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The use of silicon reagents as catalysts has long been an attractive yet challenging goal due to difficulties

in silicon catalyst regeneration. Herein, we report a novel silicon-catalyzed formal hydroformylation of

alkynes with aldehydes to access α,β-unsaturated ketones with high efficiency under mild conditions. The

success of this method relies on an innovative retro-Mukaiyama aldol reaction (RMAR)-driven silyl transfer

strategy, which enables efficient regeneration of silicon catalysts. Preliminary mechanistic studies reveal

the evolution of key silicon catalysts during this transformation. This protocol provides valuable insights

for the design of new chemical transformations based on silicon catalysis.

Silicon, the second most abundant element on Earth, makes
up approximately 27.7% of the planet’s crust by mass. This
remarkable natural abundance drives the extensive use of
silicon-based compounds in both scientific research and
industrial applications.1,2 The unique physical properties of
these compounds make them indispensable in materials such
as rubbers, resins, oils and other polymers, enabling the devel-
opment of advanced materials with exceptional durability and
thermal stability.3 Silicon-based compounds are widely
employed as essential building blocks in classical organic
transformations, typically serving as leaving groups in cross-
coupling reactions4 or as linkers for synthesizing new silicon-
containing compounds5–8 (Scheme 1a). Although stoichio-
metric applications of silicon reagents have been extensively
explored, research on silicon-catalyzed transformations,9,10

particularly neutral silicon catalysis,10 is still in its infancy.
Compared to transition metal catalysis, silicon catalysis has

attracted considerable interest in organic transformations due
to its low toxicity, environmental compatibility, ready accessi-
bility, and versatile functionalization potential (Scheme 1b).
However, the regeneration of silicon catalysts poses a signifi-
cant challenge owing to the high bond energies required for
Si–X bond cleavage, particularly for Si–F (135 kcal mol−1) and
Si–O (110 kcal mol−1) bonds. Consequently, only very limited

examples of silicon-catalyzed chemical transformations have
been reported to date, with most relying on the use of external
silicon reagents as substrates for catalyst regeneration
(Scheme 1b). Thus, the development of new and efficient strat-
egies is crucial for establishing novel silicon catalysis, which
would not only significantly advance silicon chemistry but also
provide substantial value to the field of synthetic chemistry.
Herein, we report an unprecedented approach to overcome the
inherent challenges of silicon catalyst regeneration, leading to
a new silicon-catalyzed formal hydroacylation of alkynes with
aldehydes11 (Scheme 1c). This protocol provides efficient
access to α,β-unsaturated ketones,12,13 a privileged structural
motif prevalent in natural products, bioactive molecules, and
pharmaceuticals.

Our design for this new transformation began with the
hypothesis that the reaction of an alkyne with a silicon source
generates alkynylsilane A, which then reacts with aldehyde 2 to
afford the propargyl silyl ether intermediate B. B undergoes
deprotonation in the presence of a base and DMSO to form an
allenyl silyl ether (Scheme 1c). This hypothesis is supported by
our previous work,14 which demonstrated that propargyl
alcohol, a structural analogue of A, can be deprotonated to
form the corresponding α-hydroxyl carbanion under similar
conditions. We proposed that the allenyl silyl ether could then
undergo a Mukaiyama aldol reaction with 2, proceeding
through the transition state TS-I to yield the allyl silyl ether C.
We reasoned that this competitive off-cycle pathway could be
suppressed by a retro-Mukaiyama aldol reaction (RMAR)-
driven silyl transfer,15 facilitated by the energetically similar
cleavage and formation of Si–O bonds in the six-membered
cyclic transition state. This would allow allenyl silyl ether to
react with another alkyne via TS-II, producing the
α,β-unsaturated ketone product 3 while regenerating the
silicon catalyst A (Scheme 1c).
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To validate our hypothesis, we initially conducted the reac-
tion of phenylacetylene (1a) with (trifluoromethyl)trimethyl-
silane (TMSCF3) in DMSO-d6 using KF as the base. The reac-
tion proceeded smoothly to give the desired trimethyl(pheny-
lethynyl)silane (TMS-1) in 72% yield16 (Scheme 2a).
Subsequently, when TMS-1 was reacted with benzaldehyde 2a,
the expected propargyl silyl ether product TMS-2 and allyl silyl
ether TMS-317 were indeed obtained in 43% and 36% yields,
respectively, while no chalcone 3aa was observed (Scheme 2b).
Control experiments confirmed that the reaction of TMS-1
with 2a did not proceed in the absence of KF, indicating the
essential role of the base in this transformation (Scheme 2b).
These findings prompted us to investigate the possibility of a
RMAR process, facilitating the formation of 3aa and the regen-
eration of the Si catalyst when TMS-3 reacts with an alkyne, as
shown in Scheme 1c. Encouragingly, TMS-3 was successfully
converted to 3aa in the presence of 1b, and the propargyl silyl
ether species TMS-4 could also be observed (Scheme 2c). The
formation of TMS-5 and 3ba can be rationalized through a
similar transformation starting from TMS-4. These results
prompted us to explore the reaction using 1a and 2a as starting
materials with catalytic amounts of TMS-1, TMS-2, or TMS-3
and KF. As expected, the reaction proceeded smoothly to

deliver 3aa in 23–40% yields (Scheme 2d), providing convin-
cing evidence that TMS-1, TMS-2, and TMS-3 serve as key inter-
mediates in this transformation.

