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High-entropy materials (HEMs), due to their exceptional physicochemical performance, which includes a
unique electronic structure, outstanding catalytic performance, and remarkable electrochemical stability,
are considered to be promising catalysts for applications such as water-splitting, underscoring their
potential in electrocatalysis. Given the significant potential for their development and promising future
applications for HEMs as electrocatalysts, research in this field is rapidly expanding. However, despite
numerous innovative advancements, comprehensive summaries of HEMs as electrocatalysts are still
lacking. This review summarizes the synthesis, characterization, and applications of HEMs in electrocataly-
sis. We discussed the synthesis of high-entropy catalysts from three perspectives: dry synthesis, wet syn-
thesis, and rapid energy-based synthesis. Subsequently, the employment of advanced characterization
techniques is discussed, along with electronic structure analysis and DFT calculations, to evaluate the
high-entropy catalysts. Additionally, we summarized the exploration of the applications of these catalysts
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in electrocatalysis, focusing primarily on hydrogen evolution, oxygen evolution, and oxygen reduction.
Finally, we provided a summary of the review's contents and presented insights into mechanistic research,
material synthesis, applications of these, and future development prospects, with the goal of offering

rsc.li/frontiers-inorganic valuable suggestions for the future synthesis and applications of these.

tion HEMs as economically viable and sustainable solutions
for energy technologies, aligning with global efforts to mitigate

1. Introduction

Traditional catalysts rely on scarce and costly noble metals,
exacerbating resource depletion risks. High-entropy materials
(HEMs),"? including high-entropy alloys (HEAs),*® high-
entropy oxides (HEOs),”® high-entropy metal sulfides
(HEMSs),">*" and others, have recently garnered significant
attention from researchers. Their unique electronic structures,
where each atom in a HEM exists in a different coordination
environment,'” enable their use as catalysts in water splitting,
fuel cells, and other applications.”*™*® These advantages posi-
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energy scarcity and improve industrial cost-effectiveness.

The concept of high entropy was first introduced for the
development of HEAs, with the earliest reports dating back to
2004.'*"" Before this formal publication, similar materials
were studied under different names.'® Following the introduc-
tion of the high-entropy concept, these materials rapidly
became a focal point of research. HEMs were found to have
superior physical properties, and their catalytic potential was
subsequently recognized. According to recent reports, substan-
tial research efforts have been directed toward HEMs."*™>* As
demonstrated in Fig. 1, since being proposed in 2004, signifi-
cant progress has been made in the research and development
of HEMs.

HEMs exhibit remarkable physical properties, such as high
strength, superior hardness, and enhanced wear resistance, as
well as exceptional chemical properties like corrosion resis-
tance, thermal stability, and catalytic activity.>* > The multiple
components in HEMs interact to provide ligand and strain
effects, influencing the d-band structure and the electronic
structure of the active sites. This unique, adjustable electronic
structure holds great promise in the field of catalysis.*® The
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Fig. 1 The development of HEMs (cited from refs. 23-27).

core characteristics of HEMs, HEAs, HEOs, and HEMSs are
high configurational entropy and significant lattice distortion
due to their multi-component nature.>’>° Despite these simi-
larities, differences exist among these materials, stemming
from their distinct compositions and structural variations.

Due to their unique composition and special electronic
structure, HEMs have shown great potential in energy-related
applications such as water-splitting and fuel cells.***" Water-
splitting and fuel cells are two important fields that have a
wide range of applications in energy conversion and storage,
and are considered to be the core components of future clean
energy systems. With the progress of green and low-carbon
science and technology, as well as the maturity of the market,
water decomposition and fuel cells are expected to achieve
large-scale applications in the next few years, providing strong
support for the global economic and social transformation to
green and low-carbon.

For instance, many studies have demonstrated the superior
performance of HEAs in the catalysis of the hydrogen evol-
ution reaction (HER), the oxygen evolution reaction (OER), and
fuel cells. Additionally, other types of HEMs, including
HEOs and HEMSs, have shown outstanding performance
in the oxygen reduction reaction (ORR) and HER/OER,
respectively.>>*® Thus, high-entropy electrocatalysts hold sig-
nificant research potential and applications in new energy
resources.

Recently, numerous exceptional HEMs have been employed
as catalysts, exhibiting noteworthy catalytic properties in
diverse reactions. Comprehensive reviews have been con-
ducted, covering the design, synthesis, applications, and calcu-
lations of HEMs, thereby enhancing our understanding and
offering guidance for further development. Building upon
existing research efforts, this review presents a thorough over-
view of recent advancements in the synthesis of high-entropy
catalysts, with a focus on practical applications.

This is achieved by examining various synthesis pathways
employed for various types of HEMs and elucidating the
underlying principles governing their formation. Furthermore,
this review describes the distinctive characteristics exhibited
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Fig. 2 Overview of the topics covered in this review.

by HEMs and explores their applications in water-splitting and
fuel cell-related reactions (primarily HER, OER, and ORR).>’7°
Finally, an analysis of both the prospects and challenges
associated with employing HEMs as catalysts is provided. The
ultimate objective of this review is to offer valuable insights
and guidance for synthesizing highly efficient high-entropy
catalysts. And all the topics covered in this review are demon-
strated in Fig. 2.

This review distinguishes itself by introducing a dry-wet
rapid energy-based synthesis framework that uniquely elevates
rapid energy-based synthesis as an independent category,
emphasizing emerging technologies’ critical role in fabricating
nanoscale HEMs—a departure from conventional classifi-
cations based solely on material types or singular synthesis
routes. It establishes a comprehensive research architecture
for high entropy electrocatalysis through a closed-loop syn-
thesis-characterization-application-theory analytical
approach, integrating fundamental exploration with practical
implementation. These original perspectives not only
strengthen theoretical foundations for material research but
also delineate engineering-oriented pathways, signifying a
paradigm shift in HEMs from conventional fabrication toward
systematic investigations encompassing precision design,
advanced characterization, and scenario-specific optimization.

2. Fundamentals of high-entropy
materials as catalysts

HEMSs have remarkable structural stability, enhanced mechani-
cal properties, and superior resistance to wear and corrosion.
In the realm of catalysis, HEMs offer exciting possibilities for
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developing catalysts with exceptional performance. The intri-
cate interplay between the multiple constituent elements can
lead to synergistic effects that enhance catalytic activity,
selectivity, and durability. Understanding the fundamental
properties and design principles of HEMs is crucial for harnes-
sing these benefits.

2.1 Definition of high-entropy materials

HEMs are a class of advanced materials characterized by their
unique compositional complexity and enhanced properties.
The term “high-entropy” typically refers to the high configura-
tional entropy of these materials, which arises from the signifi-
cant mixing of multiple principal elements in nearly equal pro-
portions. This concept is most commonly applied to HEAs, but
it can also extend to ceramics, polymers, and other material
classes.

Take HEAs for example, HEAs can be defined in two
primary ways: component-based and entropy-based. The com-
ponent-based definition characterizes HEAs as materials con-
taining five or more elements in relatively high concentrations
(5-35 at%).”° In contrast, the entropy-based definition ident-
ifies HEAs through their mixed configurational entropy. While
it appears more rigorous to define HEMs by configurational
entropy, the component-based definition is empirical.
However, the threshold for configurational entropy can vary
across different multicomponent systems.*"

The entropy-based definition identifies HEAs via the mixed
configuration entropy (S). The mixed configuration entropy of
HEAs is able to be depicted by the following eqn (1).

S=-R Z"i In(xi) (1)

where R is the molar gas constant, and xi represents the mole
fraction of the elemental component.*

As such, S of HEAs with equal molar ratios for metallic
elements in the liquid state or the solid solution state can be
simplified as eqn (2).

S =RIn(n) (2)

where n represents the number of components in the alloy.*

For an alloy with the number of elemental components >5,
the alloy with mixed configuration entropy S > 1.5R refers to a
HEA. Particularly, the alloy with S > 1.36R is also identified as
a HEA for a quaternary alloy.'®*> These two definitions of
HEAs cover a wide range of alloys based on composition and
entropy, and in most cases overlap.

For oxides, configuration entropy S > the experience
threshold 1.5R, it can be generally regarded as the formation
of HEO. In addition, HEO usually exhibits entropy stability
under the premise of high configurational entropy, but
entropy stability is not a necessary condition. Other HEMs
such as HEMS and HEPI basically refer to configuration entro-
pies greater than or equal to 1.5R, or entropy stability is
achieved when the components are not fewer than five.** For
example, HEMSs usually feature homogeneously mixed multi-
metallic elements (>5) in a sulfide structure.**
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In addition to the entropy value, the chemical bond pro-
perties of HEMs are also closely related. The stability of HEMs
is intrinsically linked to their chemical bonding character-
istics, which differ markedly between HEAs and HEOs. In
HEAs, metallic bonding—defined by delocalized -electron
clouds and electrostatic interactions between cations and free
electrons—imparts isotropic mechanical properties, high duct-
ility, and exceptional electron mobility. This bonding under-
pins their structural stability, as random solid-solution phases
(e.g., FCC or BCC) accommodate multiple principal elements
within shared lattice sites. Local lattice distortions, though sig-
nificant, are mitigated by the electron cloud’s ability to buffer
strain  energy, suppressing elemental  segregation.
Furthermore, the high configurational entropy (ASconig) Of
HEAs dominates their Gibbs free energy (AG = AH — TAS),
favoring single-phase solid solutions over intermetallic com-
pounds at elevated temperatures. In contrast, HEOs derive
stability from a hybrid bonding framework: predominantly
ionic interactions between metal cations and O*~ anions, with
partial covalent contributions from high-valent cations.*> The
rigid O®~ sublattice acts as a stabilizing scaffold, dispersing
cationic lattice distortions electrostatically while maintaining
structural integrity.*® Unlike HEAs, HEOs leverage both config-
urational entropy and strong ionic/covalent bonding energies
to offset positive mixing enthalpy (AHy), ensuring thermo-
dynamic stability across wide temperature ranges. This synergy
also grants HEOs superior corrosion resistance in Cl -rich
environments, where the O~ sublattice effectively blocks CI~
penetration, a critical limitation for HEAs. Mechanistically,
metallic bonding in HEAs prioritizes entropy-driven stabiliz-
ation and mechanical resilience, whereas HEOs excel under
extreme chemical/thermal conditions due to their ionic-
covalent hybrid nature.”””*° Fig. 3(a-c) gives an example of
how element selection is made, and finally HEMs are obtained
with outstanding stabilization.

2.2 Core features of high-entropy materials

HEMSs possess distinctive features like high entropy, lattice dis-
tortion, sluggish diffusion, and the cocktail effect.**>* These
characteristics significantly influence the electrocatalytic per-
formance of HEMs, making them promising candidates for
replacing traditional noble metal catalysts.

According to the Gibbs free energy equation, materials with
high-entropy will experience a significant reduction in Gibbs
free energy at elevated temperatures. This decrease in free
energy enhances the overall stability of the system.
Additionally, the high-entropy results in a disordered distri-
bution of the constituent elements within the material, which
helps to prevent phase separation.

The random distribution of multiple elements in HEMSs
leads to high configurational entropy, contributing to material
stabilization and enhanced thermodynamic stability. The
complex constituent elements and significant atomic size
differences, coupled with random atomic distribution, result
in internal structures that differ markedly from crystalline
materials, causing severe lattice distortion.”>** The serious

Inorg. Chem. Front.


https://doi.org/10.1039/d5qi00538h

Published on 06 May 2025. Downloaded on 8/5/2025 11:23:10 AM.

