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Unprecedented Cu', Ag' and Au' clusters with pronounced metallophilic Au=X (X = Cu, Ag, Au) or Ag—Ag
contacts have been assembled using 1,2-bis[bis(pyridin-2-ylmethyl)phosphinolethane (L), an innovative P,
P'(N,N’);-ligand. Its interaction with AuCl/KPFs, Aul or (AuC=CPh), yields complexes of the type
[Au,Lo12Y, [AuslsLs] and [Aua(C=CPh),Ly (x = 2 or n), respectively. The reaction of L with AgPF¢ affords a
[Ag4L2]4+ cluster, while the treatment with AgNOs leads to a nine-nuclear [A919L3(NO3)3]6+ cluster. The
latter was transformed into a heterometallic [Au,Ag4L,(NO3),(H,0)I** cluster by treatment with [Auf(tht)
Cl]. Sequential reaction of L with Au()) halides and [Cu(MeCN)4]PFs provides heterometallic [Au,Cugy(pz-
Cl),Lo0*" and [AuaCualal(MeCN)LI4 ensembles. Most of the title clusters exhibit a charge transfer photo-
luminescence in the green to orange region with the quantum efficiencies up to an impressive 77%.
Surprisingly, the [Au,Cuslol.(MeCN)4I** cluster shows an abnormal (negative) thermal quenching of the
luminescence, which is unprecedented for Au()) derivatives. The practical utility of the designed clusters
was demonstrated by their application as innovative vapor-responsive emission inks for advanced
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Introduction

Currently, ligand-protected Cu', Ag" and Au' clusters are attract-
ing worldwide attention due to their remarkable structure as
well as interesting photophysical, catalytic and biological
properties."”” These clusters often exhibit multiple M'.--M"
interactions, which, together with the ligand structure, signifi-
cantly affect both the cluster architecture and emission
properties.®™* Another hallmark of the coinage metal(1) clus-
ters is efficient phosphorescence making them promising
emitters for OLED devices,"*"” X-ray scintillators,'®'® optical
sensors,”® photocatalysts,> anticounterfeiting dyes,>* and
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smart materials.>*>® From an application perspective, hetero-

metallic Au™-Ag', Au"-Cu', and Ag'-Cu' clusters are particularly
promising because their phosphorescence can be tuned both
by tailoring a ligand structure and changing the M/M’
ratio.”” !

Among a plethora of the protecting ligands used, pyridyl-
phosphines are enormously important in the chemistry of
coinage metal(1) clusters.”>** The simultaneous presence of
phosphorus and nitrogen atoms makes pyridylphosphines a
versatile platform for assembly of the most diverse clusters
exhibiting bright phosphorescence® or thermally activated
delayed fluorescence (TADF).**” Thus, based on the “rigid”
(2-Py),(Ph);_,P (n = 1-3) ligands with direct phosphorus-pyri-
dine linkages, a variety of heterometallic clusters were
designed, eg AuCus*® Au,Cu,** ™ Au,Cug® AugAg,,*
AuioAg,, " AuisCu, (n = 2, 4, 8),* C@AucCu,,*® and
C@AucAg, *” and C@AueAgs.*® The phosphines with flexible
(CH,),Py arms (n = 1 or 2), while being much less studied,
allow the design of fundamentally new clusters with remark-
able phosphorescent properties.***°*®  For example,
(2-PyCH,);P forms triangular AuAg; clusters showing rare
violet phosphorescence with photoluminescence quantum
yields (PLQYs) up to 96%.>' Meanwhile, pyridyl-substituted
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Diphosphines with rigid Py,P units
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Scheme 1 Overview of known pyridyl-diphosphines and complexes
thereof®’~%! as well as key aspects of this study.

diphosphines are very rare and poorly explored, despite their
great potential for designing heterometallic clusters with
essentially new structures and properties. In particular, the
diphosphines shown in Scheme 1 have only sporadically been
used for assembly of simple mono- or dinuclear Au(1) or Ag(1)
complexes.”” ' Among the related ligands, pyridyl-substituted
1,5-diaza-3,7-diphosphacyclooctanes can be highlighted as
efficient ligands for the luminescent Au,, Cus and Au,Cu,
clusters.>®%*7%

View Article Online

Inorganic Chemistry Frontiers

Herein, we have designed a family of unprecedented homo-
and heterometallic Cu(1), Ag(1) and Au(1) clusters supported by
1,2-bis[bis( pyridin-2-ylmethyl)phosphinoJethane, an innova-
tive flexible P,P'(N,N'),-ligand (Scheme 1). Fortunately, the
obtained clusters exhibited fascinating luminescent pro-
perties, including bright phosphorescence, abnormal thermal
quenching, and non-trivial vapor-sensitive emission behavior.

