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Ru(II)-Catalyzed Direct Alkynylation of 2-Acylimidazoles with TIPS-
Alkynes or TIPS-Bromoalkynes under Air
Yuting Gui,‡a Xingchi Li,‡a Ting Fu,a Taoyuan Liang,a Zequan Li,b Shuangliang Zhao*,a and Zhuan 
Zhang*,a

The Ru(II)-catalyzed ortho-alkynylation of 2-acylimidazoles is reported, demonstrating compatibility with TIPS-protected 
terminal alkynes or TIPS-protected bromoalkynes as alkynylating reagents. The reaction tolerates a wide range of functional 
groups, and the resulting alkynylated products can be readily transformed into high-value compounds, presenting promising 
applications in medicinal chemistry and materials science. This strategy addresses the existing gap by proposing that the 
alkynylation reaction proceeds through six-membered ruthenacycle intermediates.

Introduction
Imidazole and its derivatives are highly significant due to their crucial 
roles in medicinal chemistry and materials science.1 Their remarkable 
versatility has led to their incorporation into numerous clinically used 
drugs, including antifungal, antiparasitic, anesthetic, and 
antihypertensive agents, among others, which exhibit high 
therapeutic efficacy and market value  (Scheme 1a).2 Furthermore, 
2-acylimidazoles serve as pivotal molecular building blocks, enabling 
the synthesis of a wide array of bioactive compounds.3 Their 
adaptability in structural modification underscores their potential as 
powerful tools in organic synthesis, offering promising avenues for 
developing novel pharmaceuticals and functional materials.4

Alkynes are fundamental building blocks in synthetic 
chemistry and materials science.5 While aryl alkynes are 
commonly synthesized from aryl halides via the Sonogashira 
reaction,6 a more desirable and attractive approach leverages 
the abundance of C−H bonds in arenes through transition-
metal-catalyzed C−H activation. This strategy has been 
extensively explored over the past several decades, leading to 
the development of numerous synthetic methods for 
constructing complex structures.7 Transition-metal-catalyzed 
direct alkynylation of C−H bonds is particularly advantageous, 
as it enables direct functionalization without the need for 
preactivation−a key benefit in the late-stage modification of 
complex molecules. Pioneered by the work of Chatani,8 Li,9 
Ackermann,10 Yu,11 and Krische,12 direct alkynylation of C–H 
bonds has been achieved through the exploration of diverse 

transition-metal catalysts, enabling access to a wide array of 
molecular architectures (Scheme 1b).

c. Iridium(III)-catalyzed direct alkynylation of 2-acylimidazoles.

d. Our new obsevation on Ru(II)-catalyzed direct alkynylation of 2-acylimidazoles.

a. Selected examples of imidazole molecules in applications.
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Scheme 1 Previous works and our new observation

Extensive efforts have been devoted to the functionalization of 2-
acylimidazoles due to their broad applications. Various 
transformations, including arylation, alkylation, alkenylation, 
amidation, esterification, and trichloromethylation, have been 
explored.3b, 13 In 2020, Chatani and coworkers reported an Ir-
catalyzed alkynylation of 2-acylimidazoles using bromoalkynes, 
leveraging the imidazole moiety as a directing group through a novel 
chelation system (Scheme 1c).14 Despite these advances, Ru-
catalyzed direct alkynylation of 2-acylimidazoles remains unexplored. 
Herein, we disclose a Ru(II)-catalyzed protocol for the direct 
alkynylation of 2-acylimidazoles with terminal alkynes or alkynyl 
bromides as versatile alkynylating reagents via six-membered 
ruthenacycle intermediates for the first time. This method features 
different alkynylating reagents available, high atom economy, 
excellent functional group tolerance, and the unique advantage of 
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and Materials, Guangxi University, Nanning 530004, P. R. China.
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† Electronic supplementary information (ESI) available: Experimental details and 
NMR spectra for all compounds. CCDC 2417911 (4sa). For ESI and crystallographic 
data in CIF or other electronic format see DOI: 10.1039/x0xx00000x 
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facile imidazole removal, enabling straightforward conversion to 
esters under mild conditions (Scheme 1d). 

Results and discussion
Table 1 Optimization of the reaction conditionsa

[Ru(p-cymene)Cl2]2 (10 mol%)

DCE,120 °C, air, 16 h

+

3aa

K2CO3 (2 equiv.)

X

TIPS

4aa

Ag2O (2 equiv.)

or

1a
2a

O

N

NAgNTf2 (40 mol%)

FG = TIPS

2a'

[Ru(p-cymeneCl2)]2 (10 mol%)

DCE,120 °C, air, 16 h
K2CO3 (2 equiv.)