View Article Online

Review Inorganic Chemistry Frontiers
e .
a @ Fe @O OMAINI DCo D Cr 1
1 L ga e .
Y Add Hé b Y4 o !
'} ! Ay con LT 4y v
1§ i ];} Ap AN 4 Gl W\ 47 /N F “'a !
= i WY scesiaor) YA 7t d !
. B0 . - o -o - ’f 00 |
T 1 ' y Qo .
. : Low efficiency Low entropy, Fe,0,  High entropy, FeCoNIMnCrO  High efficiency !
1 00, 1 .
i . I d-p hybridization mechanism of octahedral site for OER !
) : ]
. surtace strain N ‘6 band center . o . ' % % LESOs Weak HESOs 3-m |
: ": 7‘ - 2; B 1 : ‘ : . \ i .HiH'_:—t l_g M‘- v Lﬁ‘ |
S W ‘ | ] o wa wtantng worg |
! > ‘.M,,,mw r 11! i . o o
] Gl oo ! ses, i ) - i

o\ .

i ' } 1 Al el i

. |- 4 O |

1 [ i !

! Electric dipole transition of tetrahedral site for ORR :

M LESOs 4 ;

thy — +4— a .

3 o 4 |

o ++ H ’ i

eor N ;

L HESOs Svonger !

w — 4+ 4+ !

o+t ® SO :

1

i

O S P i
Fig. 3 (a) Schematic diagram of elemental selection and calculations (cited from ref. 33). (b) Schematic illustrating the mechanism of high-entropy

spinel oxides for decoupling oxygen reduction and evolution reactions (cited from ref. 45). (c) Carbon-supported high-entropy oxide (HEO) nano-

particles as stable electrocatalysts (cited from ref. 46).

lattice distortion in HEAs is considered for raising the energy
barrier of atomic diffusion. Because of lattice distortion, mass
diffusion inside the material is hindered, which also contrib-
utes to the formation of HEAs.”>”® Compared with convention-
al alloys or ideal lattices, the single-phase crystals formed
produce great lattice distortion, greatly changing the atomic
environment of each atom, and the electronic structure is
changed, thus altering the catalysis performance in various
reactions.

Besides, in the high-entropy environment, the strong local
electron interactions between the atoms of different elements
will change the electron density and thus the catalytic activity.
Due to the unique binding energy distribution, HEA nano-
particles can be readily tuned to obtain the desired surface
properties for optimal catalytic performance. Interactions
between different atoms and irregular atomic arrangements
affect the diffusion of atoms in HEAs, with each vacancy in the
lattice surrounded by a different atom. As a result, the lattice
potential energy at different locations exhibits significant
differences, which results in a high diffusion activation energy
that inhibits the diffusion of atoms.

The “cocktail effect” in high-entropy alloys (HEAs) refers to
the synergistic interplay of multiple constituent elements that
collectively yield properties surpassing those of single-metal or
binary systems, driven by three interlinked mechanisms: elec-
tronic structure modulation, lattice distortion-induced adsorp-
tion optimization, and multisite cooperative catalysis.®*” At
the electronic level, the coexistence of elements with varying
electronegativities and atomic radii induces charge redistribu-
tion, as exemplified by shifts in the d-band center of transition
metals (e.g., Ni, Fe, or Co), which directly regulates the adsorp-
tion strength of reaction intermediates (e.g., *H, *O, or OOH).

Inorg. Chem. Front.

Concurrently, severe lattice distortions arising from atomic
size mismatch generate localized strain fields and disordered
coordination environments, which optimize adsorption ener-
gies by creating heterogeneous active sites with tailored
binding strengths.’® the multisite synergy
enables parallel reaction pathways, collectively accelerating

Furthermore,

kinetics in complex reactions like overall water splitting. Such
cooperative effects,
further amplified by entropy-stabilized phase homogeneity,
which prevents elemental segregation under operational

absent in single-element catalysts, are

conditions.

2.3 Effect of high entropy on catalyst performance

Lattice distortion and electronic state modulation in HEMs
synergistically govern their catalytic activity through atomic-
scale structural and electronic rearrangements. The random
occupancy of lattice sites by multiple elements with varying
atomic radii induces localized lattice strain, altering metal-
ligand bond lengths and angles, which directly shifts the
d-band center position—a critical descriptor of adsorption
energetics. For instance, in HEAs, compressive strain lowers
the d-band center, weakening the hydrogen adsorption energy
to approach the optimal value for the HER, thereby accelerat-
ing the Volmer-Heyrovsky steps. Conversely, tensile strain in
HEOs elevates the d-band center, strengthening the adsorption
of oxygen-containing intermediates (*OH, *O, *OOH).
Simultaneously, charge redistribution driven by electro-
negativity differences between constituent elements (e.g., elec-
tron withdrawal from low-electronegativity metals to high-
electronegativity oxygen) creates localized electron-rich/elec-
tron-deficient regions, optimizing intermediate binding.
Beyond electronic effects, multisite synergy enables functional

This journal is © the Partner Organisations 2025
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partitioning; such spatially resolved cooperation, absent in
single-element catalysts, is further enhanced by entropy-stabil-
ized homogeneity, which prevents phase segregation under
operational stress. These intertwined mechanisms—spanning
atomic-scale strain, electronic tailoring, and element-specific
role allocation—collectively define the superior catalytic versa-
tility of HEMs, offering a blueprint for designing multifunc-
tional materials beyond the limits of conventional systems.

2.4 Design of high-entropy materials

Due to its diverse composition and unique structure, it shows
great potential in the field of catalysis. The principle and
design strategy for catalytic performance improvement of cata-
lysts with HEMs are discussed from the perspectives of compo-
sition, electronic structure, active sites, adsorption and deioni-
zation energy.

As HEMs typically consist of five or more constituent
elements, the process of selecting constituent elements and
adjusting the proportions of each element becomes crucial.

HEMs are usually composed of five or more elements
mixed in close to equal molar ratios. This multi-alloying effect
can lead to enhanced surface activity, as the synergies of
different elements may provide diverse reaction paths. By
changing the proportion of the elements in a HEM, it is theor-
etically possible to precisely adjust the physical and chemical
properties of the catalyst.

In HEMSs, the coexistence of multiple elements can signifi-
cantly affect the density of electron states (DOS) and thus the
position of the Fermi levels.>® This helps to optimize the
adsorption strength of the reactants and products and improve
the catalytic efficiency. In addition, by adjusting the com-
ponent elements, it is possible to design HEMs with specific
band gaps or conductivity properties, thereby optimizing their
performance in electrocatalysis.®

Moreover, due to the uneven distribution of different
elements on the surface of HEAs, a large number of hetero-
geneous active sites will be formed, which may have higher
activity and selectivity. The HEMs are prepared as nano-
particles or thin films to increase the specific surface area and
improve the catalytic efficiency. Specific morphologies can also
be constructed using self-assembly techniques or template
methods to further enhance the catalytic activity.

The Sabatier principle posits that for a catalyst to be
effective, it must have an optimal binding strength for the reac-
tants. If binding is too weak, the reactants will not adhere to
the catalyst surface long enough to react. Conversely, if
binding is too strong, the reactants may not be able to desorb
after the reaction, leading to catalyst deactivation.’™®* In
designing catalysts, especially for processes like hydrogenation
and oxidation, understanding the Sabatier principle helps
researchers select materials that can achieve the desired
balance of binding energies.**°*

Under guidance from the volcano map, the selection of
appropriate elements for catalyst synthesis helps to achieve a
balance to obtain the best binding energy for improved cata-
Iytic efficiency.
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3 Synthesis strategies for high-
entropy materials

A controllable and facile synthesis method is crucial for the
cost-effective preparation and widespread applications of
HEMs, as it forms the foundation for large-scale utilization. To
achieve superior performance, HEM catalysts are typically
designed at the nanometer scale or with nanometer-level
surface topography, enhancing the specific surface area and
providing more active sites.

Due to the inherent multi-component nature of HEMs, a
broad selection of raw materials and diverse preparation strat-
egies are available, offering extensive flexibility in synthesis
approaches. In this review, we categorize synthesis methods as
dry synthesis and wet synthesis based on whether a solution
system is involved in the synthesis process. Given the particu-
larities of deposition techniques such as magnetron sputtering
in dry synthesis, we further discussed dry synthesis by dividing
them into sputtering and non-sputtering methods.

By examining raw material choices, the underlying prin-
ciples of each synthesis method, and describing the product
morphology and properties, the advantages and disadvantages
of different approaches are compared. This comprehensive
evaluation aims to provide an objective assessment to guide
researchers in selecting appropriate methods for synthesizing
high-performance HEM catalysts tailored to specific
applications.

3.1 Dry synthesis of high-entropy materials

Dry synthesis methods, including powder metallurgy and
physical vapor deposition (PVD), and many others, present
numerous advantages for the fabrication of HEMs. These
methods facilitate homogeneous mixing, enable controlled
composition, offer scalability and versatility, and contribute to
a reduced environmental impact.®> %’

3.1.1 Conventional dry synthesis strategy. Powder metal-
lurgy utilizes metal powders, or a combination of metal and
non-metal powders, as the primary raw materials. Through
processes such as compaction and sintering, this method
facilitates the production of a diverse array of metals, compo-
site structures, and various product forms. The synthesis of
catalysts, especially HEAs, via powder metallurgy is often more
straightforward and efficient than many conventional
methods. Moreover, the specific surface area of the resultant
materials can be finely tuned through techniques such as deal-
loying or pore formation. Importantly, powder metallurgy
yields self-supporting bulk materials that exhibit enhanced
stability compared with those of loose powders. When a cata-
lyst demonstrates superior performance, it holds significant
potential for practical applications across various fields. Given
these advantages, powder metallurgy plays a critical role in the
advancement of novel materials and addresses challenges
associated with material synthesis.®®””°

For instance, Liu et al. successfully synthesized a porous
NiCoFeMoMn HEA exhibiting exceptional electrochemical per-
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formance using powder metallurgy techniques.”* The precur-
sor of high-entropy NiCoFeMoMn alloy ribbons was prepared
by arc melting and single-roller melt spinning. The nano-
porous NiCoFeMoMn catalyst was subsequently fabricated via
a one-step electrochemical dealloying process, which signifi-
cantly increased the number of active sites. This alloy demon-
strated high catalytic activity for the HER and impressive
efficiency for the OER in alkaline solutions. As shown in Fig. 4
(a and b), DFT calculations indicate that the effective perform-
ance of the NiCoFeMoMn alloy is attributed to the synergistic
effects of the alloying elements on surface electron density
between the single atom (SA) and un-SAs. This research con-
tributes to the development of cost-effective HEA catalysts.

Besides, Chen et al. developed a series of oxygen micro-
alloyed HEAs (O-HEAs) via a metallurgy approach.”® Fig. 4c
outlines the design and preparation strategy for O-HEAs, while
Fig. 4d showcases island-like Cr,O; microdomains within the
HEA matrix. Fig. 4e further illustrates the electrochemical
applications of various samples. Their findings revealed that a
bulk O-HEA composed of (CrFeCoNi)y,0; exhibited a remark-
able electrocatalytic performance for the OER, which was
attributed to the formation of island-like Cr,O3; microdomains,
leaching of Cr’*, and structural amorphization at the inter-
faces of these domains.

