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Beyond Energy Transfer: Ground-State Association-Driven [2+2] 
Cycloadditions with Indole-Fused Organophotocatalysts 
Seoyeon Kim,a Byung Hak Jhun,b Yunjeong Lee,a Gayeon Lee,a Sihyun Woo,b Jaehan Bae,a Sohee 
Lee,b Seoyeon Kim,b Youngmin You,*b and Eun Jin Cho*a

A visible-light-driven [2+2] cycloaddition strategy with indole-fused organophotocatalysts (organoPCs) developed in our 
laboratory is presented, highlighting a sustainable approach with minimal solvent usage and no sacrificial reagents. 
Mechanistic investigations, supported by spectroscopic analyses and density functional theory (DFT) calculations, suggest 
that this transformation proceeds via a ground-state association mechanism rather than the more commonly proposed 
energy transfer pathway. Specifically, noncovalent interactions between the organoPC and a cinnamate substrate enable 
the formation of a [PC···substrate] complex, which, upon photoexcitation, engages in an efficient route to the triplet state 
that drives [2+2] cycloaddition. Structural tuning of the organoPC framework proves critical to catalytic performance, as 
pentacyclic architectures featuring extended π-conjugation display enhanced π–π interactions and the superior reactivity. 
This design principle facilitates regioselective cycloadditions across a broad range of functionalized cinnamate derivatives, 
highlighting the versatility and atom economy achievable under visible-light irradiation.

Introduction 
Visible-light-driven transformations have garnered 
considerable interest as environmentally benign and 
sustainable methodologies in synthetic chemistry.1 Although 
metal-based photocatalysts such as Ir and Ru complexes were 
initially prevalent, concerns regarding their cost, toxicity, and 
environmental impacts have led to the emergence of 
organophotocatalysts (organoPCs).2 These metal-free 
photocatalysts enable efficient reactions under visible light and 
are generally more economical and less hazardous than their 
metallic counterparts.
Photocatalytic reactions commonly follow electron transfer 
(ET)3 or energy transfer (EnT)4 pathways (Figure 1A). EnT is 
increasingly attractive as it eliminates the need for sacrificial 
agents typically required in ET processes, enabling direct energy 
transfer from the photocatalyst to the substrate.4a-c The EnT-
based photocatalysis often involves triplettriplet energy 
transfer for activation of organic substrates.4 However, unlike 
Ir- or Ru- based late-transition-metal complexes, organoPCs 
without heavy elements often suffer from limited triplet 
activation due to the intrinsically slow intersystem crossing 
(ISC).4g Consequently, alternative approaches are also emerging 
such as catalytic electron donor–acceptor (EDA) complexes.5-8 
By forming non-covalent, transient assemblies between a 

photocatalyst and a substrate, EDA complexes can mediate 
photoactivation without requiring specific redox or energy-
transfer criteria—enhancing both reaction scope and 
sustainability.
Figure 1 Ground State Association-Mediated Photoactivation of 
Indole-fused OrganoPC
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Photochemical [2+2] cycloaddition is a versatile reaction that 
harnesses photon energy to form cyclobutane frameworks,9 
playing a crucial role in applications ranging from medicinal 
chemistry to materials science. Herein, we describe a visible-

a.Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, 
Seoul 06974, Republic of Korea. E-mail: ejcho@cau.ac.kr (E. J. C.)

b.Department of Chemical and Biomolecular Engineering, Yonsei University, 50 
Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea. E-mail: 
odds2@yonsei.ac.kr (Y. Y.)

Supplementary Information available: See DOI: 10.1039/x0xx00000x

Page 1 of 8 Organic Chemistry Frontiers

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

O
rg

an
ic

C
he

m
is

tr
y

Fr
on

tie
rs

A
cc

ep
te

d
M

an
us

cr
ip

t

Pu
bl

is
he

d 
on

 3
1 

Ju
ly

 2
02

5.
 D

ow
nl

oa
de

d 
by

 Y
un

na
n 

U
ni

ve
rs

ity
 o

n 
8/

2/
20

25
 8

:3
2:

36
 A

M
. 