Following the initial experimental results shown in
Scheme 2, we further explore the reaction using 10 mol%
TMSCF3 and 40 mol% KF in DMSO at 50 °C for 12 h. To our
delight, the reaction successfully afforded 3aa in 73% yield
(Table 1, entry 1). Encouraged by this result, we then investi-

Scheme 2 Validation of the reaction proposal.

Table 1 Optimization of reaction conditionsa

Entry Variation from standard conditions Yieldb (%)

1 None 73
2 TMSCl or TMSBr instead of TMSCF3 0
3 Me2PhSiCl instead of TMSCF3 0
4 Et3SiH instead of TMSCF3 47
5 PhSiH3 instead of TMSCF3 69
6 K2CO3 instead of KF 61
7 K3PO4 instead of KF 65
8 CsF instead of KF 53
9 tBuOK, tBuONa or MeOK instead of KF 6–20
10 DBU, DMAP or Et3N instead of KF 0
11 TMSCF3 (20 mol%) 83 (80)b

12 No TMSCF3 or KF 0
13c DMAc or DMF instead of DMSO 13 or 26
14c CH3CN, dioxane, toluene or THF instead of DMSO 0
15c 80 °C instead of 50 °C 72
16c 1a (10 mmol, 1 eq.), 2a (2 eq.) 74

a Reaction conditions: 1a (0.2 mmol, 1 eq.), 2a (0.4 mmol, 2 eq.),
TMSCF3 (20 mol%), KF (40 mol%), DMSO (1.5 mL), 50 °C, 12 h, under
N2.

b Isolated yield. c TMSCF3 (20 mol%).

Scheme 1 New strategy for advancing silicon-based catalysis.
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gated the reaction parameters. Other silicon sources such as
TMSCl, TMSBr, or Me2PhSiCl completely inhibited the reac-
tion (Table 1, entries 2 and 3), while Si–H sources promoted
the process (Table 1, entries 4 and 5). The Si–H species would
generate the catalytically active propargyl silyl ether intermedi-
ate to initiate the catalytic cycle analogous to TMSCF3 (see the
ESI†). Subsequently, the effect of bases was also screened. The
use of K2CO3, K3PO4 or CsF provided 3aa in 53–65% yields
(Table 1, entries 6–8), whereas tBuOK, tBuONa or MeOK gave
only poor results (Table 1, entry 9). Further evaluation con-
firmed that KF was the optimal base (see Table 1, entries 6–10
and the ESI†). Increasing TMSCF3 loading to 20 mol% slightly
improved the yield of 3aa (Table 1, entry 11). Control experi-
ments confirmed that both TMSCF3 and KF are essential, as
no reaction occurred in their absence (Table 1, entry 12). The
solvent used also played an important role in this reaction,
with other solvents resulting in no or low conversions (see
Table 1, entries 13 and 14 and the ESI†). Furthermore, increas-
ing the temperature to 80 °C did not significantly affect the
yield of 3aa (Table 1, entry 15). It should be mentioned that
the reaction could be easily scaled up to 10 mmol without any
loss of reactivity and 1.53 g (74%) of 3aa was isolated.

With the optimized reaction conditions established, we
next investigated the generality of this protocol (Table 2). A
wide range of alkynes bearing diverse substituents, including
methyl, tert-butyl, methoxy, phenyl, fluoro, chloro, bromo, tri-
fluoromethoxy, and trimethylsilyl groups, smoothly partici-
pated in the desired reaction, affording the corresponding
α,β-unsaturated ketones (3aa–3na) in good to excellent yields,

regardless of electronic properties or steric hinderances on the
aromatic rings. Apart from phenyl rings, a naphthyl-derived
substrate was also compatible with this process and afforded
the expected product 3oa in 69% yield. It is worth mentioning
that pyridyl- and thienyl-substituted alkynes were successfully
converted to the heterocyclic products 3pa and 3qa in 75%
and 72% yields, respectively. Unfortunately, aliphatic alkynes
were not compatible with the current conditions to give the
desired products.