Results and discussion

Synthetic aspects

We have found that the interaction of L with the Au(tht)Cl/
KPFs system gives the cationic complex [Au,L,](PFs), (1)
(Scheme 2), while the treatment with Aul produces the neutral
adduct [Au,L,l,] (2). The gold(i) phenylacetylide reacts with L
to give only adduct [Au,(C=CPh),L] (3), even at a PnC=CAu/L
molar ratio of 1:1. The recrystallization of 3 from a CH,Cl,-
EtOH mixture yields the crystals of dimer [Au,(C=CPh),L],
(3a, major product) and chain polymer [Au,(C=CPh),L], (3b).
Much more interesting results were obtained in the reactions
with Ag(i) salts. The treatment of L with AgPF, leads to the for-
mation of the four-nuclear cluster [Ag,L,|(PF¢), (4), while
AgNO; produces the nine-nuclear cluster [AgoL3;(NOs);5](NO3)s
(5). For comparison, the related diphosphine, 1,2-bis(di-2-pyri-
dylphosphino)ethane (d2pype), reacts with AgNO; to give
dinuclear complex [Ag,(d2pype),](NO;),.”® Given that the Au'-
Ag' clusters exhibit much stronger emission than their iso-
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Scheme 2 Synthesis of clusters 1-7.
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structural all-Ag analogues,”®" we next attempted to replace
the P-coordinated Ag(1) ions of 4 on the Au(1) ions by reacting
with [Au(tht)Cl]. However, instead of the anticipated product
[AgsAu;L5](NO3)o, the cluster [Au,Ag,L,(NO;),(H,0)|(NO3), (6)
was unexpectedly isolated (Scheme 2). Encouraged by these
results, we have further exploited the ligand L as a platform for
stabilizing unprecedented cluster units. Thus, by the inter-
action of L with [Au(tht)Cl] followed by the treatment with [Cu
(MeCN),JPFs leads to another heterometallic ensemble
[AuyCuyL,CL](PFs), (7) bearing a unique Au,Cu, kernel.
Apparently, the assembly of 7 occurs via an initial formation of
[Au,L,]Cl,, whose structure is similar to that of 1 and the
related complexes,®®® and the further reaction with [Cu
(MeCN),]PF, leads to the insertion of Cu’ ions into CH,Py
arms of [Au,L,]Cl,.

In the next step, we attempted to assemble the iodide
analog of 7 by treating 2 with [Cu(MeCN),]PF,. Again, contrary
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Scheme 3 Synthesis of cluster 8.

View Article Online

Research Article

to our expectations, the unexpected complex
[Au,CuyL,I,(MeCN),](PFs), (8) was isolated, in which the
Au,Cu, kernel and two MeCN-ligated Cu(i) ions are spaced
apart (Scheme 3). Attempts to assemble heterometallic com-
plexes by treating 1 or 3 with Cu" or Ag" salts were unsuccess-
ful. It should be emphasized that clusters 4-8 are unpre-
cedented, since only the ligand L is able to stabilize such
ensembles. Obviously, the pseudo-symmetric structure of the
complexes 1-8 is due to the symmetric nature of the ligand L.

