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C-C bond functionalization has emerged as a powerful tool for the skeleton editing of organic molecules.
However, remote C(sp®)-O and C(sp®)—-N bond formation via unstrained C—C bond cleavage in acyclic
molecules remains challenging. Herein in this work, a Brgnsted acid enabled metal-free remote oxygenation
and amidation of NHPI esters via 1,4-group migration chaperoned radical-polar crossover has been estab-
lished, affording a variety of heteroaryl-tethered alcohols, ethers and amides in moderate to good yields.
This protocol also features mild conditions, good functional group tolerance and high regioselectivity,
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Introduction

C-C bonds are one of the most fundamental structural units
that form the backbone of organic molecules. Selective C-C
bond functionalization provides an exceptional opportunity to
achieve straightforward structural reassembly of molecules.
Particularly, owing to the ubiquity of O- and N-containing
molecules in natural products and pharmaceuticals,® the
C(sp®)-0 and C(sp®)-N bond formation by C-C bond activation
has already drawn a lot of attention. One popular strategy is C-
C bond cleavage facilitated by ring-strain release, installing
C(sp®)-0O or C(sp®)-N bonds via the ring opening of three- or
four-membered ring compounds® or strained bicycloalkanes.*
In comparison, functionalizations of stronger unstrained C-C
bonds in massive acyclic molecules are still inadequately
explored.

In recent years, 1,n-group migration has emerged as a
powerful tool for the skeleton editing of unstrained organic
compounds.® The translocation of various functional groups
such as aryl,® heteroaryl,” alkenyl,® alkynyl,® amino,’® and
cyano'' groups could modify the backbone of molecules
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representing a novel paradigm for remote C(sp®)—heteroatom bond construction via C—C bond activation.

beyond spatial limitations, which afforded diverse structures
difficult to access through conventional synthetic methods.
Despite these advancements, synthetic protocols for remote
C(sp®)-O or C(sp®)-N bond installation via group migration
have still been rarely reported. A pioneering report from Shi’s
group demonstrated Ag-catalyzed 1,4-aryl migration of triflic
amides to forge distal C(sp*)-O bonds under oxidative con-
ditions."* Very recently, Shu and co-workers have reported the
remote oxygenation and nitrogenation of unstrained C-C
bonds in N-fluorosulfonamides by merging Cu and Ir-photo-
redox catalysis (Scheme 1a)."* In the above reports, the aryl
group migration is triggered by an electrophilic N-centered
radical, which exhibits moderate selectivity between two
different aryl moieties. Additionally, the participation of tran-
sition metal catalysts may cause issues with metal residues for
bioactive molecule synthesis. In this context, remote
functionalization via unstrained C-C bond activation with
improved selectivity and sustainability is still a highly desir-
able task.

Over the past decades, redox-active N-hydroxyphthalimide
(NHPI) esters have been employed as versatile synthetic build-
ing blocks in organic chemistry."* The photoinduced radical-
polar crossover strategy has provided an expedient approach
for C(sp®)-heteroatom bond construction between diverse
NHPI esters and nucleophiles (Scheme 1b).'® In contrast to the
established decarboxylative ipso-functionalization of NHPI
esters, decarboxylative remote functionalization of unstrained
C-C bonds in NHPI esters via the radical-polar crossover
process remains underexplored to date. A main challenge is
that the alkyl radicals generated by decarboxylation would
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Scheme 1 Remote functionalization of unstrained C—-C bonds.

