilyl)prop-2-yn-

1-yl)tetrahydrofuran-2-yl)-7H-purine using trimethylsilanol (TMS) as the deprotecting agent 
76.

(A) : Step 1 (Bromo Stille reaction, Confidence: 0.928)

(B) : Step 2 (Azide-alkyne Huisgen cycloaddition, Confidence: 0.95)

(C) : Step 3 (Alkyne TMS deprotection, Confidence: 0.949)

Fig. 14. Steps for retrosynthesis of drug-candidate using IBM RXN platform
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Based on the procedure illustrated in Fig. 14 and the specified experimental conditions, L5 can 

be efficiently synthesized, enabling in vitro and in vivo evaluation for the treatment of breast 

cancer. Among the compounds evaluated, L5 showed greater stability and better binding 

affinity than C2 and Ligand5, confirming its potential as a lead aromatase inhibitor. 

Retrosynthetic analysis not only rationalizes the synthesis pathway, but also enables targeted 

structural modifications to be made in order to optimize pharmacological efficacy.

Ultimately, the integration of advanced in silico strategies - combining machine learning 

algorithms and molecular modeling - has enabled the reliable identification of high-potential 

candidates, significantly reducing the need for costly and time-consuming experimental 

procedures while accelerating the overall drug discovery and development process.

4. Conclusion

This study represents a significant advance in breast cancer research, identifying benzoxazole 

derivatives as promising therapeutic candidates through a comprehensive computational 

approach. The integration of 3D-QSAR modeling with artificial neural networks (ANNs) has 

resulted in a highly predictive and interpretable model that provides valuable insights into the 

molecular descriptors governing anticancer activity. Molecular docking analyses highlighted 

key ligand-enzyme interactions, strengthened the reliability of the CoMSIA/EHA model and 

confirmed L5's selectivity as a potent aromatase inhibitor. In addition, ADMET predictions 

facilitated the identification of compounds with favorable pharmacokinetic profiles, ensuring 

enhanced bioavailability and safety. Molecular dynamics (MD) simulations validated the 

structural stability and binding affinity of this candidate (L5), comparing it with Ligand5, C2 

and the reference drug, exemestane. Compared with these references, the compound 

demonstrated superior stability and more consistent interactions in the aromatase active site, 

underlining its potential for further research.

Beyond computational validation, retrosynthetic analysis has provided a strategic framework 

for optimizing synthetic accessibility, reducing costs, and facilitating progression to 

experimental validation. Collectively, this integrated approach accelerates the identification of 

potent, drug-like candidates, providing a cost- and time-efficient platform for drug 

development. Future efforts should focus on experimental validation through in vitro and in 

vivo assays to confirm biological efficacy and safety. In addition, structure-guided 

optimization, supported by artificial intelligence techniques, could enable the design of more 

potent analogues.
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