Structural & spectral characterization

Complexes 1, 2 and 3b were structurally characterized by X-ray
diffraction analysis (XRD) as themselves, while 4-8 and 3a
were characterized as solvates 3a-EtOH, 4-2Me,CO, 5-8H,0,
6-2H,0, 7-4Me,CO-2EtOH and 8-10MeCN. The X-ray derived
structures of Au(i) complexes 1-3 are shown in Fig. 1 (for more
information, see Fig. S1-9, ESI}). The cation of 1 is composed
of two Au(1) ions P,P"-bridged by two L ligands. Both Au(i) ions
have a slightly distorted linear Au@P, coordination with the
P-Au-P angle of ~174-176°. Since the Au-Au intramolecular
distance of 2.945 A is significantly shorter than the sum of van
der Waals radii (¥ rvaw(au-au = 3.32 A),%” aurophilic inter-
actions can be proposed in 1. The asymmetric unit of 2 con-
tains two halves of two independent molecules (one of which
is shown in Fig. 1) that differ in geometric parameters
(Fig. S21t). Like to 1, each Au(r) ion of 2 is coordinated by two P
atoms (£P-Au-P = 159.2°), and the intramolecular Au-Au dis-
tances of 3.069 A and 3.133 A also imply aurophilicity. In both
independent molecules of 2, the Au-I distances are longer
than the sum of covalent radii (2.75 A), but shorter than the
sum of van der Waals radii (X rvaw(au-r) Of 3.64 A).” Herewith,
one molecule of 2 contains p,-I atoms (day_1 & 3.272 + 0.071 13),

Fig. 1 X-Ray derived structures of Au()) clusters 1-3. The H atoms, counterions and solvate molecules are omitted for clarity.
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Inorg. Chem. Front.


https://doi.org/10.1039/d5qi00813a

Published on 16 June 2025. Downloaded by Y unnan University on 8/3/2025 5:18:27 PM.

Research Article

while in another molecule, each iodide is clearly ligated to one
Au atom (d,,_; = 3.236 A), and only associated with the second
(dpu = 3.574 1"&). As mentioned above, complex 3 was isolated
as supramolecular dimer (3a) and polymer (3b) forms, which
have a similar molecular structure. In their basic
[Au,L,(C=CPh),] fragment, the Au atoms adopt a distorted
linear coordination (£C-Au-P = 175°) with Au-P and Au-C
bonds being comparable to the literature values for related
complexes. In the dimer 3a, the [Au,L,(C,Ph),] molecules are
dimerized via intermolecular Au---Au metallophilic contacts of
3.072 A (92% Y ruaw(au-aw)-" In contrast, in the packing of 3b,
the [Au,L,(C,Ph),] molecules form 1D supramolecular chains
through intermolecular Au-Au contacts of 3.203 A (96%
Y rvaw(au-aw)-". To our knowledge, it is the first example of
aurophilicity-bonded 1D polymers based on the [Au(C=CR),L]
molecules (L is a diphosphine). The related complexes, [Au
(C=CR),(dppe)] and [Au(C=CR),(dppp)], like 3a, are all Au-Au
bonded dimers.®®7°

The molecular structures of 4-8 are shown in Fig. 2. The
cation of 4 consists of two L molecules and four Ag" ions, each
coordinated with one P atom from L and one or two pyridine
N atoms from different L. All the Ag-P bond lengths are close
to 2.4 A, while Ag-N distances are in the range of
2.178-2.507 A. Two pyridine rings, shown as uncoordinated in
Fig. 2, have Ag-N distances too large (about 2.7 A) to be
bonded. The interatomic distances between two Ag-Ag pairs
(2.90-2.92 A) are significantly shorter than the sum of their
VAW radii (3.44 A),*” indicating metallophilic interactions.

View Article Online
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The cationic part of 5 is formed by three Ag(i) ions P,P'-
bridged by three L ligands to form a 15-membered metalocycle
with P-Ag-P angles of 166.9° and 164.9° (Fig. 2). The six
remaining Ag(1) ions are located at the periphery of the metalo-
cycle and each are N,N'-chelated by the CH,Py arms of two
neighboring L ligands. This results in six short contacts
between the “peripheral” and “central” Ag(i) ions of
2.99-3.03 A (>88% Y ruaw(ag-ag),’ suggesting argentophilic
interactions. In addition, the two “peripheral” Ag" ions are
weakly associated with two NO;™ ions in a bidentate chelating
manner (dag o % 2.69 + 0.03 A). At the center of the 15-mem-
bered metallocycle of 5, a disordered NO;™ anion is also cap-
tured via Ag-O contacts of 2.674-2.694 A.