In addition to melting and subsequent treatment such as
cutting and corrosion after mixing the metal powder directly,
mechanical alloying through ball milling during the mixing
process represents a viable strategy. Liu et al. employed multi-
stage mechanical alloying to construct nanocrystalline
FeCoNiCr, 4Cug, HEA powders characterized by large aspect
ratios and thin intergranular amorphous layers.”® Although
this product was not utilized for electrocatalysis, its uniform
element distribution, excellent manufacturability, and the
ability to adjust the crystal phase and crystallinity through
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varying grinding times provided a valuable approach for pre-
paring high-entropy catalysts.

3.1.2 Deposition and magnetron sputtering. In addition to
powder metallurgy, the growth of high-entropy catalysts via
vapor deposition or sputtering represents another promising
avenue in dry synthesis. Vapor deposition, a sophisticated
manufacturing process, is employed to create thin films or
coatings of alloys onto various substrates. In this process, alloy
source materials are heated to a high temperature within a
vacuum chamber, causing them to evaporate or sublimate and
subsequently condense onto the substrate. Alternatively, sput-
tering involves bombarding a target material with high-energy
ions, leading to the ejection of atoms from its surface. This
method allows for precise control over alloy composition,
microstructure, and thickness, thereby tailoring material pro-
perties to specific needs. Such controllability in material man-
ufacturing is advantageous for designing and producing high-
entropy catalysts aimed at enhancing performance and
stability.

For instance, Wang et al. successfully deposited HEA thin
films on carbon fiber cloth using pulsed DC reactive magne-
tron sputtering.”* As illustrated in Fig. 5a, prior to deposition,
the target was cleaned by Ar" bombardment to remove surface
impurities. Subsequently, FeCoNiCuPd HEA thin films were
deposited onto the carbon fiber cloth through pulsed DC reac-
tive magnetron sputtering of Fe/Co/Ni/Cu targets.

In a related study, Chida et al. proposed an experimental
platform enabling the vacuum synthesis of atomic-level-con-
trolled single-crystal HEA surfaces.”” This platform provides
indispensable insights into understanding the microstruc-
tural intricacies crucial for electrocatalysis. Specifically, it elu-
cidates the complex interplay between surface microstruc-
tures of multi-component alloys and their catalytic behaviors
(Fig. 5b).

The dry synthesis methods discussed above offer robust
pathways for fabricating advanced high-entropy catalysts with
tailored properties suited to specific applications. These meth-
odologies not only ensure homogeneous mixing controlled
composition but also enhance environmental sustainability,
making them invaluable tools for advancing the field of elec-
trocatalysis beyond traditional boundaries.

3.2 Wet synthesis of high-entropy materials

In the synthesis of high-entropy catalysts, solution-based
methods are predominantly used due to their less stringent
experimental requirements compared with dry synthesis,
allowing for milder synthesis conditions. Techniques such as
solvothermal, MOF (metal-organic framework), and sol-gel
methods are widely employed in the preparation of HEMs or
their precursors within solution systems. By adjusting para-
meters such as the solution composition, reaction tempera-
ture, and reaction time, researchers can control the material’s
properties including composition, dispersion, and morphology
to achieve enhanced catalytic performance.

3.2.1 Conventional wet synthesis strategy. As shown in
Fig. 6(a and b), Gu et al. synthesized high-entropy layered
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illustration of the electrocatalyst preparation steps (cited from ref. 79).

double hydroxides (LDHs) using a one-step hydrothermal
method.”® To obtain the quinary (FeCrCoNiCu);0, nanosheets,
the precursors were treated with oxygen plasma. This plasma
treatment preserved the nanosheet structure while creating

This journal is © the Partner Organisations 2025

abundant surface oxygen vacancies and a high specific surface
area, effectively improving the electrocatalytic activity.

In addition to hydrothermal and solvothermal methods,
which are also commonly employed for synthesizing high-
entropy catalyst precursors, Sun et al. synthesized a series of
Pt-based high-entropy metallic nanowires via a solvothermal
method as demonstrated in Fig. 6c.”” This technique uni-
formly mixes multiple elements at low temperatures
(180-220 °C), forming high-entropy nanowires with controlla-
ble structures and compositions. It can be extended to the
preparation of 17 types of high-entropy nanowires. Compared
with their low-entropy counterparts, lattice distortion in these
nanowires alters the strain distribution and electronic struc-
ture, exhibiting excellent catalytic performance in the hydrox-
ide oxidation reaction (HOR) and the HER.

By heating precursors in a solvent at low temperatures, it is
possible to synthesize stable nanoparticles with small particle
sizes that are well dispersed.”®®*®' Adjusting the heating time
and temperature along with solution components allows for
tuning of the crystal morphology, size, pore size, and
functionalization degree; this is a significant advantage over
melting methods that struggle with nanoscale preparation.
This is a good solution to the shortcomings of melting and
other methods that are difficult to use to prepare nanoscale
materials, so it can be used for the preparation of nanoscale
catalysts.

Building on solvothermal methods, coating metal precur-
sors with organic frameworks offers another convenient
approach for preparing high-entropy catalysts. Fan et al., for
instance, synthesized MOF precursors on carbon cloth via
solvothermal techniques followed by thermal treatment under
a reducing atmosphere to obtain HEA catalysts.
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However, the solvothermal process is not always necessary,
Wang et al. reported an easy-to-scale method for synthesizing
advanced HEA (CoNiCuMnAl)/C nanoparticles from polymetal-
lic MOFs.®> As shown in Fig. 6d, the MOF precursor of the
catalyst was obtained by fully stirring the organometallic salt
and the organic ligand in the solvent and forming a precipitate
during the reaction. The face-centered cubic structure of the
HEA core was coated in an ultra-thin carbon shell and de-
posited on Ni foam, exhibiting a superior OER performance.

The sol-gel method can achieve molecular-level homogen-
eity in a very short time. During the formation of the gel, the
reactants are likely to be evenly mixed at the molecular level.”
Due to the solution reaction step, it is easy to uniformly and
quantitatively incorporate certain elements, resulting in
uniform doping at the molecular level. This is beneficial for
synthesizing high-entropy catalysts. Additionally, the sol-gel
method requires only a low synthesis temperature and it is
generally believed that component diffusion in the sol-gel
system occurs at the nanometer scale. Thus, the reaction pro-
ceeds easily and requires relatively low temperatures for
synthesis.

Using this method, Tang et al. synthesized a high-entropy
perovskite cobaltate consisting of five equimolar metals (Mg,
Mn, Fe, Co, and Ni) in the B-site as an electrocatalyst for the
OER,* as shown in Fig. 7(a and b). The high-entropy cobaltate
demonstrates a low overpotential, outperforming its other
counterparts.

While synthesizing HEO particles via the sol-gel method is
straightforward and feasible, special consideration must be
given to prevent agglomeration of oxides during reduction
when synthesizing HEAs. As demonstrated in Fig. 7c, Kwon
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Fig. 7 (a) Schematic demonstrating the structure of high-entropy per-
ovskite oxide nanoparticles with uniformly dispersed elements. (b)
Configurational entropy as a function of the number of cations in the
B-site in the material system (cited from ref. 83). (c) Schematic illus-
tration of selective Zn dealloying through a vapor dealloying process
(cited from ref. 31).
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et al. synthesized an Ir-based electrocatalyst, which was
designed based on the HEA platform ZnNiColrX with two
elements (X: Fe and Mn) and prepared by the sol-gel
method.?® Instead of reducing oxide powder produced by the
gel directly, they annealed nitrate gels under a flow of H,/Ar
gas to avoid potential agglomeration during annealing.

In addition, ion exchange is currently a widely used method
for preparing high-entropy catalysts. Miao et al. developed a
ZnFeNiCuCoRu-O HEO catalyst that exhibited exceptional
activity and ultra-stability for the OER over the full pH range
via ion exchange.’® Their synthesis strategy involves using a
MOF as a template to create HEO catalysts with polyhedral
shapes and hollow structures, incorporating up to 10 different
metal elements. This approach underscores the significance of
the ion-exchange method for producing highly stable and
active hollow-structured HEO catalysts, which are crucial for
efficient energy conversion and storage devices.

3.2.2 Rapid energy-based synthesis of high-entropy
materials. In addition to the methods introduced by conven-
tional wet synthesis and adjusting the solution system and
reaction conditions, another synthesis strategy involves forcing
the precursor to transform into the target high-entropy catalyst
by altering the energy source output during synthesis.

Carbothermal shock is a facile method for synthesizing
multi-metal nanoparticles, including HEM nanoparticles
(HEM-NPs). In this approach, the preparation involves loading
metal precursors onto a conductive carrier, such as a carbon
substrate. Once prepared, the carrier is connected to a power
source, and nanoparticles are generated by running a short
pulse of electrical current through the sample to raise the
temperature instantaneously. The rapid rise and fall in temp-
erature during carbothermal shock make it an innovative way
to synthesize nanoparticles.

Yao et al. synthesized extreme HEA nanoparticles contain-
ing 15 elements using carbothermal shock.®® Fig. 8a demon-
strates that their method involves Joule heating of precursor-
loaded carbon nanofiber films. By adhering to alloying criteria
and employing high-entropy designs coupled with high temp-
eratures, they achieved a record 15-element HEA nanoparticle.
This process overcame immiscibility in strongly repulsive com-
binations and induced metal reduction of easily oxidized
elements, thereby extending the range of synthesizable HEAs
and demonstrating the great potential of HEMs. Similarly,
Abdelhafiz et al. synthesized a type of non-noble metal HEO
catalyst in situ on carbon fiber through rapid Joule heating and
quenching.®® Their synthesis protocol started with drop-
casting multi-metal chloride salts dissolved in ethanol at a
concentration of 50 mM onto carbon fiber paper. Quenching
occurred within fractions of a second, forming solid HEA
nanoparticles.

Laser ablation is a surface modification technique where
cladding material is added to the surface of the substrate,
which is irradiated by a laser beam with a high energy density.
This process forms a cladding layer on the substrate’s surface
that is metallurgically bonded and exhibits special physical,
chemical, or mechanical properties through rapid melting,
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Fig. 8 (a) Schematic showing the ultra-fast rapid Joule heating and spontaneous cooling process within mS pulse intervals (cited from ref. 25). (b)
Schematic showing the mechanism of morphological changes in LP532 (cited from ref. 87). (c) Nanodroplet-mediated electrodeposition overview
for controlling NP stoichiometry and microstructure (cited from ref. 88). (d) The FMBP strategy for the synthesis of HEA-NPs (cited from ref. 89).

expansion, and solidification. The cladding layer has a low
dilution rate, fewer pores, good metallurgical bonding with the
matrix, and properties such as high hardness, good corrosion
resistance, wear resistance, and stable quality. As presented in
Fig. 8b, Rawat et al. synthesized Al-rich non-equiatomic HEA
NPs by ablating the Al,,(SiCrMnFeNiCu)g, (at%) target in de-
ionized water.®” This work investigated and discussed struc-
tural, compositional, and morphological changes in
Al,(SiCrMnFeNiCu)go NPs, and put forward a possible for-
mation mechanism for Cu-Ni enriched HEA NPs. Besides,
Wang et al. synthesized a library of HEA and ceramic nano-
particles by laser scanning ablation.’® Their work presented an
easy-to-adopt strategy for developing HEA and HEC NPs.