easily undergo SET oxidation to the corresponding carbo-
cations. This process would compete with the radical-triggered
1,n-group migration and eventually afford undesired ipso-func-
tionalized byproducts instead. We envisioned that the partici-
pation of a Brensted acid might be critical for the selective
remote functionalization of NHPI esters. The presence of a
Brensted acid would efficiently activate the NHPI ester moiety
via a proton-coupled electron transfer (PCET) process, which
facilitates the alkyl radical generation.'® On the other hand,
the protonation of distal heteroaryl rings could accelerate the
radical-triggered Truce-Smiles rearrangement,"’ which would
interrupt the undesired ipso-functionalization to provide
heteroaryl migration products selectively. With these designs
in mind, herein we have developed a Brensted acid enabled
metal-free remote functionalization of unstrained C-C bonds
in NHPI esters via 1,4-group migration chaperoned radical-
polar crossover (Scheme 1c).'® A variety of heteroaryl-tethered
alcohols and ethers are expediently synthesized via consecutive
C-C bond cleavage and remote C(sp®)-O bond formation
under very mild conditions. In addition, remote Ritter-type
amidation products are readily obtained as well by employing
nitriles as N-nucleophiles instead of O-nucleophiles.

Results and discussion

We initiated our research by the optimization of remote
C(sp®)-O bond formation of NHPI ester 1a with H,O as the
nucleophile. To our delight, after preliminary screening of
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various reaction parameters (Table S1t), we managed to install
the hydroxyl group at the distal site, affording the desired
product 2a in 60% yield with 4DPAIPN as the photocatalyst,
TsOH-H,O as the additive and H,O (100 equiv.) in a MeCN
solution under blue irradiation for 48 h (Table 1, entry 1). The
use of the less reductive photocatalyst 4CzIPN diminished the
reaction efficiency (Table 1, entry 2). Reactions with H;PO, and
HBF, could also afford 2a, albeit in lower yields (Table 1,
entries 3 and 4). Other polar solvents such as DMSO, acetone,
and EtOAc were verified as inferior choices to CH;CN (Table 1,
entries 5-7). The yield of 2a was further optimized to 77%
when 3.0 equivalents of TSOH-H,O were employed (Table 1,
entry 8). Control experiments revealed that the photocatalyst,
acid additive, light irradiation, and N, atmosphere were all
essential for product generation (Table 1, entries 9-12).

With the optimized reaction conditions in hand, we further
investigated the substrate scope of this Brgnsted acid enabled
remote hydroxylation of NHPI esters (Scheme 2a). A set of
NHPI esters with electron-rich or electron-neutral substituents
at the para-position of the aryl ring worked quite smoothly to
afford the corresponding desired products 2a-2d in good
yields. However, substrates bearing electron-deficient aryl
motifs only exhibited moderate reactivity (2e-2i), which
suggested that electron-withdrawing groups would destabilize
the carbocation intermediate generated via radical-polar cross-
over. A series of ortho- or meta-substituted NHPI esters were
amenable substrates for this transformation (2j-2n).
Substrates containing the naphthalene or thiophene moiety
were also well tolerated (20 and 2p). NHPI esters with quatern-
ary carbon atoms at the distal benzylic position provided
corresponding products 2q and 2r in high yields owing to the
better stability of tertiary benzylic carbocations. In contrast,
substrates bearing quaternary carbon atoms at the proximal

Table 1 Optimization of the reaction conditions?

Q 4DPAIPN (1.0 mol%)
S N TsOH+H,0 (2.0 equiv.)
©L\/ H,0 (100 equiv.) ©)\/\)\\N
CONPHth ———————— >
MeCN (0.1 M), Ny, rt

blue LEDs (15 W), 48 h

1a 2a

Entry Variations Yield® (%)
1 None 60
2 4CzIPN instead of 4DPAIPN 42
3 H;PO, instead of TSOH-H,O 38
4 HBF, instead of TsOH-H,0 48
5 DMSO instead of MeCN 30
6 Acetone instead of MeCN 45
7 EtOAc instead of MeCN 53
8 TsOH-H,0 (3.0 equiv.) 77
9 From entry 8, without acid n.d.
10 From entry 8, without 4DPAIPN or light n.d.
11 From entry 8, under an air atmosphere n.d.