The packing of 6 consists of two independent
[Au,Ag,L,(NO3),(H,0)]*" cations charge-balanced by eight
NO;™ anions. In the cations, two Au(i) ions are P,P-bridged by
two L ligands, and the four Ag(i) ions are chelated by four
pairs of CH,Py arms, affording two bent Ag-Au-Ag cluster
units (£Ag-Au-Ag = 125.4-145.3°). While the intramolecular
Au-Au distance of ~3.9 A clearly rules out metallophilic inter-
actions, the four Au-Ag distances of 2.96-3.05 A (<90%
Y rvaw(au-ag)’ indicate such interactions. Note that the adja-
cent Ag(1) ions of the AuAg, units of 6 are bridged by two NO;™~
ions (dag-o ~ 2.78-2.85 A), and one Ag atom is also ligated by
an H,0 ligand (dag-0 ~ 2.62 13).

The structure of the [Au,Cuyl,(j1,-Cl),]*" cation of 7 is com-
parable to that of the cation of 6. The two Au(1) atoms of 7 are
P,P"-bridged by two L ligands, and the four Cu(i) ions are che-

Au
Ag

o
00000000

Fig. 2 X-Ray derived structures of 4—8. The aromatic H-atoms, counterions and solvate molecules are omitted for clarity.
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lated by four pairs of CH,Py arms. Moreover, each copper atom
is coordinated by a p,-Cl atom (£Cu-Cl-Cu = 128.66°). The
formed Au,Cu, cluster core adopts a distorted H-shaped geo-
metry (£Cu-Au-Cu = 157.4°) with one Au-Au and four Cu-Au
metallophilic contacts of 3.064 A (92% > vaw(au-au)) and
~2.81 A (92% Y ryaw(au-cu))s T€Spectively.

In the [Au,Cu,uL,L,(MeCN),]** cation of 8, each Au(i) ion is
coordinated by two phosphorus atoms from different L ligands
(£P-Au-P = 161.29 and 161.94°) to form an Au-Au contact of
3.115 A (94% Y rvaw(au-aw)- The two Cu(r) atoms form short
contacts with the same Au(i) center (2.78-2.82 A, <92%
Y Fvaw(au-cu)), and each of them is coordinated by two pyridine
N atoms of different L ligands as well as by one I atom. Each
of the two remaining Cu(1) ions is N,N'-chelated by the CH,Py
arms of the same L ligands, and MeCN auxiliary ligands (dcy-n
= 2.05 A) complete a tetrahedral Cu@N, geometry (7, =
0.84-0.88).

Thus, the flexibility of the ligand L, which is determined by
the presence of P(CH,),P and PyCH,P fragments, allows for
the stabilization of diverse cluster units. The intraligand P-P
distance in L can range from 3.69 A to 4.49 A, and the P-N dis-
tance in the PyCH, arms varies from 2.83 to 3.56 A. Again, the
flexibility of the P(CH,),P and PyCH,P moieties also allows for
a wide variability in the angles between the lone pairs on the
N and P donor sites. As a results, the P(CH,),P of L unit can
stabilize both well-separated M(1) ions (as in 3a and 3b) and
two closely spaced M(i) ions (as in 1, 2 and 4-8). In turn, the
PCH,Py unit of L exhibits both P,N-bridging and P,N-chelating
modes. In contrast, more “rigid” ligands (Scheme 1) do not
exhibit P,N-chelating mode due to the shorter and less variable
P-N distance in the PyP unit.

The compounds obtained were characterized by NMR and
mid-IR spectroscopy, and their compositions were confirmed
by microanalysis data. The powder X-ray diffraction analysis
data also confirm the phase purity of the synthesized bathes
(Fig. S101). In "H NMR spectra of 1-5 and 7, the protons of the
CH,Py and P(CH,),P moieties resonate in their typical regions
(Fig. S11-167). In the *'P{'H} NMR spectra of 1-5 and 7, the
ligand’s phosphorus atoms appear as singlets at 33.2, 24.8,
36.5, —6.5, —3.54 and 29.3, and ppm, respectively, and PF¢~
anions of 1, 4, 7 and 8 is presented as a typical septet (Jp_r ~
712 Hz) (Fig. $17-21 and S$231). The 'H NMR spectra of 6 and
8 show a set of very broad resonances that are difficult to
assign to specific protons. Such a scenario is probably caused
by a slow exchange equilibrium between dissociated species
that is typical behavior for Au'-Ag' and Au'-Cu' complexes.”
This assumption is also indirectly confirmed by the presence
of two *'P resonances in solutions of 6 and 8 (Fig. S22 and
S24%).