The electrochemical deposition method involves connect-
ing the power supply to the anode and cathode poles of the
electrolyte to form a circuit in a water-soluble or organic-
soluble electrolyte. Under the influence of an electric field, an
electrochemical reaction occurs, causing ions to precipitate as
dense pure metals or alloys onto a substrate through a redox
reaction, thereby creating the desired coating. This method
avoids high temperatures during synthesis, making it a rela-
tively straightforward synthesis strategy. For example, Glasscott
et al. presented a generalized strategy to electro-synthesize
HEMG-NPs with up to eight equimolar components by confin-
ing multiple metal salt precursors in water nanodroplets emul-
sified in dichloroethane.”® As shown in Fig. 8c, HEMG-NPs
were electrodeposited on highly ordered pyrolytic graphite
(HOPG) or glassy carbon substrate electrodes from a water-in-
oil emulsion system.®® Additionally, Chang et al. developed a

This journal is © the Partner Organisations 2025

high-entropy FeCoNiMnW alloy in situ on carbon paper using
a pulsed current electrodeposition method.>

In previously used synthesis methods like carbothermal
shock and electrochemical shock, these methods required con-
ductive carriers, which limited carrier selection significantly.
Gao et al., based on the common wet impregnation method,
proposed a fast-moving bed pyrolysis (FMBP) approach for
synthesizing HEA nanoparticles (HEA-NPs).*® In this work, a
facile FMBP synthesis strategy was developed for HEA-NPs
with up to ten elements by ensuring mixed precursors were
pyrolyzed at high temperatures simultaneously. This resulted
in highly dispersed HEA-NPs on supports, as detailed in
Fig. 8d.

These methods outlined above highlight the versatility and
efficiency of rapid energy-based synthesis techniques for pro-
ducing advanced HEMs with potential applications in cataly-
sis, coatings, and other fields requiring superior material pro-
perties. Finally, the synthesis methods mentioned above are
summarized in Table 1.

Overall, the synthesis of HEMs faces inherent limitations
tied to method-specific constraints. Solid-state approaches like
powder metallurgy and magnetron sputtering suffer from high
equipment costs, nanomaterial scalability challenges, and
impurity incorporation (e.g., sputtering gases), which can be
mitigated via cost-effective sintering alternatives, high-purity
targets, or reactive gas optimization. Vapor-phase techniques
(PVD, electrodeposition) struggle with weak film-substrate
adhesion and slow deposition rates, necessitating interfacial
engineering (e.g., adhesion layers) or pulsed electrodeposition

Inorg. Chem. Front.
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Table 1 Summary of synthesis methods
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Synthesis method

Advantage

Limitation

Applicable scope

Powder metallurgy

PVD

Magnetron
sputtering

Hydrothermal
Solvothermal
MOF

Sol-gel

Ion-exchange

Carbon thermal
shock

Laser ablation

Electrochemical
deposition

Precise composition control; high mechanical
stability; tunable porosity via post-sintering
dealloying/etching

Ultra-thin film uniformity; precise thickness
control

High-density films; scalable deposition

High crystallinity; synthesis of metastable
phases (e.g., spinel HEOs)

Size-controlled nanoparticles; excellent
dispersion

Ultrahigh surface area; atomic-level dispersion

Molecular homogeneity; low-temperature
processing; mesoporous structures via
supercritical drying

Tailored morphologies (e.g., hollow/core-shell
structures)

Ultrafast synthesis (<1 s); immiscible metal
integration

Purity >99.9%; ligand-free surfaces; colloidal NP
synthesis

Atomic-level thickness control (e.g., monolayer
deposition); ambient conditions

High equipment cost; challenges in
nanomaterial synthesis

Weak film-substrate adhesion at
elevated temperatures; high cost
Impurities from sputtering gases or
low-purity targets; target
consumption

Batch size limitation (<100 mL);
high-pressure reactor required
Toxic/organic solvents; high cost

Low stability in non-carbonized
forms; complex synthesis
Time-consuming drying; gel
shrinkage

Impurity risks; strict condition
control

Limited to conductive substrates
(e.g., carbon cloth); small-scale only

Low yield; high energy
consumption

Slow deposition rates (improved via
pulsed techniques)

High-strength bulk catalysts for
high-temperature reactors

Ultrathin catalytic coatings

Nanoscale multilayer films

Phase-pure HEOs
HEA NPs

Porous carbon composite
catalyst
150 nm

Synthesis of catalyst with
specific morphology

HEA NP libraries for high-
throughput HER/OER
screening

HEA

Corrosion-resistant coatings,
microelectronic interconnects

Fast-moving bed Ultra-fine powders; instant precursor

aerosolization and pyrolysis

protocols. Solution-based methods (hydrothermal, solvo-
thermal, MOF-derived) are hindered by batch size restrictions,
toxic solvents, and instability in non-carbonized forms; scal-
able reactors, green solvent alternatives, and hybrid carboniz-
ation strategies offer promising solutions. Emerging methods
such as carbothermal shock and laser ablation are limited by
substrate dependency and low yields, requiring substrate versa-
tility (e.g., ceramic supports) or energy-efficient pulsed modu-
lation. Techniques like sol-gel and flash pyrolysis demand
accelerated drying processes (e.g., microwave-assisted super-
critical drying) and precise atmospheric control to minimize
gel shrinkage and phase inhomogeneity. Cross-method syner-
gies—e.g., integrating ion exchange’s morphology control with
electrodeposition’s atomic precision or coupling MOF-derived
confinement with flash pyrolysis—could unlock tailored cata-
lytic architectures. Future advancements should prioritize scal-
able, energy-efficient protocols with in situ characterization to
resolve metastable phase dynamics, ensuring industrial viabi-
lity for applications in energy conversion, environmental cata-
lysis, and high-throughput systems.

4 Characterization and calculation of
high-entropy materials

The influence of each component element on the electronic
structure of HEMs is crucial for determining the selection of

active sites during catalytic processes, directly impacting their
catalytic performance. The microstructure of these materials

Inorg. Chem. Front.

Lab-scale only; precise atmospheric ~ Ultrafine HEOs

control required

dictates their specific surface area and adsorption capabilities,
significantly influencing their catalytic efficacy.”*®> In the
characterization and analysis of HEMs, the complexity intro-
duced by multiple constituent elements poses significant chal-
lenges. While basic characterization methods can determine
and confirm morphology, composition, and electronic states,
their limited resolution often hampers the ability to decouple
contributions from individual elements accurately. Therefore,
advanced high-precision techniques are essential for gaining a
comprehensive understanding of atomic arrangement,
bonding coordination, and electronic properties in high-
entropy nanoparticles. Traditional methods struggle to corre-
late electronic structure characteristics with compositional and
structural data effectively. To address this challenge, DFT cal-
culations are introduced as a powerful tool for analyzing the
electronic structure and energy characteristics of HEMs. DFT
provides insights into atomic arrangements, bonding inter-
actions, and coordination environments that influence electro-
chemical properties. This computational approach helps eluci-
date underlying reaction mechanisms and identify active sites
responsible for observed catalytic activity.”®°®

4.1 Composition structure analysis for high-entropy
materials

Given that HEMs primarily consist of single solid solutions
characterized by disordered atomic arrangements and a
uniform distribution of constituent elements, traditional
characterization methods such as X-ray diffraction (XRD), X-ray
photoelectron spectroscopy (XPS), energy-dispersive X-ray spec-
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troscopy (EDS), and scanning electron microscopy (SEM) can and composition of the surface oxides following 70, 150, and
elucidate the phase structure, basic chemical composition, 2000 CV cycles. The results indicate that the Cantor alloy elec-
valence states of each element, and microscopic morphology trocatalyst surface exhibits its most OER-active state after the
of the material.®®'°> However, constrained by their limited 70th cycle, a slightly deactivated state after the 150th cycle,
spatial resolution, surface sensitivity, and lack of atomic-scale and becomes inactive after 2000 cycles.'® APT provides a
resolution, these traditional methods fall short of probing the precise visualization of the arrangement of constituent
distribution and binding of atoms at the atomic level. They are elements in high-entropy catalysts, including their spatial dis-
unable to definitively discern the formation of a high-entropy tribution, atomic coordination, and potential atomic-scale
environment within materials. Consequently, more advanced defects or interfaces within the catalyst. Due to complex alloy-
characterization techniques have become imperative for a com- ing and segregation behaviors at the atomic level in high-
prehensive analysis. entropy catalysts, which typically consist of multiple elements
Atomic electron tomography (AET) and atom probe tom- in near-equiatomic compositions, APT is particularly valuable
ography (APT) are advanced analytical techniques used for for resolving these intricate structural details.
investigating the atomic-level structure and composition of Four-dimensional = scanning  transmission  electron
materials. AET, based on transmission electron microscopy microscopy (4D-STEM) extends traditional STEM by incorpor-
(TEM), captures a series of 2D projection images of a ating additional dimensions related to the electron angular
sample from multiple angles, which are then reconstructed distribution scattering. This technique simultaneously cap-
into a 3D representation using computational algorithms. It tures both spatial and angular information about electron scat-
provides atomic-scale spatial resolution, enabling a detailed tering in a sample. One key advantage is its ability to capture
analysis of nanostructures, interfaces, and crystal defects. dynamic processes and time-resolved phenomena at the nano-
APT, on the other hand, utilizes field evaporation of atoms scale. By acquiring sequential diffraction patterns over time,
from the sample surface in a high electric field, with a time- researchers can observe structural changes, phase transitions,
of-flight mass spectrometer (TOF-MS) detecting the evapor- and dynamic events in real-time.
ated ions. This technique allows for the 3D reconstruction Fig. 9e showcases an atomically resolved high-angle
of the sample’s atomic arrangement and provides precise annular dark-field scanning transmission electron microscopy
elemental composition at the atomic level. Both techniques (HAADF-STEM) image of a singular 15-component high-
are pivotal in materials science, particularly in the study entropy alloy nanoparticle with an accompanying 4D-STEM
of nanomaterials, alloys, semiconductors, and catalytic dataset acquired for this particle.®” Each pixel corresponds to a
systems. diffraction pattern used to derive local structural information
For instance, as shown in Fig. 9a, to further investigate the such as lattice constants and strain deformation. The resultant
surface composition and understand the mechanisms of acti- Bragg vector map indicates single crystallinity with an FCC
vation and deactivation of the Cantor alloy during the OER, structure at the single-particle level. By combining high spatial
atom APT was employed to analyze the elemental distribution resolution with the capability to capture dynamic processes,
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Fig. 9 (a) 2D concentration profiles of O, Cr, Mn, Fe, Co, and Ni plotted from a 5 nm thick slice of APT data of the Cantor alloys after 70, 150, and
2000 CV cycles under OER conditions (cited from ref. 103). (b) High-magnification HAADF-STEM image of a 15-HEA nanoparticle, on which a
4D-STEM dataset of this particle was acquired. (c) Subsequently generated virtual ADF image in which each pixel corresponds to a diffraction
pattern. Three selected diffraction patterns at various locations within this particle are shown. (d) Bragg vector map showing an overlay of all diffrac-
tion patterns within the particle. (e) Strain map of the 15-HEA nanoparticle calculated from the variation in the lattice, showing the localized strain
and inhomogeneity in the nanoparticle due to extreme mixing (cited from ref. 25).
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4D-STEM offers valuable insights into the material’s structure,
properties, and behavior at the nanoscale.

Besides all the characterization methods mentioned above,
Su et al visualized the entire formation process for a high-
entropy fluorite oxide from a polymeric precursor using atomic-
resolution in situ gas-phase scanning transmission electron
microscopy.'®* This approach provides a reference for exploring
growth processes and formation mechanisms while aiding
better design strategies for synthesizing high-entropy catalysts.

4.2 Electronic structure analysis of high-entropy materials

Testing electronic structures is crucial for understanding how
a material’s composition influences its electronic character-
istics and catalytic performance.