View Article Online
DOI: 10.1039/D5QO00774G

mailto:ejcho@cau.ac.kr
mailto:odds2@yonsei.ac.kr
https://doi.org/10.1039/d5qo00774g


ARTICLE Journal Name

2 | J. Name., 2012, 00, 1-3 This journal is © The Royal Society of Chemistry 20xx

Please do not adjust margins

Please do not adjust margins

light-driven [2+2] cycloaddition9 of cinnamate derivatives,10 
facilitated by our indole-fused organoPC,11 that forms a 
transient complex through specific substrate interactions 
(Figure 1B). Notably, previous examples of cinnamate-based 
[2+2] cycloadditions have relied exclusively on metal-based 
photocatalysts.10b-f,10h The intrinsic affinity between the indole-
fused catalyst and the substrate facilitates photoactivation 
without the need for strict energetic or electrochemical 
potential matching. This approach not only broadens the scope 
of organoPCs in [2+2] cycloaddition reactions but also 
establishes a highly sustainable strategy. By harnessing 
interaction-driven photoactivation pathways, the reaction 
operates efficiently under additive-free conditions, in neat 
systems or with minimal solvent use.

Results and discussion
Our investigation commenced with the systematic screening of 
various indole-fused organoPCs11 for the [2+2] cycloaddition 
reaction of ethyl cinnamate (1a) in tetrahydrofuran (THF) under 
visible light irradiation using 450 nm 18 W blue light-emitting 
diodes (LEDs) to afford the corresponding cyclobutane product 
(2a) (Scheme 1). The screening revealed that structural 
modifications in the organoPCs had a pronounced impact on the 
catalytic efficiency. Among the tested PCs with the arylalkenyl 
substituents (A–F), the pentacyclic organoPC A, 13-(1-
phenylvinyl)-6H-benzo[5,6]isoindolo[2,1-a]indol-6-one (PBIO), 
demonstrated markedly superior activity compared to the 
other tetracyclic organoPCs (B–F), emphasizing the importance 
of the additional aryl expansion in the system (entries 1–6). To 
further investigate the role of the arylalkenyl moiety, we 
synthesized and evaluated pentacyclic organoPCs G and H with 
the arylalkyl substituent and without the substituent, 
respectively. Interestingly, G exhibited notable catalytic activity, 
suggesting that the alkene moiety was not a critical determinant 
of reactivity (entry 7). In contrast, the removal of the arylalkenyl 
moiety in organoPC H resulted in a complete loss of catalytic 
performance, highlighting the critical influence of specific 
structural features of the aryl substituent in indole-fused 
organoPCs on their catalytic activity in visible-light-driven [2+2] 
cycloaddition reactions (entry 8). Notably, the reaction 
proceeds efficiently even under solvent-free conditions, further 
highlighting the environmental friendliness of this 
transformation (entry 10). A comparison between entries 1 and 
9 indicates that dilution beyond a certain point does not lead to 
significant improvements in yield or diastereoselectivity. 
Therefore, we conducted the reaction at a 5 M concentration to 
align with green chemistry principles by minimizing solvent use 
and reducing chemical waste. Additional solvent and 
wavelength screening results are presented in Table S1 of the 
Supplementary Information. Moreover, a control experiment 
conducted in the absence of the photocatalyst, also detailed in 
Table S1 (entry 2), showed no product formation under the 
reaction conditions, indicating that direct photoactivation of 1a 
is unlikely. Notably, organoPC A demonstrates comparable or 
superior efficiency to commonly used photocatalysts. Neither 
eosin Y, a widely used organoPC, nor Ru(bpy)3(PF6)2,10b the most 

commonly employed Ru-based PC, promoted the reaction at all 
(entries 11 and 12). Additionally, Ir-based photocatalysts 
previously used for this transformation (Ir cat. I,10e Ir cat. 
II10d,10f,10h) showed comparable or lower yields (entries 13 and 
14), suggesting that A serves as an effective metal-free 
alternative.

Scheme 1 Optimization of Reaction Conditionsa,b
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aReaction scale: 1a (0.1 mmol); bYields were determined by 1H NMR yield using 
bromoform as an internal standard and diastereomeric ratios (d.r.) were obtained 
from the 1H NMR spectra of the crude reaction mixtures.