The mid-IR spectra of 1-8 (Fig. S25t) are consistent with
the structural data and show specific vibrations from the sup-
porting ligands and counter-ions. For instance, the C=C
bonds of 3a appears as a vc—¢ stretching band at 2112 em™,
and the MeCN ligands in 8 appear as a weak vc—=y band at
2253-2270 em™". The thermogravimetric analysis confirms the
presence of the solvate molecules in 3a-EtOH, 5-8H,0, 6-2H,0

This journal is © the Partner Organisations 2025
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and 7-2Me,CO, and MeCN ligands in 8, showing the corres-
ponding steps in the range of 75-175 °C (Fig. S26).

Electronic structure and absorption spectra

To investigate the electronic structure of 1-8, DFT calculations
were performed on the molecules of 2 and 3a as well as on the
[AwL" (1), [Agl.]" (4), [AgLs(NO;)I*"  (5),
[Au,Ag,L,(NO3),(H,O)* (6), [AuyCuyl,(uy-Cl),]** (7) and
[Au,CuyL,I,(MeCN),]*" (8) species (for details see §8, ESIT).
The highest occupied and lowest unoccupied molecular orbi-
tals (HOMO and LUMO) are shown in Fig. 3, while HOMO-1
to LUMO+1 plots are displayed in Fig. S27-34.1 The HOMO of
1 includes only the metal s- and d-orbitals, while the HOMOs
of the other complexes are also contributed by halide’s lone
pairs (2, 7 and 8), or the p-orbitals from the L ligands (4, 5),
C=C (3a) or NO;™ (6) groups. The LUMOs of 2-4, 6 and 8 are
purely pyridine =-orbitals, whereas LUMOs of 1, 5 and 7
consist mainly p, orbitals from Au-Au or Ag-Ag units, and, in
the case of 1 and 5, are also admixed with pyridine n-orbitals.

To understand the electronic transitions leading to the
excited states of 1-8, electronic absorption spectra (EAS) were
analyzed (Fig. 4). The EAS profiles of 1-8 show a strong absorp-
tion band at around 260 nm (& = 25 000-56 000 M~* cm ™). In
the case of 3a, this band has a vibronically resolved structure
(¥ = 1590 ecm™"), likely caused by = — =* transitions in the
{C=C-Ph} moiety. In the 280-400 nm region, less intense
absorptions (¢ < 15000 M™" em™") appear for all compounds
studied. The TD-DFT calculated absorption patterns reason-
ably match the experimental EAS profiles of 1-8 (Fig. S357),
indicating that the low-energy region is conditioned by the CT
transitions. In particular, the following types of the CT tran-
sitions are specific: (Au + L)AuLCT (1), (Au + I)LCT (2), (Au +
C=C)LCT (3a), (Ag + L)LCT (4), (Ag + NO37)LXCT (5), (Au + Cu
+ X)LXCT (X = NO;7, 6), (Cu + Cl)AuCT (7), (Au + Cu + I +
MeCN)LCT (8). For clarity, these assignments are also outlined
in the Table 1. Therefore, only in complex 7, ligand L orbitals
do not participate in low-energy transitions. In all other cases,
the pyridine m-orbitals of L participate in the lowest charge-
transfer transitions. Natural transition orbital (NTO) analysis
corroborates the above assignments by showing that the “elec-
tron” and “hole” orbitals for the S, — S; or S, — S, transitions
(Tables S3-S11%) closely resemble the virtual and occupied
molecular orbital pairs from ground-state calculations. Again,
in the lowest singlet-singlet transitions, the “electron” NTOs
of 1-6 and 8 are primarily delocalized over the n-orbitals of the
L moieties. The NTOs’ “holes” are largely contributed by the
metal(1) atoms, alongside halides and other ancillary ligands.
In the case of 1 and 4, NTOs’ “holes” are also admixed by
n-orbitals of the L moieties.

Regarding the effect of metallophilic interactions, note that
the LUMO of 7 exhibits Au-Au antibonding character and is
involved in the lowest singlet-singlet transition. NTO analysis
shows that the “electron” NTOs of the lowest S, — S, and S, —
T, transitions are localized on the Au p-orbitals. Thus, the
emission of complex 7 has been assigned to the (Cu + )AuCT
type. For all other complexes, metal-centered antibonding NTO
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Fig. 3 Ground state frontier orbitals for 2 and 3a molecules as well as cations of 1 and 4—8. The H atoms are omitted for clarity.

orbitals do not contribute to the lowest S, — S; and S, — T,
transitions.