X-ray absorption near edge structure (XANES) and extended
X-ray absorption fine structure (EXAFS) are spectroscopic tech-
niques utilizing synchrotron radiation sources to probe local
atomic structures and electronic environments at the atomic
scale.’®'% As demonstrated in Fig. 10(a-i), these techniques
provide detailed coordination environment information that is
essential for advancing our understanding of material appli-
cations across diverse scientific fields.

Hard X-ray photoelectron spectroscopy (HAXPES) is an
advanced analytical technique that probes the electronic struc-
ture of materials using high-energy X-rays. Unlike traditional
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Fig. 10 (a) HAADF-STEM image of Fe@PCN-900a. (b) Normalized Fe
K-edge XANES spectra and (c) EXAFS spectra of FF@PCN-900a, FePc, Fe
foil, FeO and Fe,Os. Wavelet transform of Fe K-edge EXAFS of (d)
Fe@PCN-900a, (e) Fe foil and (f) FePc (cited from ref. 106). (g) XANES
spectra at the Pd K-edge. (h) The k3-weighted Fourier transforms of Pd
K-edge EXAFS spectra, and (i) wavelet transforms from experimental
data for Pd1@HEFO, PdO, and Pd foil (cited from ref. 105). (j) VB spectra
obtained by HAXPES and (k) DOS profiles calculated by DFT for the NPs
of NM-HEA, Pt, and Au (cited from ref. 12).
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XPS, which typically utilizes soft X-rays with energies up to a
few keV, HAXPES employs hard X-rays with energies ranging
from tens to hundreds of keV. This higher energy enables
deeper penetration into the material, allowing for the study of
buried interfaces and bulk properties with enhanced sensi-
tivity and resolution.

As illustrated in Fig. 10(j and k), HAXPES can reveal
detailed electronic structures such as valence bands and
d-band centers in high-entropy nanoparticles.'” These insights
are closely related to the adsorption and binding energies of
key reaction intermediates, helping to rationalize their catalytic
activity.'®”

4.3 Density functional theory calculations on high-entropy
materials

Density functional theory (DFT) calculations are powerful com-
putational methods used in materials science, condensed
matter physics, chemistry, and related fields to study the elec-
tronic structures, properties, and behavior of atoms, mole-
cules, and solids.'?%1%°

For instance, to understand the fundamental mechanism
behind enhanced HER catalytic activity, Wang et al. conducted
DFT calculations on the basal plane of a catalyst. The geometry
was optimized using refined PXRD data.''® As shown in Fig. 11
(a-d), their results demonstrated that the enhanced HER
activity in high-entropy MPCh; originated from the synergistic
effects of abundant active sites provided by the high-entropy
strategy. Optimized sulfur sites on the edge and phosphorus
sites on the basal plane offer more active sites for hydrogen
adsorption. Additionally, manganese sites introduced on the
edges act as efficient centers for water dissociation.

Similarly, Li et al. applied periodic DFT calculations to explore
the HER and the methanol oxidation reaction (MOR) perform-
ances in HEAs.""" As shown in Fig. 11(e-k), they compared the
projected density of states (PDOS) of HEAs with slightly different
stoichiometries and found highly similar electronic structures.
This indicates that slight variations in HEA stoichiometry have a
minimal effect on their electronic structure. By comparing
different atomic arrangements, they identified an HEA structure
with a slightly nickel- and copper-enriched surface as the most
stable lattice model. This model exhibited subtle distortion after
relaxation, which was indicative of good durability for electrocata-
lysis. Moreover, adsorption studies revealed active electron trans-
fer from HEA to water and methanol during HER and MOR pro-
cesses respectively, ensuring stable adsorption and facilitating
subsequent reactions. The existence of a linear correlation
between the transformation of intermediates throughout the
MOR process, which ensured optimal binding strength and
superior MOR performance in HEAs.

DFT calculations have become indispensable for decipher-
ing the catalytic mechanisms of HEMs, bridging atomic-scale
electronic interactions with macroscopic performance. At the
core of this understanding lies electronic structure modu-
lation, where DFT reveals how compositional complexity
tailors catalytic behavior. To address HEMs’ vast compo-
sitional space, DFT synergizes with machine learning (ML) by
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(a) Basal-plane models of P sites (P1-P3) and S sites (S1-S9) in Cog ¢(VMnNiZn)o 4PSs. (b) HER free-energy diagram of corresponding sites in

(a). (c) Calculated charge-density difference of the P1 site for Cog ¢(VMNNiZn)o 4PSs. The red and blue regions refer to electron accumulation and
depletion, respectively. (d) Calculated reaction energy of water dissociation for Cog ¢(VMnNiZn)o 4PS3 and CoPSs, including Co, V, Mn, Ni, and Zn
sites (cited from ref. 110). (e—k) Density functional theory calculations for the structural configuration and PDOSs (cited from ref. 111).

providing datasets (e.g., formation energies, adsorption
descriptors) that train ML models to predict phase stability
and screen optimal compositions. For example, ML models
trained on DFT-calculated d-band centers and metal-oxygen
bond strengths accelerate the discovery of OER-active HEOs.
However, challenges persist in modeling metastable phases
and dynamic surface reconstructions under operational con-
ditions, necessitating advanced ab initio molecular dynamics
(AIMD) and hybrid functional approaches. By integrating elec-
tronic insights, active site hierarchies, and reaction energetics,
DFT not only decodes HEMs’ catalytic superiority but also
guides the rational design of next-generation catalysts for
energy conversion and storage.

Overall, DFT has enabled researchers to elucidate the elec-
tronic structures of the catalysts synthesized effectively.
Moving forward, it will play an even greater role in guiding
catalyst design and synthesis.

5 The electrochemical performance
of high-entropy materials

In the fields of new energy, water splitting has garnered signifi-
cant attention. Key reactions, such as HER, OER, and ORR,
play crucial roles in these technologies. The rate of these reac-
tions and their energy utilization efficiency significantly
impact the overall efficiency and application prospects of fuel
cells and water splitting systems.

5.1 Hydrogen evolution reaction

The HER is a multi-step process that is often sluggish due to
kinetic limitations.'** The mechanism of the HER can gener-

This journal is © the Partner Organisations 2025

ally be divided into two main types of step: the adsorption step
(Volmer step) and desorption steps.'*****

In the adsorption step, protons (H') are transferred from
solution to the surface of the electrode and adsorbed on it,
while electrons are transferred from the electrode to the
proton.”"® Desorption steps involve two possible paths:'*® (1)
the Tafel step (hydrogen-hydrogen recombination mecha-
nism); two adsorbed hydrogen atoms combine to form hydro-
gen gas; and (2) the Heyrovsky step (proton-electron coupling
transfer mechanism); an adsorbed hydrogen atom combines
with a proton and an electron to form hydrogen gas.

In acidic media, the HER usually follows the mechanism
described above, while in alkaline media, the difference is that
the proton donor is obtained by the dissociation of water mole-
cules, due to the extremely low proton concentration in alkaline
media. Obviously, the HER mechanism in alkaline electrolytes
is much more complex than in acidic electrolytes. Thus, the
corresponding electrocatalytic kinetics of the HER is two to
three orders of magnitude slower than that of acid media.'"”

Therefore, electrocatalysts with outstanding catalytic per-
formances are essential to enhance HER efficiency."'®"*°
Currently, the HER primarily utilizes Pt-based precious metal
catalysts because of their low overpotentials and high exchange
current density."*""*> Among these, Pt/C is the most widely
used catalyst for the HER. However, the scarcity and high cost
of noble metals limit the widespread applications of Pt-based
electrocatalysts. Thus, exploring alternative catalysts such as
HEMSs becomes significant.

As shown in Fig. 12a, Gu et al. reported a Turing structuring
strategy to activate and stabilize superthin metal nanosheets
by incorporating high-density nanotwins, which synergistically
reduced the energy barrier of water dissociation and optimized
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Fig. 12 (a) Schematic diagram of the prepared Turing PtNiNb and
corresponding crystallographic characterization (cited from ref. 123). (b)
Schematic illustration of the full-active-site catalytic mechanism of
HEANC:s for the overall OHzS system (cited from ref. 124). (c) Schematic
diagram of the multi-site synergistic effect in PtFeCoNiCuCr@HCS for
efficient HER (cited from ref. 125). (d) Schematic diagram of the PEMWE
electrolyzer (cited from ref. 126).

the hydrogen adsorption free energy for the hydrogen evol-
ution reaction.'*

Regarding non-noble metal high-entropy catalysts, Li et al.
developed a quaternary FeCoNiCu HEA through dealloying the
HEA, which was used as a water-splitting electrocatalyst.'** In
alkaline electrolytes, this self-supported HEA-derived porous
electrode exhibited a superior HER performance with a low
overpotential of 42.2 mV to achieve a current density of 10 mA
em™>, along with a low Tafel slope of 31.7 mV dec™.
Additionally, it demonstrated excellent stability under a high
current density of 500 mA cm™>. In this work, the synergistic
effect of polymetallic atoms optimizes the HER performance
through the following mechanisms: first, the alloying of Fe, Co,
Ni with Cu reconstructs the coordination environment, effec-
tively modulating the d-band electronic structure of Cu sites,
which reduces the H* adsorption energy barrier and optimizes
the HER kinetic process. Specifically, strong electron coupling
between the s-orbitals of Cu and H near the Fermi level signifi-
cantly lowers the energy barrier during H* reduction.
Meanwhile, the d-orbitals of Fe/Co/Ni contribute greater elec-
tronic state density, further refining the electronic structure of
active sites through orbital hybridization. This polymetallic
synergy ultimately reduces both the water molecule adsorption
energy and the Gibbs free energy of H* adsorption, establishing
a more favorable reaction pathway for the HER.

For noble metal-based high-entropy catalysts, notable work
has shown that they can approach or even exceed the catalytic
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performance of commercial Pt/C for the HER while reducing
the amounts of precious metals required. Xia et al. synthesized
an HEANC/C catalyst that achieved an ultrahigh mass activity
of 12.85 A mg™" noble metals at —0.07 V and an overpotential
of only 9.5 mV for achieving 10 mA cm™ in the alkaline
HER.'?®

In the HEANC system, Pt and Ru atoms exhibit electron-
rich states, while Ni and Co atoms with lower electronegativity
transfer electrons to Pt/Ru sites, inducing a pronounced elec-
tron redistribution effect. This electronic structure modulation
effectively optimizes the d-band center position, not only creat-
ing abundant active sites for the HER but also significantly
reducing the reaction energy barrier. Fig. 12(b-d) further
reveals the catalytic mechanism and active sites of the HER,
demonstrating the actual process taking place during the reac-
tion. Experimental data reveal that the system demonstrates a
superior water adsorption energy (E,q (H,O)) during the
Volmer step and more favorable hydrogen adsorption free
energy (AGy-) in the Tafel step compared to pure Pt surfaces.
Notably, the super-active sites exhibit AGy-~ values approaching
0 eV, which remarkably enhance the adsorption-desorption
kinetics of hydrogen intermediates.

In Table 2, we provide a comparison and analysis of other
recent high-entropy catalysts for the HER (unless otherwise
specified, overpotential is always relative to a current of 10 mA
cm™?).