Our investigations shifted to elucidating the photocatalytic 
reaction mechanism, with a particular focus placed on 
understanding the distinct reactivity observed between 
pentacyclic PBIO (A) and tetracyclic PIO (B) organoPCs, despite 
their structural similarities. The [2+2] cycloaddition reactions 
generally proceed via well-established electron9b,12 or 
energy9c,13 transfer mechanisms. To explore the possibility of an 
electron transfer mechanism, we determined the oxidation (Eox) 
and reduction (Ered) potentials of A, B, and 1a using cyclic and 
differential pulse voltammetry (Scheme 2 and see 
Supplementary Information, Figure S2 for the voltammograms). 
We then calculated the excited-state redox potentials of A and 
B based on the relationships E*ox = Eox – ES1 and E*red = Ered + ES1, 
where E*ox is the excited-state oxidation potential, ES1 is the S1 
state energy determined from the onset wavelength of the 
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UVVis absorption spectrum (Figure S3 in Supplementary 
Information), and E*red is the excited-state reduction 
potential.3c,14 These ground- and excited-state redox potentials, 
compared in Scheme 2a, did not align with either an oxidative 
or reductive quenching pathway, excluding the electron 
transfer pathway. Actually, our analyses revealed the endoergic 
nature of the oxidative quenching of the excited-state A (A*) 
and B (B*) with the positive free energy changes (GET) greater 
than 0.20 and 0.16 eV, respectively. The reductive quenching of 
A* and B* by 1a is also thermodynamically disfavoured with 
(GET) values greater than 0.17 and 0.09 eV, respectively.
Scheme 2 Mechanistic Studies

aRedox potential diagram: excited-state oxidation potential (Eox* = Eox – ES1), 
excited-state oxidation potential (Ered* = Ered + ES1), S1 state energy determined 
from the onset wavelength of the UV-Vis absorption spectrum (ES1);
bExcited state energy diagram: singlet (S1) and triplet (T1) state energies of 
organoPCs A, B and 1a, calculated at the ω-B97X-D/TZP//B3LYP-D3(BJ)/TZP level 
using a solvation method based on the conductor-like screening model 
parameterized for 1,4-dioxane; 
cPhotoluminescence (fluorescence) spectra of 1.0 mM A and B containing 
increasing concentrations of 1a in deaerated THF; 
dNormalized photoluminescence spectra of 1.0 mM A with added 1000 mM 1a in 
THF. (λex = 280−450 nm, interval: 10 nm); 
eUV-Vis absorption of 10 mM (i) A and (ii) B in THF with increased concentrations 
of 1a (10−5000 mM).

Subsequently, we examined the possibility of an energy transfer 
mechanism—more common in [2+2] photochemical processes. 
A and B, and 1a did not show notable phosphorescence signals 
even at cryogenic temperatures (~ 78 K). We thus opted to 
perform quantum chemical calculations based on the ω-B97X-
D/TZP//B3LYP-D3(BJ)/TZP level in order to compare the 
electronic states, including triplet energies, of A, B, and 1a 
(Scheme 2b). Our calculations predicted the T1 energy levels of 
A (2.60 eV) and B (2.55 eV) lower than the T1 of 1a (3.05 eV), 
effectively ruling out a conventional triplettriplet energy 
transfer pathway. Furthermore, the S1 energies of A (3.76 eV) 

and B (3.75 eV) are also lower than that of 1a (4.54 eV). 
Additionally, no spectral overlap is observed between the 
emission profiles of A or B and the absorption spectrum of 1a, 
further disfavoring the feasibility of a singletsinglet energy 
transfer-based pathway. This energetic disposition, combined 
with the absence of spectral overlap, directly rebuts the 
proposed triplet activation mechanism involving singletsinglet 
energy transfer from organoPCs to 1a, followed by ISC of 1a. 
This energetic disposition also rebuts the triplet activation 
mechanism involving singletsinglet energy transfer from 
organoPCs to 1a, followed by ISC of 1a.  Unexpectedly, however, 
photoluminescence (fluorescence, PL) spectra recorded in Ar-
saturated THF solutions of organoPCs (1.0 mM) with increased 
concentrations of 1a (0–500 mM) revealed concentration-
dependent quenching of the organoPC fluorescence by 1a 
(Scheme 2c).
Scheme 3 DFT Calculations and Proposed Mechanism 
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The corresponding rates for bimolecular quenching (kQs), which 
could be calculated through the SternVolmer analyses, are as 
large as 1.32  1010 M1 s1 for A and 1.35  1010 M1 s1 for B. 
Note that these kQ values are close to the diffusion rate constant 
in THF at 298 K which can be calculated using the 
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StokesEinsteinSutherland equation (1.44  1010 M1 s1).15 