We next turned our attention to evaluate the scope of alde-
hydes (Table 3). A diverse range of aryl-substituted aldehydes,
including both electron-rich and electron-deficient groups,
reacted smoothly to deliver the expected α,β-unsaturated
ketones in 34–78% yields (3ab–3aq). The compatibility of free
halogen atoms and trifluoromethyl groups on the aromatic
ring offers significant potential for further elaboration of the
products. In addition, naphthyl-substituted aldehyde was also
compatible with the current conditions (3ar). Notably, thienyl-,
furyl-, and imidazolyl-substituted aldehydes were also suitable
candidates, affording the corresponding products (3as–3au) in
acceptable yields. To demonstrate the utility of this method,
drug-like molecules 3fi and 3rf were readily prepared from
their corresponding alkynes and aldehydes, further highlight-

Table 2 Substrate scope of alkynesa

a Reaction conditions: 1 (0.2 mmol), 2a (0.4 mmol, 2 equiv.), TMSCF3
(20 mol%), KF (40 mol%), DMSO (1.5 mL), 50 °C, 12 h, under N2.
Isolated yields. b 24 h. c PhSiH3 as catalyst.

Table 3 Substrate scope of aldehydesa

a Reaction conditions: 1a (0.2 mmol), 2 (0.4 mmol, 2 equiv.), TMSCF3
(20 mol%), KF (40 mol%) and DMSO (1.5 mL), 50 °C, 12 h, under N2.
Isolated yields. b 24 h. c 100 °C. d PhSiH3 as catalyst.

e 80 °C. f 150 °C.

Organic Chemistry Frontiers Research Article
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ing the application potential of this approach. However, ali-
phatic aldehydes failed to afford the desired α,β-unsaturated
ketones.

To elucidate the reaction mechanism, we conducted several
mechanistic investigations. When the reaction between 1a
and 2a was quenched after 20 minutes, TMS-1 and TMS-2
were obtained in 15% and 33% yields, respectively
(Scheme 3a), providing further evidence for their involvement
as intermediates in this transformation. Furthermore, several
deuterium labelling experiments were conducted. Notably,
almost no reaction was observed when deuterium-labelled
d1-1a, d1-2f or DMSO-d6 was used (Scheme 3b), suggesting a
significant kinetic isotopic effect in this transformation.
Consequently, the reaction temperature was increased to
100 °C and under these conditions, 54% D and 56% D
incorporation was observed at the α-position of d1-3af and
the β-position of d1-3af′, when either d1-1a or d1-2f was used
(Scheme 3c, entries 1 and 2). Moreover, the combined use of
d1-1a and d1-2f significantly increased the deuterium content
at the β-position of d2-3af to 89%, while that at the
α-position remained unchanged (Scheme 3c, entry 3). In con-
trast, replacing DMSO with DMSO-d6 provided d2-3af with
85% D incorporation at the α-position and nearly complete
deuteration at the β-position (Scheme 3c, entry 4). In
addition, almost no deuterium scrambling was observed in
d1-3af″ during the reaction of 1a and 2f in DMSO-d6
(Scheme 3c, entry 5). These results clearly revealed that the
hydrogen at the α-position of the α,β-unsaturated ketone pro-
ducts originates from the alkyne and DMSO, while the
hydrogen at the β-position is derived from the alkyne, alde-
hyde and DMSO.

Based on the experimental results, a plausible reaction
mechanism is proposed (Scheme 4). The reaction begins with
the silylation of alkyne 1 in the presence of TMSCF3 and KF to
provide TMS-1, which undergoes nucleophilic addition with
aldehyde 2 to form the propargyl silyl ether TMS-2.
Deprotonation of TMS-2 in the presence of DMSO and the
base, followed by propargyl-allenyl isomerization,18 affords the
allenyl silyl ether Int-I. This intermediate reacts with another
aldehyde through the Mukaiyama aldol-type transition state
TS-1 to produce TMS-3. The RMAR-facilitated silyl transfer
then promoted the deconstruction of TMS-3 back to Int-I and
aldehyde. Then the reaction of Int-I with another alkyne via
TS-2 gives the final product 3 and regenerates TMS-1 for the
next catalytic cycle.

Conclusions

In summary, we have developed a novel RMAR-driven silyl
transfer strategy that enables the challenging regeneration of
silicon catalysts under mild conditions. This approach facili-
tates an unprecedented silicon-catalyzed formal hydroformyla-
tion of alkynes with aldehydes, providing access to a diverse
range of valuable α,β-unsaturated ketones. Control experi-
ments and mechanistic studies elucidated the transformation
of the silicon catalyst during the reaction, and the true active
catalyst was identified and validated in the catalytic cycle. We
believe this study will open new avenues in silicon chemistry
and inspire further exploration of new chemical transform-
ations based on silicon catalysis.
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