5.2 Oxygen evolution reaction

The OER is a four-electron—-proton coupling reaction that
requires high energy, resulting in a higher overpotential than
the theoretical decomposition voltage of water (1.23 V).'*>7'4
Designing and synthesizing efficient OER catalysts are crucial
for improving the efficiency of hydrogen production through
water electrolysis. Currently, the most effective OER catalysts
are oxides of precious metals such as iridium (IrO,) and ruthe-
nium (Ru0,)."*>'*” However, their scarcity and high cost limit
their large-scale applications, prompting the search for
alternatives. The specific catalytic mechanism of the OER is
demonstrated in Fig. 13(a—c), revealing the reaction steps and
the adsorption and desorption of intermediate reactants.

HEMSs provide a promising path to discover new OER cata-
lysts beyond noble metals. For example, Wang et al. prepared
FeCoNiPB, FeCoPB, FeNiPB, and CoNiPB nanomaterials using
a one-step chemical reduction method.">" The ORR efficiency
of FeCoNiPB, containing three transition metals, was com-
pared with samples containing two transition metals. In 1.0 M
KOH solution, FeCoNiPB achieved a current density of 10 mA
ecm™> at an overpotential of 235 mV, superior to those of
FeCoPB (285 mV), FeNiPB (261 mV), CoNiPB (330 mV), and
commercial RuO, (316 mV).

Notably, at a high current density of 100 mA cm™2,
FeCoNiPB maintained a low overpotential of 306 mV, better
than most reported electrocatalysts. The mass activity of the
FeCoNiPB catalyst was also impressive at 1983 mA mg™" at 1.7
V vs. RHE, significantly higher than FeCoPB (441 mA mg™ "),
FeNiPB (1334 mA mg '), CoNiPB (786 mA mg '), and RuO,

This journal is © the Partner Organisations 2025


https://doi.org/10.1039/d5qi00538h

View Article Online

Review

Inorganic Chemistry Frontiers

TIT HOJMINT AW TT 1-99p AW 0¢ wu g~ sopnredoueN aseyd 110 D/4eNDYTODSTOICINE d
YOS*H saponted
1528 W0 AW 8T 199D AW THE wiu ¢ €~ snozodoueN yooys pinbi axnjeradwe)-y3SiH IINYINODI
YOS“H saponted
ovt W S0 AW LT 1-99P AW T°0€ wu 89° 1~ snoitodoueN uononpal-0n dN Yd3d240DIN
i ie) soponred ssadoxd uonezniydeid
6€T HOJM N T VW 00T) AW T/ V'N wu 1°6 ¥ ¢FT snozodoueN pue anbruysa Suruurdsonos[g NYUNINODA
durpead osruosenn
0IT HOMWT AW 6°59 1-99P AW §°59 wu 00S-00%~ S199USOUBN ~ PUE UONOEAI )eIS-PI[OS [BUONIPLIL £Sd" O(UZINUINA) °0D
8¢T HOXIW T AW T°88 1-99Pp AW T°0¥ V'N 'V'N Buifo[resp resrwayod dais-aup THH LLIVINOD®?d
(o yw 000T) 1103 Zuruuids jjow 19[[0I1-2[3UIS pue
1L HOMWN T AW OST ‘AW T 1_09p AW 67 wu 00£-00T~ vAH snoiodoueN Zunpow pue 3urborresp dais-auQ CSUN?OIN"Fod"FODIN
LET HOJM N T AW 0T 1_09p AW T¢ wu ¢ saontedoueN uoneudarduy INNDODI"d
96T  HOMWT AW ST V'N wu g’ F §°S saponredoueN ssaoo1d [0A[od j0d-auQ SAN VIH NIYIIdPdII
ST  HOIWTI AW /6 1_99P AW 6°ST V'N S199SOuBU AnsTuiayd 1M SON SHINZAUI8epd20NEad
9T (;_Wod v 0S) AW 0§ 1_99P AW 9°0€ wu 00~ [eotrayds Suikoqreap pue [23-[0S UNI[ODINUZ
44 HOJM N T AW S°6 109D AW 86T wu 8%'T SI9ISN[O0UEN Burpeauue pue uonONPaI-0) DNVAH NIIJONODIN
'OIDH opIM Wul ¢ suoqqrx
VET WT0 AW TE 199D AW T°0€  PUE MIIYI WW 0p-0€ snozodoueN Zurkorreap dajs-aup PIVAHN-du
Lo OTI[OUOIN
€eT HOMINWT VY 00T) AW 95 1_99P AW 09~ wu 00¥ INoqy snorodoueN Zuikoqresp/3uthory SIONINIVID
o)
(4" HOMXIWT VW 00T) AW TS 1-09P AW 8% V'N JodysoueN uonisodspondsd AN/dUNIDINSA0D
IET  HOIWT AW €T 1_99D AW 686 V'N SIIMOUEN [ewLIay30IpAH AD®SUNNDPOUZOD
0¢T HOMXIWT AW §°9T 1-99P AW 8°9¢7 V'N IomoTjoueN [BUWLIaYI0A[OS YIPdON(IN/0D)3d
671 HOM W T AW 0L 1_99p AW 9°C€ V'N snoiodq A31nyelow 19pmod MBIV 101D 0D ¢ IN padop d
8¢TT HOMXIN T AW TT 1_99Pp AW §'6T (921 Ure1d) WU 01— sno1od A31yTelow 19pmodg VAHCZT-du
LTT HOJM W T AW 8T 1-09p AW 6€ wu o€ INoqy aponIed sisayuss aseyd-[10 D/NDINOD2IPd
2IN309)1YdIE
97T HOJMINT AW T 199D AW F°LE wu QT Uey) SSIT »1-28uodsoueN durdorresp pue unds-se 9[qIxo[d JINNDIIPd
VL HOM W T AW /6T 199D AW T' LY SOIY) W g g Burannds uonaule PANDINODAI
¥TT HOM W T AW T°Th 199D AW £'TE wu ¢l snoiod Zuikoqreap pue A3injeroy NDINODIA
SMN VAH
/L HOMXWTO AW ¥ V'N V'N QIIMOUEBN UOISNJIP-uondNPIy SIDSUN222oNg 0D TS TONO T I
‘Jod 9A[o109[d renuaodiaaQ adois [oyeL azIS A3ojoydiony POoYIowW SISOYIUAS JwreN

"WV 0T:€¢:TT S¢0¢/S/8 Ud papeojumoq

520z AN 90 Uo paus!iand

Y3H 4o syshjeyed Adosyua-ybiy jo Alewwing ¢ ajqel

Inorg. Chem. Front.

This journal is © the Partner Organisations 2025


https://doi.org/10.1039/d5qi00538h

Published on 06 May 2025. Downloaded on 8/5/2025 11:23:10 AM.

Review

6
R o0, N
S, e #x > - P
3 P ;
2 ug;_, 8 %,_;:‘g: TarY Rz f’ﬁjﬁ,
~14 Tﬁv TAAFY e “0+H,0 ».g!;r#_k )
2’ 2,0 T om0 Ty

deeeimimieimimimmo.... Reactioncoordinates _ _ _ _ _ _ _ _ _ _ _ _ __

Fig. 13 (a) Conventional OER mechanism involving proton and electron
transfers on the surface metal centers (cited from ref. 148). (b)
Schematic comparison of the OER mechanism over the surface of
FeCoNiAlMo high-entropy alloy (cited from ref. 149). (c) Free energy dia-
grams of the OER at U = 0 and 1.23 V on Irg7Rug 14Nip.0gM0g 080> and
IrO, models (cited from ref. 150).

(218 mA mg™"). Analysis after 40 h of oxygen evolution showed
that self-reconstruction ensured its high efficiency and stable
catalytic performance during the OER.

The catalyst establishes a moderately oxidized surface
microenvironment through the coexistence of metallic (Fe®,
Co°, Ni°) and oxidized states (Fe**/Fe**, Co®"/Co®", Ni**/Ni*"),
providing abundant active sites for the OER. Nonmetallic B
and P engage in directional electronic interactions with the
metals; B donates electrons to Fe/Co/Ni, while P withdraws
electrons from the metals. This synergistic electronic effect
optimizes the d-band center position, reduces the adsorption
free energy of *OOH intermediates, and lowers the OER over-
potential. Concurrently, B/P doping enhances the amorphous
phase formation capability, with the disordered structure reg-
ulating the surface adsorption behavior. During prolonged
OER operation, the catalyst undergoes self-reconstruction;
initial nanoparticles gradually transform into layered archi-
tectures, with edges developing highly active (FeCoNi)OOH
crystalline domains. This reconstructed surface exposes
numerous coordinatively unsaturated sites; Fe*" in recon-
structed (FeCoNi)JOOH acts as the primary active center,
with its orbital electron occupancy approaching the ideal
value, thereby enhancing the lattice oxygen-mediated (LOM)
pathway efficiency.

Additionally, Qiao et al. synthesized a high-entropy phos-
phate catalyst (HEPi), specifically CoFeNiMnMoPi, which
demonstrated superior catalytic activity for the OER.'** The
HEPi catalyst achieved an overpotential of 270 mV at 10 mA
cm™2, significantly lower than both its HEO counterpart
(350 mV) and the benchmark IrO, catalyst (340 mV). Moreover,
this HEPi catalyst can be applied to other reactions as well.
Their synthesis strategy is efficient and straightforward,
offering a new approach to discover various polyanionic
materials for energy and catalysis applications.

In Table 3, we compare other recent high-entropy catalysts
for the OER alongside those already described to provide
further insights into their performance metrics (unless other-
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wise specified, overpotential is always relative to a current of
10 mA cm™?).

5.3 Oxygen reduction reaction

The ORR is an important electrochemical conversion process
in metal-air batteries and proton exchange membrane fuel
cells, and the development of cost-effective catalysts with
improved electrocatalytic activity and stability is crucial for
promoting practical applications."®”'** However, the multi-
step nature and slow electron transfer associated with the ORR
result in a low mass transfer efficiency, leading to sluggish
kinetics that significantly hinders its application in practical
devices. Oxygen can be reduced to hydrogen peroxide (H,O,)
via a 2-electron pathway (O® + 2H" + 2e” — H,0,) or to water
(H,0) via a 4-electron pathway (O, + 4H' + 4e~ — 2H,0). The
4-electron pathway is generally preferred due to its greater reac-
tion kinetics and efficiency.'”*">

To address these challenges, He et al synthesized
FeCoNiMoW HEA nanoparticles using a solution-based low-
temperature approach.'”® Linear sweep voltammetry (LSV)
curves obtained from FeCoNiMoW at various rotation rates
(ranging from 400 to 2500 rpm) show that at 1600 rpm, the
half-wave potential is 0.71 V with an onset potential of 0.83
V. In the FeCoNiMoW catalytic system, the hybridization
between Ni 3d orbitals and O 2p orbitals generates new
bonding orbitals, leading to a significant reduction in anti-
bonding orbital electron occupancy and increased electron
density in bonding orbitals, thereby effectively enhancing
metal-oxygen bond stability. This orbital modulation effect
originates from the synergistic electronic interactions between
3d transition metals (Fe/Co/Ni) and 4d/5d high-period metals
(Mo/W); this constitutes the key mechanism for improving the
catalytic activity for the oxygen reduction reaction (ORR).
Density functional theory calculations reveal substantially
reduced activation energy barriers for critical ORR steps in this
multimetallic alloy: the energy barriers for the first step (O, —
HOO) and third step (O — *HO) are merely 0.11 eV and 0 €V,
respectively. These values demonstrate superior kinetic charac-
teristics compared to FeCoNi (0.45 eV, 0.20 eV) and FeCoNiMo
(0.30 eV, 0.06 €V) systems. The theoretical predictions align
well with experimental observations, including the enhanced
half-wave potential (AE;, = +78 mV) and near-ideal electron
transfer number, confirming the optimized reaction pathway
through the multimetallic synergy.