This similarity suggests that quenching occurs through a pre-
associated static catalyst–substrate complex, where 
nonradiative deactivation of A* by 1a proceeds without 
requiring diffusion-limited formation of an encounter 
complex.4a,4c,16 In addition, the virtually identical kQ values for 
the more reactive organoPC A and the less reactive organoPC B 
indicate that excited-state processes do not govern the catalysis. 
Subsequent efforts sought to investigate whether the reaction 
proceeds via an excited-state complex. PL spectra of 1.0 mM A 
were recorded at varied excitation wavelengths (280–450 nm, 
in 10 nm increments) in the presence of 1.0 M 1a (Scheme 2d). 
Under conditions favoring an emissive excited-state complex, 
distinct shifts in the PL spectra would be expected. However, no 
significant spectral variation was observed, effectively ruling 
out the formation of an emissive excited-state species, such as 
exciplexes. This absence of PL shift supports that the interaction 
occurs prior to excitation rather than in the excited state. An 
alternative hypothesis posited a ground-state association 
between organoPCs and 1a. To explore this possibility, UV–Vis 
absorption spectra were measured for solutions containing 10 
mM organoPCs in THF and excess amounts of 1a (10–5000 mM).
As shown in Scheme 2e, in the case of organoPC A, a new 
absorption band emerged in the regions > 500 nm, whose 
absorbance systematically increased with higher 
concentrations of 1a. By contrast, the less reactive organoPC B 
exhibited no discernible change under identical conditions. The 
association constant between A and 1a was determined to be 
0.4 M⁻¹ by ¹H NMR titration experiments (see Figure S4 in the 
Supplementary Information). Despite not conclusive, these 
observations support a mechanism involving the ground-state 
complex formation between organoPC A and 1a, thereby 
providing a rationale for the contrasting reactivities exhibited 
by A and B. Although the chemical nature for the ground-state 
complex needs further spectroscopic resolutions, an EDA 
complex is unlikely because the UVvis absorption spectra do 
not show apparent chromic shifts upon changing organoPCs. 
Our quantum chemical calculations suggest the association 
mainly involve a  interaction, rather than a charge-transfer 
interaction. 

Subsequent investigations addressed how structural 
differences between A and B govern their reactivities, 
particularly through the ground-state association. Building on 
earlier observations, the central hypothesis proposed that 
variations in noncovalent interactions, especially – 
interactions—arising from the additional aryl expansion—
underlie the observed differences in catalytic performance. To 
explore this assumption, density functional theory (DFT) 
calculations were performed with phenyl cinnamate (1b) 
(Scheme 3a), a substrate chosen to enhance – interactions 
with the multi-ring frameworks of the organoPCs. Results 
indicated that the pentacyclic A, which possesses extended 
conjugation relative to B, exhibits stronger π–π stacking with 1b, 
thus explaining A’s superior reactivity. Despite sharing the 
similar core structure, D having fused pyridine in place of 
benzene in A yielded a lower reaction yield than A (see Scheme 
1). The difference likely arose from the decreased polarizability 

of  electrons in pyridine, which influenced the ability of D to 
form productive associations with the substrate and, 
consequently, the catalytic performance.17 Although full 
understanding of the differed catalytic efficiencies requires 
further investigations, the results demonstrate strong 
structurereactivity dependence of the catalysts. Variations in 
conjugation length (A vs B), heteroatom incorporation (A vs D), 
and electron-donating or -withdrawing substituents (B vs E and 
F) result in markedly different reaction yields and 
diastereoselectivities.  
 Scheme 4 Substrate Scopea,b
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aReaction scale: 1 (0.1 mmol), A (3 mol%), THF (20 L); bYields were determined 
by 1H NMR yield using bromoform as an internal standard and diastereomeric 
ratios were reported in the form of trans-2:cis-2; cReaction scale: 1a (6 mmol), A 
(5 mol%), THF (1.2 mL), 17 days; dConversion based yield was reported; eReaction 
scale: 1a (6 mmol), A (5 mol%), 17 days; fReaction conditions: THF (1.67 M); 
gReaction conditions: THF (2.5 M); hConversion-based yield.