“Reaction conditions: 1a (0.1 mmol), 4DPAIPN (1.0 mol%), TsOH-H,O
(3.0 equiv.), H,O (100 equiv.), MeCN (1.0 mL), room temperature, N,,
and under blue LED (15 W) irradiation for 48 h. ?Isolated yields are
reported. n.d. = not detected.
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2f, R' = 4-Cl, 59%
2g, R" = 4-Br, 63%

2g, CCDC: 2416854 2n,91%
2h, R'=4-CF3, 41%
2i, R' = 4-OCF3, 35%

e e
2j,R" = 3-OMe, 66%

2k, R'=3-Cl, 47% 2s,43% 2t, 32%
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Scheme 2 Substrate scope of remote hydroxylation and amidation of NHPI esters. Reaction conditions: #1 (0.1 mmol), H,O (10 mmol), TsOH-H,O
(3.0 equiv.), 4DPAIPN (1.0 mol%), MeCN (1.0 mL), room temperature, N,, and under blue LED (15 W) irradiation for 48 h. ®1 (0.2 mmol), MeSOzH (2.0
equiv.), 4DPAIPN (2.0 mol%), MeCN (2.0 mL), room temperature, N,, and under blue LED (36 W) irradiation for 48 h. CCDC 2416854 (2g) and CCDC
2416902 (3i) contain the supplementary crystallographic data for this paper.

site only led to diminished yields of 2s and 2t. The substrate
bearing a longer aliphatic chain afforded product 2u via 1,5-
heteroaryl migration, albeit in a lower efficiency. Different het-
erocycles such as Cl-substituted benzothiazole and benzoxa-
zole could also undergo 1,4-migration successfully (2v and
2w).

Furthermore, we were delighted to find that MeCN could be
employed as the nucleophile instead of H,O, which forged the
distal C(sp®)-N bond to afford the remote Ritter-type amida-
tion product 3a in 60% yield (Table S2t). As exemplified in
Scheme 2b, a variety of substrates bearing either electron-rich
or electron-deficient aryl moieties were all compatible with
this reaction system, affording the corresponding desired pro-
ducts in moderate to good yields (3b-30). The variations in the
aliphatic chain of NHPI esters did not significantly influence
their reactivity in the remote amidation protocol (3p and 3q).
The substrate bearing Cl-substituted benzothiazole as the
migration group exhibited sluggish performance (3r).
Remarkably, other aliphatic nitriles, benzonitrile, and deute-
rated acetonitrile were able to participate in this transform-
ation, affording corresponding amides 3s-3v in promising
yields as well.

Inspired by the success of remote functionalization of NHPI
esters with H,O and nitriles as nucleophiles, we continued to
extend the nucleophile scope to alcohols for ether preparation
(Scheme 3). Feedstock alcohols such as methanol, ethanol and
isopropanol were employed as solvents, and the reactions

This journal is © the Partner Organisations 2025
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(a) Scale-up reaction
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(hetero)aryl rings were well tolerated in this transformation
(5d-5j). The cyclic secondary alcohol performed rather slug-
gishly owing to the enhanced steric hindrance (5k). Notably,
fluoro-ether 51 could be prepared from the less nucleophilic
CF;CH,OH. A moderate yield of acetate 5m was obtained in
the AcOH solution. Last but not least, nucleophilic remote
fluorination was achieved with Et;N-3HF as the fluorine source
even though fluorides were known as weak nucleophiles (5n).

Moreover, we were glad to find that a scale-up reaction of
remote hydroxylation via 1,4-group migration chaperoned
radical-polar crossover proceeded quite smoothly even under
low catalyst loading conditions (S/C = 1500), affording the
desired product 2a in 62% yield and 930 TONs (Scheme 4a).
The alcohol 2a could serve as a versatile synthetic intermediate
to realize facile synthesis of diverse derivatives such as ketone
(6), benzoate (7), and aryl ether (8) (Scheme 4b). Interestingly,
the remote oxygenation of NHPI ester 1a could be realized
with Chinese liquor Erguotou (alc/vol: 52%vol) as a binary
nucleophile to afford both alcohol 2a and ether 5b in one pot,
demonstrating the robustness of this transformation
(Scheme 4c).