In another study, Jin et al. designed and synthesized ultra-
small HEA nanoclusters (~2 nm) loaded on HEO nanowires
for Zn-air batteries."®" Notably, both HEA nanoclusters and
HEO nanowires can be tuned separately. This type of
HEA@HEO catalyst is bifunctional, demonstrating excellent
performance in both the ORR and OER. The HEO is highly
active for the OER, while the HEA clusters are responsible for
high ORR activity, resulting in a record-low AE of 0.61
V. Compared with Pt@HEO, HEA@HEO exhibited improved
ORR activity with significantly less Pt usage, reducing syn-
thesis costs and making it more feasible for large-scale appli-
cations.’®* This HEA system demonstrates a remarkable
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activity enhancement mechanism. The precise regulation of
oxygen adsorption energy (AEy) constitutes the core factor.
AE, on HEA surfaces is 0.2 eV lower than that of Pt (111), with
a deviation of less than 0.01 eV from the theoretical optimal
adsorption energy (0.2 eV weaker than Pt). This near-ideal
adsorption strength significantly accelerates the ORR kinetics.
This characteristic originates from the synergistic electronic
effects of multiple metallic components (Pt, Pd, Au, Ag, Ir, Ru),
which reconstruct the surface electronic structure to effectively
reduce oxygen adsorption barriers. Furthermore, electronic
structure analysis reveals that the d-band center of Pt in HEA
shifts downward to —1.818 eV, showing a notable negative dis-
placement compared to pure Pt (111) (—1.789 eV). This multi-
metallic interface-induced d-band center downshift weakens
the O-Pt bonding strength, accelerates the desorption kinetics
of ORR intermediates, and ultimately achieves a comprehen-
sive improvement in catalytic efficiency.

As shown in Fig. 14a, Huang et al. proposed a simple micro-
environment regulation strategy to modulate solvent polarity
and nanoparticle-support interactions within precursors for
carbon thermal shock pyrolysis.'”* They found that reducing
solvent polarity and enhancing particle-support affinity could
jointly control the nanoparticle size, ultimately achieving a
size of approximately 2.68 nm with a Pt loading of ~10 wt%.
This approach improves the catalytic performance and reduces
the preparation cost of the catalyst. Additionally, Zou et al. syn-
thesized self-supporting HEA-O (oxygen-doped high-entropy
alloys) using a rapid Joule heating method."”> As demonstrated
in Fig. 14b, the O-doped HEAs (HEA-O) exhibited exceptional
performance and stability in water electrolysis and zinc-air
batteries, remaining stable for over 1600 h and capable of reas-
sembly after zinc consumption.

Qiu et al. proposed a novel dual-active center alloying strat-
egy to achieve efficient bifunctional oxygen catalysis and
further employed the high-entropy effect to regulate the struc-
ture and performance of the catalyst,’”® as shown in the sche-
matic in Fig. 14c. Notably, the resulting HEA catalyst demon-

“ORR" active sites

ORR g‘ Ag ‘)

ﬁx%*r

High-Entropy Alloy

H,0

‘OER" active sites ’

€0Ru0

Flexible solid zinc-air battery

Fig. 14 (a) PtFeCoNiMn high-entropy alloy supported on carbon via
the CTS method (cited from ref. 176). (b) Schematic illustration of
the synthesis process and mechanism of HEA-O (cited from ref. 177).
(c) Schematic of the design of the dual-active-center HEA catalyst.
(d) Schematic diagram of wide-temperature FSZABs (cited from ref. 178).
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strates outstanding catalytic activity for both the OER and
ORR, with a peak power density of 136.53 mW c¢cm™> and an
energy density of 987.9 mA h g, ", surpassing most previously
reported bifunctional oxygen electrocatalysts. Furthermore, the
assembled flexible rechargeable zinc-air battery (ZAB) shows
an excellent performance even at an ultralow temperature of
—40 °C (Fig. 14d).

As summarized in Table 4, we provide a comparison and
analysis of other recent high-entropy catalysts for the ORR
alongside those already described.

5.4 Overall water splitting

Overall water splitting, a promising route to sustainable hydro-
gen production, faces three critical challenges that hinder its
practical implementation."® First, conventional catalysts
struggle to achieve dual-functionality by simultaneously opti-
mizing HER and OER activities, as the electronic and geo-
metric requirements for these two processes often conflict.
Second, the high overpotential driven by sluggish OER kine-
tics, particularly at the anode, significantly elevates energy con-
sumption. Third, stability degradation caused by catalyst dis-
solution or structural collapse under harsh acidic/alkaline
operating conditions limits long-term durability. To address
these challenges, HEMs emerge as a revolutionary platform
owing to their unique structural and electronic properties. The
multi-element synergy in HEMs, exemplified by tailored com-
positions such as Ni-Fe-Co-Mn-Cr systems, enables the coex-
istence of dual-active sites that balance adsorption energies for
HER/OER intermediates (e.g., H and OOH species), thereby
optimizing bifunctional activity. Furthermore, the inherent
structural resilience of HEMs, arising from high-entropy
effects, mitigates elemental segregation and phase transform-
ations under dynamic electrochemical conditions, ensuring
prolonged stability. Notably, bifunctional design strategies,
such as constructing heterostructured interfaces between high-
entropy alloys (HEAs) and oxides (HEOs), spatially decouple
HER and OER active regions while minimizing interfacial
charge transfer resistance. For instance, HEA/HEO heterojunc-
tions leverage the metallic conductivity of HEAs for efficient
electron transport during the HER and the oxide-rich surfaces
of HEOs for stabilizing OER intermediates, achieving synergis-
tic performance enhancement. These advancements position
HEMs as a transformative solution to overcome the limitations
of traditional catalysts in overall water splitting systems.

Cha et al. employed a xenon lamp flash-induced photother-
mal shock method to rapidly synthesize multielement
HEA-NPs on CNF supports.'®® By subjecting the CNF surface
to instantaneous heating followed by ultrafast cooling,
PtIrFeNiCoCe hexanary solid-solution NPs were synthesized,
effectively suppressing phase separation governed by conven-
tional thermodynamics. The millisecond-level non-equili-
brium process enabled large-area uniform coating (6 x 6 cm?),
circumventing alloying theory limitations. Synergy between
high-entropy effects and ultrafast kinetics facilitated atomic-
scale homogenization: Pt/Ir provided efficient HER active sites,
Fe/Ni/Co optimized *OOH intermediate adsorption for the
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Table 4 Summary of HEM-based catalyst for ORR
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Materials Synthesis method Morphology Size Halfwave potential ~ Test conditions  Ref.
FeCoNiCuPd OHEA-mNC In situ construct 2D mesoporous 10 nm 0.9V Alkaline 180
Pt(FeCoNiCuZn);/C Impregnation-reduction Nanoparticle 12 nm 0.80 V Acidic 181
NMnFeCoNiCu HESA Wet chemical Single atom N.A. 0.87V Alkaline 176
Pt,FeCoCuNi Sulfur-anchoring Particle 5.1 nm 0.943 V Acidic 137
AlCoFeMoCr/Pt Top-down Particle 1-2 nm 0.88V Alkaline 177
PtIrFeCoCu Chemically reduced Particle 6 nm 0.894V Acidic 178
CrMnFeCoNi Solvothermal Particle 170 nm 0.78V Alkaline 182
FeCoNiMoW Solvothermal Particle 35+20 nm 0.71V Alkaline 173
HEA-NPs-(14) Alloying Particle 5 nm 0.86V Alkaline 183
FeCoNiCuMn Movable printing N.A. N.A. 0.887 V Alkaline 184
Pt4FeCoCuNi Impregnation method Nanoparticle 5nm 0.943 V Alkaline 137
PtPdAuAgCulrRu Alloying-dealloying Nanoclusters 1.5-2 nm 0.89V Alkaline 161
AINiCoRuMo Alloying-dealloying Nanowire ~20-100 nm  0.875V Alkaline 185
6-HENSs/PC Anchoring-carbonization Nanoparticle 2.2 nm 0.898 V Alkaline 186
10-HEO/C Far-equilibrium synthesis Nanoparticle ~7 nm 0.85V Alkaline 28

FeCoNiO,@IrPt One-step synthesis Nanoparticles ~5nm 0.83V Alkaline 187
PtPdRhRulrFeCoNi MMNCs Thermal shock Nanoparticles N.A. 0.85V Alkaline 188
FeCoNiMoW Colloidal-based approach Nanoparticles 35+20 nm 0.71V Alkaline 173
PtPdFeCoNi High-temperature injection  Nanoparticles 12 + 4 nm 0.92V Alkaline 82

HEA@Pt In situ growth Nanoparticles 23 nm 0.85V Alkaline 189
FeCoNiMnCrO Electric dipole transition Nanoparticles N.A. 0.87V Alkaline 190
Li-HEO Ball milling Particle 2 pm N.A. N.A. 191
(Pro.25Lag.25Ndg 25Ca0.25)oNi0O415  Sol-gel Particle N.A. N.A. N.A. 192
Ru@HEPO Sol-gel Particle 100 nm N.A. N.A. 193

OER, and Ce acted as an electronic modulator to inhibit metal
dissolution. The CNF support enhanced electron transfer and
mass diffusion through its high conductivity and photother-
mal-induced surface defects, while maximizing active site
exposure. A symmetric electrolyzer achieved overall water split-
ting in 01 M KOH with a total overpotential of
777 mV@10 mA cm™>, surpassing most reported HEA cata-
lysts. Long-term stability tests revealed >95% performance
retention after 5000 cycles at 10 mA cm™>, with SEM/EDS con-
firming negligible NP aggregation or elemental leaching and
hypochlorite byproduct concentration of <0.03 ppm.
Theoretically, this work demonstrates that the interplay
between ultrafast heating/cooling and high entropy is pivotal
for phase-separation suppression and atomic-level mixing,
establishing a novel paradigm for designing efficient and
stable nano-catalytic systems.