Our relativistic DFT calculations further revealed that the 
[A1b] complex would exhibit the stronger ISC between the S1 
and T1 states (spinorbit coupling matrix element (SOCME) = 
0.27 cm1) than does the [B1b] complex (SOCME = 0.04 cm1), 
suggesting that robust noncovalent interactions would facilitate 
more efficient the triplet formation (Scheme 3b). However, the 
[D···1b] complex was calculated to exhibit a greater SOCME 
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value of 7.09 cm⁻¹, than that of the [A1b] complex, although 
D produced a low reaction yield (Scheme 1). These results 
suggest that the overall catalytic efficiency may not be governed 
by ISC within the ground-state association complex, although 
ISC remains essential for triplet activation of 1b. Our 
nanosecond laser flash photolysis experiments revealed a long-
lived stimulated emission signal (τ = 9.72 μs) from the [A1] 
complex, supporting the formation of a triplet excited species 
(Figure S5). The proposed mechanism begins with ground-state 
association between A and 1, forming an [A1] complex 
(Scheme 3c). Upon photoexcitation, this complex reaches a 
singlet excited state, followed by efficient ISC to the triplet state, 
from which the [2+2] cycloaddition reaction proceeds to 
generate the cyclobutane 2.
Next, under the optimized conditions, we examined the 
substrate scope of the [2+2] cycloaddition using a diverse range 
of cinnamate derivatives (1) (Scheme 4). Notably, this 
transformation is exceptionally eco-friendly, proceeding with 
only the catalyst—without additives—and performing well even 
without solvent. Furthermore, no byproducts were formed in 
most of the reactions and PBIO (A) was easily removed. 
Consequently, products were isolated by simple filtration 
through the plug of silica, without any workup process (see the 
inset of Scheme 4). Both aliphatic and aromatic cinnamates, 
including naphthyl-substituted derivatives, exhibited excellent 
reactivity, yielding the corresponding cyclobutane products 
with the trans isomer as the major product. Notably, the 
reaction proceeded effectively irrespective of the electronic or 
positional effects (ortho-, meta-, para-) of substituents on the 
aromatic ring. The mild, additive-free conditions under visible 
light irradiation proved highly tolerant to various functional 
groups. Medicinally relevant substituents such as fluoride (2i–
2k and 2q), trifluoromethyl (CF ₃ , 2n),18 and a heteroaryl aryl 
variants including a thiophene (2r) and a pyridyl-substituted 
cinnamate (2s) were also compatible with this transformation. 
Interestingly, (E)-chalcone, a ketone-containing variant, 
successfully underwent the reaction, albeit with a moderate 
yield. However, it exhibited excellent diastereoselectivity, 
exclusively forming the trans isomer (2t). Unexpectedly, 
cinnamylnitrile (2u) were also compatible with this 
transformation, affording cis-isomer as the major product, 
possibly due to its linear structure. The relatively lower 
reactivity compared to ester substrates highlights the role of 
the ester unit in facilitating pivotal ground-state interactions. 
Notably, a competitive [2+2] cycloaddition between two highly 
reactive substrates (1) led to the formation of a heterodimer, 
indicating that both partners participate concurrently in the 
reaction (see Figure S8 in the Supplementary Information).

Conclusions
This study demonstrates that visible-light-driven [2+2] 
cycloadditions can be achieved under mild, metal-free 
conditions using structurally optimized indole-fused organoPCs. 
Mechanistic investigations, supported by spectroscopic and 
computational data, revealed that the triplet activation relies 
on a ground-state association between the organoPC and the 

substrate, rather than traditional electron or energy transfer 
pathways. Pentacyclic A, characterized by extended 
conjugation, exhibited exceptional reactivity due to enhanced 
– interactions with cinnamate derivatives. This interaction 
facilitated efficient substrate transformations across a broad 
range of derivatives, offering a highly sustainable approach with 
minimal solvent use and no need for sacrificial reagents. These 
findings highlight the critical role of rational catalyst design in 
developing sustainable and selective photocatalysis strategies, 
paving the way for advancements in visible-light-mediated 
transformations.
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