Photophysical properties

At ambient temperature, polycrystalline samples of 2-4 and
6-8 demonstrate moderate to strong photoluminescence (PL)
in the green to orange region (Fig. 5a), whereas compounds 1
and 5 are non-emissive. The emission and excitation spectra of
2-4 and 6-8 are plotted in Fig. 5b, ¢, and the corresponding
parameters are listed in Table 1. The PL profiles of 2, 4 and
6-8 are represented by single bands, whose maxima vary from
505 to 635 nm, and half-peak widths are in the order of
3189-3780 cm ™. In the excitation spectra (Fig. 5b), broad fea-

Inorg. Chem. Front.

tureless bands appear falling between 455 nm (for 6) and
570 nm (4). No excitation-dependent behaviour was observed
for these emitters (Fig. S36f). The large Stokes shifts
(4652-6514 cm™") and the microsecond PL times indicate that
2-4 and 6-8 manifest phosphorescence at 298 K, which is
typical for the related clusters. Taking into account the litera-
ture data and the results of our TD DFT NTO calculations (see
above), the observed PL can be tentatively assigned to (Au + L)
AULCT (1), (Au + I)LCT (2), (Au + C=C)LCT (3a), (Ag + L)LCT
(4), (Ag + NO,")LXCT (5), (Au + Cu + X)LXCT (X = NO;™, 6), (Cu
+ Cl)AuCT (7), and (Au + Cu + I + MeCN)LCT (8) types, respect-
ively. It should be noted, however, that the TADF mechanism
can’t be completely excluded for Cu(1)-Au(i) clusters 7 and 8,
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Fig. 4 EAS profiles recorded for solutions in MeCN (1, 4, 6-8), CH,Cl,
(2, 3) and H,0 (5).

which show an abnormal temperature-dependent PL behavior
(see below). The measured PLQYs vary from low (1-4% for 3a,
b, 4) to high (77% for 2), and are moderate (15-40%) for 6-8.
The PLQY of 2 is among the highest values for Aul-based phos-
phine complexes.” 7

A special case are Au(i)-alkynyl complexes 3a and 3b which
exhibit multiband PL typical of the related complexes.®®”* The
emission profiles of both complexes are very similar in the
400-540 nm range, where a high-energy (HE) band (Amax =
515 nm) with a vibronically resolved shoulder at 420-465 nm
is observed (Fig. 5c and S44t). Polymer 3b, regardless of the
excitation wavelength, shows a prominent low-energy (LE)
band at 630 nm (Fig. S44%). In the case of 3a, a similar LE
band (Amax = 580 nm) is almost imperceptible at 300-400 nm
excitation, but appears clearly at >440 nm excitation
(Fig. S441). Both the HE and LE bands of 3a,b have decay
times in the microsecond range (Table 1). Based on the pre-
vious works and our DFT calculation results, the HE bands
can be assigned to the n*p, — (day + Tc—c) transitions.*®”*”"”
The LE band likely belongs to the (ds-)'(ps)" triplet state,
which originates from the Au-Au interactions taking place in
both dimer 3a and polymer 3b. The vibronic structure
observed for the HE bands of 3a,b is likely conditioned by
vc—c vibrations of the alkynyl groups.
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Cooling to 77 K brings about only a slight PL enhancement
for 2-4 and 6, while 7 and 8 show a pronounced thermochro-
mic PL (see CIE diagrams in Fig. 5d and e). The measured
temperature-dependent PL spectra of 7 and 8 (Fig. 5d and e)
agree with the visually observed changes in the PL color and
intensity. Both 7 and 8 show a pronounced bathochromic shift
of Amax Dy 556 and 965 cm ™, respectively, however, their inte-
grated PL intensities change differently with temperature
(Fig. 5f). When 7 is cooled from 298 to 120 K, its PL intensity
gradually decreases, and when further cooling to 77 K, it
becomes slightly larger than at 298 K. In contrast, the PL inten-
sity of 8 abnormally decreases by 25% when passing from
298 K to 77 K, thus showing a negative thermal quenching
(NTQ) behavior. It should be noted that NTQ emitters are very
rare among coordination compounds,”®®® and NTQ-active Au(i)
complexes are so far unknown, not to mention Au(i)-Cu(i) clus-
ters. To our surprise, the temperature dependences of the PL
lifetimes [7(T) plots, Fig. 5¢] adopt a TADF-specific shape, and
they are well fitted by the equation for the TADF model®" (see
p. S50 in ESIf for details). The fitting-derived singlet-triplet
energy gaps of 518 and 506 cm™" (for 7 and 8, respectively) are
sufficiently small (<1200 em™") for TADF realization at ambient
temperature, and they are comparable with those for Cu(i)
complexes.®”®” The abnormal NTQ behavior for 8 can be
reasonably explained the basis of TADF mechanism. The 7(T)
curves (Fig. 5g) indicate that the S; state is emissive at 298 K
(TADF regime), whereas at 77 K, when TADF is largely frozen
out, the T, state is active (phosphorescence regime). The NTQ
behaviour of 8 can be explained by assuming that the ratio of
the non-radiative decay rate to the radiative one (k,/k;) for the
T, state is higher than that for the S; state (see Fig. S461 and
discussion below). In turn, the near-zero PL thermal quenching
of 7 is due to a close ky,,/k; ratio for its T, and S, states.