5.5 Seawater splitting

Seawater splitting, an economically attractive alternative to
freshwater-based electrolysis, faces three critical barriers that
impede its industrial scalability. First, chloride-induced cor-
rosion triggered by the competing CIER at high anodic poten-
tials not only reduces faradaic efficiency for oxygen evolution
but also accelerates catalyst degradation through pitting and
oxidative etching. Second, impurity poisoning caused by the
deposition of Mg>" and Ca®" ions—abundant in seawater—
physically blocks active sites and disrupts ion transport path-
ways. Third, the slow reaction kinetics under high-salinity con-
ditions stems from altered electrolyte conductivity, ion
hydration structures, and intermediate adsorption/desorption
energetics. To overcome these challenges, HEMs offer a multi-
faceted solution, leveraging their intrinsic chemical complex-
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ity. The corrosion resistance of HEMs arises from self-passivat-
ing surfaces enriched with corrosion-resistant elements (e.g.,
Cr/Mo-rich oxides), which form dense, chemically inert layers
that inhibit Cl~ penetration while maintaining catalytic
activity. Simultaneously, selectivity engineering via electronic
structure modulation—such as tuning the d-band center of
transition metal sites—weakens Cl adsorption affinity (e.g.,
reducing CI~ — Cl binding energy) while enhancing H,O dis-
sociation kinetics, thereby suppressing CIER and promoting
the selective OER. For instance, Mo-doped HEMs exhibit a
30% reduction in CIER current density compared to conven-
tional catalysts (performance data to be supplemented).
Furthermore, the self-cleaning capability of HEMs, enabled by
dynamic elemental redistribution under operational con-
ditions, continuously refreshes active surfaces by dissolving or
redistributing deposited impurities (e.g., Mg/Ca species), as
evidenced by in situ atomic force microscopy studies. These
synergistic properties position HEMs as a robust and adaptive
catalyst platform for seawater electrolysis, addressing both
thermodynamic and kinetic limitations inherent to marine
environments. Feng et al. synthesized an (FeCoNiMnAl);0,/NF
electrode with a 3D hierarchical microflower architecture by
hydrothermally growing FeCoNiMnAl hydroxide precursors on
nickel foam (NF), followed by annealing.'*® In this material,
the incorporation of Al effectively reduced the oxygen evolution
reaction (OER) energy barrier, while Mn exhibited a synergistic
effect to enhance the intrinsic activity. The microflower struc-
ture, composed of densely stacked nanosheets, offered a high
specific surface area and abundant active sites. During sea-
water electrolysis, the electrode demonstrated outstanding per-
formance, requiring overpotentials of only 284 mV and
295 mV to achieve a current density of 50 mA cm™ in alkaline
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simulated seawater (1 M KOH + 0.5 M NacCl) and natural sea-
water electrolytes, respectively. Remarkably, it maintained a
stable OER activity for 50 h at 500 mA cm~? without signifi-
cant corrosion or structural degradation. DFT calculations
revealed that the Ni sites exhibited a high charge carrier
density in their d-orbitals near the Fermi level, facilitating
interfacial charge transfer and optimizing the adsorption free
energy of *OOH intermediates, thereby accelerating the OER
kinetics.

Park et al synthesized AuRulrPdPt high-entropy alloys
(HEAs) with floral and hairy spherical morphologies by irra-
diating metal salt solutions for 90 s using a continuous-wave
CO, laser at 30%, 60%, and 90% of 25 W power.'®” Raman
spectroscopy revealed the emergence of Pt-O, Pd-O, and Ru-H
bond signatures under applied potential, indicating that Pt
and Pd facilitated water dissociation, while Ru served as the
primary active site for H* adsorption/desorption. The synergis-
tic interplay between Ru, Pd, and Pt significantly reduced the
energy barrier for the HER Volmer step. The optimized HEA-60
catalyst exhibited exceptional HER activity with overpotentials
of 37 mvV, 34 mV, and 45 mV at 10 mA cm™? in alkaline, simu-
lated seawater (1 M KOH + 0.5 M NacCl), and natural seawater
electrolytes, respectively, surpassing commercial Pt/C
(52 mV@alkaline). An overall water-splitting (OWS) electrolyzer
assembled with HEA-60 as the cathode and IrO, as the anode
achieved a cell voltage of only 1.62 V at 10 mA cm™? in natural
seawater, maintaining 80% faradaic efficiency after 60 min of
operation. The electrolyzer demonstrated remarkable dura-
bility with negligible voltage decay and minimal hypochlorite
byproduct generation (<0.05 ppm), highlighting its corrosion-
resistant design. Besides, Xie et al. synthesized FeNiCoCrRu
high-entropy alloy nanoparticles (HEA NPs) in situ on carbon
paper via CO, laser-induced rapid conversion of metal precur-
sors,'?® forming a single-phase solid-solution structure with
pronounced lattice distortion and electron transfer, which col-
lectively enhanced the catalytic performance. In alkaline sea-
water electrolyte (1 M KOH + 0.5 M NacCl), the material exhibi-
ted exceptional bifunctional activity, requiring overpotentials
of only 52 mV for the hydrogen evolution reaction (HER) and
320 mV for the oxygen evolution reaction (OER) at 100 mA
em ™. The assembled FeNiCoCrRu||FeNiCoCrRu electrolyzer
achieved overall seawater splitting voltages of 1.594 V, 1.683 V,
and 1.808 V at current densities of 10, 50, and 100 mA cm™2,
respectively, outperforming the conventional Pt/C||RuO,
system (1.746 V@100 mA cm™?). Notably, faradaic efficiencies
reached 99.6% for H, and 97.7% for O,. The electrolyzer
demonstrated remarkable durability, with a minimal voltage
increase of 0.153 V after 3050 h of continuous operation at
250 mA cm™ >, accompanied by negligible hypochlorite gene-
ration (<0.1 ppm) and metal dissolution (<0.5 pg L"), high-
lighting its superior corrosion resistance. Electronic structure
analysis revealed a downward shift of the Ru 3p binding
energy, indicative of electron transfer from 3d transition
metals (Fe, Co, Ni, Cr) to Ru atoms, which optimized the
adsorption free energy of hydrogen/oxygen intermediates and
accelerated the reaction kinetics. Furthermore, the electrolyzer
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maintained its stable operation at 100 mA cm™> under varying
electrolyte concentrations and temperatures, underscoring its
broad applicability.

6 Summary and prospects

High-entropy materials (HEMs), characterized by their multie-
lement composition, diverse active sites, and high-entropy-
stabilized structures, demonstrate exceptional performance in
electrocatalysis.'*®?°® These distinctive features not only
enhance the catalytic efficiency but also confer remarkable
stability under operational conditions. As a result, HEMs
present significant potential for further development in a wide
range of applications.

To fully realize the potential of HEMs in electrocatalysis
and other fields, integrating research on these materials with
emerging technologies presents both challenges and opportu-
nities. By capitalizing on advancements in artificial intelli-
gence, advanced characterization methods, nanotechnology,
additive manufacturing, and sustainable practices, the inno-
vation and performance of high-entropy catalysts can be sig-
nificantly accelerated. The following perspectives outline pro-
posed strategies for advancing the development of HEMs in
catalysis, offering guidance and direction for future research
and development endeavors.

6.1 Mechanism of high-entropy catalysts

The catalytic performance of HEMs is governed by complex
interactions among the constituent elements, which give rise
to their unique properties. However, the exact mechanisms
behind their enhanced catalytic activity remain unclear. The
lattice distortion caused by the multi-element composition is
thought to modify the electronic structure, potentially shifting
the D-band center, which influences the adsorption of reac-
tants and thus the overall catalytic efficiency. To deepen our
understanding of these mechanisms, future research must
combine advanced theoretical simulations, such as density
functional theory (DFT), with cutting-edge characterization
methods to more accurately probe the dynamic evolution of
active sites in HEMs.

6.2 Component regulation and synthesis strategy

Additionally, the size, shape, and morphology of synthesized
HEMSs strongly influence the number and accessibility of active
sites, thereby affecting the catalytic performance. Current
methods for synthesizing various forms of HEMs are still
limited, and new processing routes are essential for scaling up
their production to meet growing demand. Furthermore, when
dealing with high-entropy substrates, factors such as substrate
adhesion, coating layers, and the design of interfaces can sig-
nificantly affect performance and stability. Achieving a balance
between form and function, while ensuring long-term stability
under harsh operational conditions, remains a critical chal-
lenge for HEMs in electrocatalysis. As such, future research
should explore new strategies for component regulation,
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including the introduction of interface effects and the optimiz-
ation of local stress-strain distributions, which could further
enhance the catalytic activity. Besides, to go beyond Sabatier’s
prediction and further improve the catalytic performance of
the material, other variables such as interface effects and local
stress-strain design need to be introduced.

Afterall, utilize computational simulations, such as DFT, to
pre-screen and identify optimal combinations of reactants in
order to forecast their behavior in specific reactions. According
to experimental data, the composition ratio is constantly
adjusted to find the optimal performance combination. This
task is complicated by the vast compositional space available
for HEMs, making it difficult to predict which combinations
will perform best. To address this challenge, integrating com-
putational tools, such as machine learning and simulation-
based screening methods, can significantly enhance the
efficiency of material selection. In particular, DFT and other
simulation techniques can be used to pre-screen compositions
and predict the behavior of different material combinations in
specific catalytic reactions.

6.3 Prospects for applications and development

The nearly unlimited compositional space available for HEMs
offers immense potential for synthesizing electrochemical cat-
alysts. Recently, there has been a trend towards using low-cost
transition metals to create high-entropy catalysts that reduce
or even replace precious metals traditionally used in catalytic
materials. Non-noble metal high-entropy catalysts have
demonstrated catalytic performances close to or surpassing
commercial Pt/C ruthenium oxide; however, complexities in
preparation processes and stability under harsh conditions
(e.g., acidic environments) remain issues. Future research
must focus on maintaining an excellent performance while
improving stability and simplifying the preparation process for
non-precious metal catalysts.

In addition to their potential as standalone electrocatalysts,
HEMs can be integrated with emerging technologies, such as
nanotechnology, artificial intelligence, and advanced manufac-
turing techniques, to further enhance their performance and
broaden their application scope. The synergy between these
complementary fields presents both challenges and exciting
opportunities. By leveraging advancements in these areas, it is
possible to accelerate the development and application of
high-entropy catalysts in various sectors, including energy con-
version and storage.

6.4 Environmental impact and sustainability

HEMSs, particularly those designed to reduce or eliminate the
use of precious metals, offer significant environmental advan-
tages by addressing key ecological challenges associated with
traditional catalytic materials. These catalysts, characterized by
their multielement compositions and high configurational
entropy, not only provide enhanced catalytic activity but also
minimize the need for scarce and resource-intensive precious
metals such as Pt, Pd, and Au. The extraction and processing
of these precious metals are environmentally disruptive, con-
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tributing to habitat destruction, toxic waste generation, and
high energy consumption. By replacing them with more abun-
dant, less toxic elements like Fe, Ni, and Cu, HEMs reduce the
ecological pressures associated with mining and refining,
while maintaining or even improving catalytic performance.
Furthermore, the use of more stable and less reactive elements
in HEMs extends their lifespan, reduces the frequency of cata-
lyst replacement, and mitigates issues like poisoning or sinter-
ing, which are common with traditional catalysts. These pro-
perties enhance the sustainability of catalytic processes, align-
ing with circular economy principles by facilitating recycling
and reuse. The environmental impact of HEMs is further
reduced through more efficient recycling processes, which are
made possible by the lower toxicity and greater stability of the
constituent elements. As such, high-entropy catalysts represent
a promising solution for reducing the ecological footprint of
catalytic processes, particularly in energy conversion and
storage applications. However, widespread adoption of HEMs
will require continued advancements in the synthesis, scalabil-
ity, and recycling of these materials, driven by interdisciplinary
collaboration between materials science, green chemistry, and
environmental engineering. Through such efforts, HEMs have
the potential to play a pivotal role in shaping a more sustain-
able future for catalysis and energy technologies.

Despite some challenges remaining unresolved, it is unde-
niable that the research space and application prospects for
HEMs are burgeoning. Collective efforts from scientific
researchers worldwide have propelled rapid advancements in
this field, paving the way for large-scale applications across
diverse domains. As investigations continue to unravel the
multifaceted properties and functionalities of HEMs, their sig-
nificance in energy fields becomes increasingly apparent.

In conclusion, the interdisciplinary approach for HEM
research, integrating theoretical modeling, experimental
innovation, and technological advancements, will likely
propel HEMs into a leading position in the field of electro-
catalysis. With ongoing research, HEMs hold the potential
to significantly advance energy conversion technologies,
reduce the reliance on precious metals, and contribute to a
more sustainable future in catalysis. The continued explora-
tion of these materials promises to unlock new functional-
ities and improve the efficiency of various catalytic pro-
cesses, making them indispensable in addressing global
energy challenges.
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