To gain insight into the reaction mechanism, a series of
mechanistic investigations were carried out. Upon the addition
of the radical scavenger TEMPO, the generation of product 2a
was completely inhibited, and the corresponding trapping
adduct was detected by HRMS analysis (Scheme 5a), which
indicated that an alkyl radical intermediate could be involved
in the mechanism. The isotope labelling experiment with
H,'®0 as the nucleophile resulted in the '®0O-labeled product

d)
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Scheme 5 Mechanism experiments: (a) radical trapping experiment. (b) H,'20 isotopic labelling experiment. (c) Crossover experiment. (d) Stern—
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2a’ as the dominant product, suggesting that the hydroxyl
group in product 2a originated from H,O (Scheme 5b). The
crossover experiment between substrates 1p and 1v only
afforded regular products 2p and 2v, respectively, which indi-
cated that the alkyl radical triggered 1,4-heteroaryl migration
proceeded in an intramolecular manner (Scheme 5c). Stern-
Volmer emission quenching experiments revealed that the
redox-active NHPI ester 1a would undergo oxidative quenching
with the photo-excited 4DPAIPN* to initiate the catalytic cycle
(Scheme 5d). Notably, the combination of TsOH-H,O and 1a
enhanced the quenching efficiency. In addition, cyclic voltam-
metry measurements clearly showed that the reductive poten-
tial of 1a (E{fd = —1.08 V vs. Ag/AgCl) shifted towards the posi-
tive direction in the presence of TsOH-H,0O (E;ed =—-0.95 Vvs.
Ag/AgCl) (Scheme 5e). This evidence supported that the
Brgnsted acid might engage with NHPI ester 1a to produce the
alkyl radical via a proton-coupled electron transfer (PCET)
process. Moreover, the light on-off profile illustrated that the
generation of product 2a could only be observed under light
irradiation, suggesting that a radical chain process was un-
likely to be involved in the mechanism (Scheme 5f).

Based on the results of mechanistic investigations, we
described a plausible reaction mechanism as follows
(Scheme 6). First of all, the Bronsted acid additive TsOH-H,O
would facilitate the reduction of NHIP ester 1 [E;ed =-0.95V
vs. Ag/AgCl) to intermediate A by the photo-excited 4DPAIPN*
species (Ey, (PC*/PC™") = —1.28 V vs. SCE)'® via a PCET
pathway. The subsequent decarboxylation resulted in the gene-
ration of alkyl radical intermediate B. Then, a rapid
Truce—Smiles rearrangement of the protonated heteroaryl
moiety took place, affording a distal benzylic radical inter-
mediate C."” The benzylic radical C (E}}, = 0.37 V vs. SCE)*’
was further oxidized by 4DPAIPN radlcal cation species (Ei/,
(PC™/PC) = 1.34 V vs. SCE)" to form a benzylic carbocation D
and meanwhile regenerate the ground state 4DPAIPN. Finally,
carbocation D was trapped by different types of nucleophiles
to furnish the corresponding remote functionalized products.

©
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ROH, RCN etc.
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Scheme 6 Proposed reaction mechanism.
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Conclusions

In summary, we have developed a Bregnsted acid enabled
metal-free remote oxygenation and amidation of NHPI esters
via 1,4-group migration chaperoned radical-polar crossover. A
broad range of heteroaryl-tethered alcohols, ethers and amides
are readily forged with good functional group tolerance and
high regioselectivity under very mild conditions. The scale-up
reaction with low catalyst loading proceeds quite smoothly to
achieve relatively high TONs. Moreover, Chinese liquor could
also serve as a binary nucleophile to afford both alcohol and
ether products in one pot, which exhibits the robustness of
this protocol. Mechanistic studies have revealed that the pres-
ence of the Bronsted acid TsOH-H,O would influence the reac-
tivity of NHPI esters.
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