In contrast to the other clusters, 2 and 6 exhibited yellow
and green PL in solution with PLQYs of 5% and 6%, respect-
ively (Fig. S47t). The PL profile of CH,Cl, solution of 2 shows
one band at A, = 540 nm (7; = 16 ns, 7, = 64 ns), while the
aqueous solution of 6 shows two PL bands at A, = 510 nm (7,
=219 ns, 7, = 63 ns) and 625 nm (z = 0.26 ps). Since the *'P
NMR data point to a dissociation of 6 in solution, it remains
unclear whether the two emission bands are belonged to 6 or

Table 1 The absorption characteristics of 1-8 in solutions and solid-state PL properties of 2—4 and 6—8 at 298 K

Character of the low-energy

Compound  Agps, N (& x 10° M~ ecm™) absorption Aem, NIM PL time, ps PLQY, %
1 206 (47), 263 (27), 298 (16) (Au + L)AULCT — — —
2 238" (38), 261 (49), 370 (7) (Au + I)LCT 550 2.7 77
3a’® 229 (31), 237 (37), 258°" (37), 268 (47), 283 (42) (Au + C=C)LCT 515 33 1
3b® 515 (HE), 610 (LE) 78 (HE), 445 (LE) 1
4¢ 205" (89), 264 (34), 335 (3) (Ag + L)LCT 635 4.3 4
5 205 (167), 263 (58), 318°" (10) (Ag + NO;7)LXCT — — —
6¢ 200 (84), 263 (27), 298 (14), 335 (9) (Au + Cu + X)LXCT (X =NO;~) 505 13 15
74 198 (90), 263 (25), 299 (11) (Cu + Cl)AuCT 618 5.4 40
8¢ 204 (132), 252°" (38), 295 (14) (Au + Cu + I + MeCN)LCT 585 4.0 38

% dex = 350 M. 2 Aoy = 300 nm. € ey = 380 nm. ¢ Aoy = 460 nm. © Ao, = 420 nm.
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Fig. 5 (a) Microphotography of samples of 2—4 and 6-8 under daylight and UV-light; (b) solid state excitation spectra at 298 K (the excitation
profile of 3a,b correspond to their HE emission band); (c) solid state PL spectra (1o, = 360 nm); (d) temperature-dependent PL spectra of 7 at dex =
440 nm (insert: changing in PL color in CIE coordinates); (e) temperature-dependent PL spectra of 8 at 1x = 420 nm (insert: changing in PL color in
CIE coordinates); (f) integrated PL intensities of 7 and 8 versus temperature; (g) PL lifetimes of 7 and 8 versus temperature. The fitting curves are

derived from the TADF model equation.®*

to its dissociation products. The slight increase in PL during
deaeration of solutions 2 and 6 indicates the manifestation of
phosphorescence.

Application of 2 and 6 as vapor-responsive anticounterfeiting
inks

Luminescent coinage metal complexes are currently attracting
much attention as stimuli-responsive materials,®*®” and antic-
ounterfeiting dyes. In this regard, the coinage metal(r) com-
plexes have been poorly studied, and to our knowledge,
coinage metal clusters are still unexplored for anticounterfeit-
ing. Serendipitously, we discovered that the photo-
luminescence (PL) of 2 deposited on paper was reversibly
quenched upon exposure to acetone, whereas vapors of other
tested solvents (including H,O, MeOH, Et,O, hexane, EtOH,
i-PrOH, EtOAc, THF, DMF, 1,4-dioxane, C¢Hg, C¢HsBr, CgFg,
CCl,) had no significant effect on the PL. Notably, the PL of
other highly emissive clusters (6-8) remained stable under all
tested solvent vapors. Inspired by this interesting finding, we

Inorg. Chem. Front.

used these clusters as innovative anticounterfeiting dyes.
Diluted solutions of 2 and 6 were spotted onto filter paper.
The resulting labels are completely invisible in daylight, but
are clearly visible under UV light as green (from 2) and cyan
(from 6) spots (Fig. 6a). When the paper is immersed in a
beaker with acetone vapors, the green spots disappear immedi-
ately, while the cyan spots remain unchanged. When the paper
is removed from the beaker, the green spots immediately
reappear. As shown in supplemented video file, such “encryp-
tion-decryption” process is very fast and repeatable.
Furthermore, the PL intensity of 2 was investigated over a
range of acetone concentrations (0-3132 ppm). As shown in
Fig. 6¢c, the PL emission intensity of the paper test strip
decreases with increasing acetone molar concentration (C,). A
Stern-Volmer (SV) plot of Iy/I (where I, and I represent the
initial and current PL intensities, respectively) versus C,
demonstrates characteristic quenching behavior (Fig. 6c,
insert), fitting the equation: Io/I = 1.40 x 107°[C,] + 0.88 (Kgy =
1.40 x 107> ppm™'). Notably, the SV plot exhibits excellent line-

This journal is © the Partner Organisations 2025
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Fig. 6 Anticounterfeiting application of 2 and 6: (a) fabrication of
labels; (b) rapid and reversible quenching of green luminescence of 2 in
acetone vapours (25 °C, 365 nm light), see also ESI video file;1 (c) PL
spectra of a 2-impregated test strips under different concentrations of
acetone (298 K, 1ex = 400 nm). Insert: Stern—Volmer plot.

arity (R*> = 0.997) across the entire concentration range. These
preliminary results suggest that cluster 2 shows potential for
on-site acetone detection when coupled with a portable
spectrometer. Although an explanation of this effect is beyond
the scope of this work, by analogy with work®® it can be pro-
posed that acetone quenches the T; state of 2 via a photo-
induced electron transfer mechanism.

Conclusions

In summary, bis[bis(pyridin-2-ylmethyl)phosphinojethane -
an innovative multidentate ligand - has been introduced into

This journal is © the Partner Organisations 2025
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the chemistry of group 11 metal clusters. The flexibility of the
CH,Py arms allows this ligand to stabilize new cluster units via
P,P'(N,N),-bridging coordination, which is not possible for
“rigid” diphosphines with direct phosphorus-pyridine linkage.
On the other hand, the symmetric structure of our ligand pre-
determines the (pseudo)symmetric geometry of the clusters
thereof. By exploiting the features of the above ligand, we have
synthesized homo- and heterometallic clusters characterized
by unprecedented structures and the presence of multiple
metallophilic Au-X (X = Cu, Ag, Au) or Ag-Ag contacts. Most of
the designed clusters exhibited a weak to very strong solid-
state photoluminescence at ambient temperature, which is
attributed to the metal-involved charge transfer excited states.
Surprisingly, the [Au,Cu,L,I,(MeCN),]** cluster increases its
PL intensity upon warming from 77 to 298 K, revealing an
abnormal (negative) thermal quenching behavior. Moreover,
the [Au,L,I,] cluster has been highlighted as an original antic-
ounterfeiting dye using vapor stimuli for (de)coding.

Fundamentally, these results highlight the diphosphine
ligands with flexible CH,Py arms as a new efficient platform
for the design of unprecedented cluster ensembles. From a
practical perspective, some of the synthesized compounds can
be considered as emitters for OLED application and emissive
for advanced data security.
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