AgNTf2 (40 mol%)
O

N

N

FG

O

N

N

FG

O

N

N

FG

FG
3aa

X = H
X = Br

Entry Variation from “standard conditions” Yield (%)b

3aa/4aa

1 none 73/−
2 CH3CN instead of DCE 64/–
3 toluene instead of DCE 31/–
4 1,4-dioxane instead of DCE 50/–
5 AgOAc instead of Ag2O 63/–
6 Ag2CO3 instead of Ag2O 59/–
7 Cu(OAc)2 instead of Ag2O n.d/–
8 K3PO4 instead of K2CO3 23/–
9 NaOAc instead of K2CO3 31/–

10 Cs2CO3 instead of K2CO3 29/–
11 without [Ru(p-cymene)Cl2]2 n.d/–
12 without AgNTf2 31/–
13 without K2CO3 n.d/–
14 without Ag2O 13/–
15 none 67/21
16 without K2CO3 n.d/0
17 without AgNTf2 11/0
18 without [Ru(p-cymene)Cl2]2 n.d/0
19 CH3CN instead of DCE 21/0
20 HFIP instead of DCE 51/21
21 toluene instead of DCE 23/0
22 1,4-dioxane instead of DCE 51/25
23 K3PO4 instead of K2CO3 36/5
24 NaOAc instead of K2CO3 41/7
25 Na2CO3 instead of K2CO3 33/21
26 3.0 equiv. K2CO3 for 36 h 16/73

aReaction conditions for 3aa: 1a (0.20 mmol), 2a or 2a' (entries 1−25, 0.30 mmol), 
[Ru(p-cymene)Cl2]2 (10 mol%), AgNTf2 (40 mol%), Ag2O (entries 1−14, 2 equiv.), 
K2CO3 (2 equiv.) in DCE (1.5 mL) at 120 °C for 16 h. aReaction conditions for 4aa: 1a 
(0.20 mmol), 2a' (entry 26, 0.44 mmol), [Ru(p-cymene)Cl2]2 (10 mol%), AgNTf2 (40 
mol%),  K2CO3 (3 equiv.) in DCE (1.5 mL) at 120 °C for 36 h. bIsolated yield. 

The optimization of the alkynylation of (1-methyl-1H-imidazol-
2-yl)benzophenone 1a was investigated using either TIPS-
protected terminal alkyne 2a or TIPS-protected bromoalkyne 
2a' as the alkynyl source (Table 1). We initially focused on 
oxidative ortho alkynylation. Employing 10 mol% [Ru(p-
cymene)Cl₂]₂ as the catalyst in DCE, along with AgNTf₂ (40 
mol%), Ag₂O (2 equiv.), and K₂CO₃ (2 equiv.), afforded the 

desired alkynylation product 3aa in 73% yield (entry 1). 
However, replacing DCE with acetonitrile, toluene, or 1,4-
dioxane resulted in lower yields (entries 2−4). We then screened 
various additives, including AgOAc, Ag₂CO₃, Cu(OAc)₂, K₃PO₄, 
NaOAc, and Cs₂CO₃, but none provided improved results 
(entries 5−10). Control experiments confirmed that [Ru(p-
cymene)Cl₂]₂, AgNTf₂, Ag₂O, and K₂CO₃ were essential for the 
reaction (entries 11−14). Next, we optimized the reaction 
conditions for ortho alkynylation using 2a' as the alkynyl source. 
To our delight, employing 10 mol% [Ru(p-cymene)Cl₂]₂, along 
with AgNTf₂ (40 mol%) and K₂CO₃ (2 equiv.) in DCE, yielded the 
alkynylated product 3aa in 67% yield with an acceptable 
selectivity (entry 15). Control experiments further confirmed 
that [Ru(p-cymene)Cl₂]₂, AgNTf₂, and K₂CO₃ were indispensable 
(entries 16−18). Solvent screening revealed that alternative 
solvents resulted in diminished yields (entries 19−22), and 
testing different bases did not lead to improved outcomes 
(entries 23−25). Finally, we discovered that increasing K₂CO₃ to 
3 equiv. and extending the reaction time to 36 h led to the 
formation of the dialkynylated product 4aa in 73% yield (entries 
26). Notably, these optimized reaction conditions are air-stable 
and can be conveniently carried out on the benchtop.

TIPS

+

[Ru(p-cymenCl2)]2 (10 mol%)
AgNTf2 (40 mol%)

1(a-z) 2 3

K2CO3 (2 equiv.)
DCE, 120 °C, air, 16 h

Me 3ba 51%
OMe 3ca 52%

F 3da 63%
Cl 3ea 52%
CF3 3fa 67%
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Scheme 2 Scope of oxidative ortho-alkynylation

Next, we explored the scope of the oxidative ortho-
alkynylation reaction under standard conditions (Scheme 2). A 
variety of electron-withdrawing and electron-donating groups 
at the ortho, meta, and para positions were well tolerated, 
affording the desired alkynylation products (3aa–3sa) in yields 
ranging from 51% to 87%. Notably, substrates bearing double 
electron-withdrawing groups led to the target products (3ta and 
3ua) in good to excellent yields. Additionally, replacing the 
phenyl group with a thiophene ring was compatible with this 
strategy, yielding 3va in 23% yield. However, cyclohexyl-
substituted 2-acylimidazole failed to produce the expected 
product 3za. 

Encouraged by the preliminary results, we next explored the 
scope of ortho-monoalkynylation under the optimized 
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conditions (Scheme 3). A variety of substituents on the benzene 
ring, including methyl, ethyl, tert-butyl, methoxy, fluorine, 
chlorine, bromine, trifluoromethyl, and methyl carbonate, were 
well tolerated, affording the desired products (3aa–3sa) in 
yields ranging from 47% to 83%. Disubstituted substrates 
successfully generated 3ta and 3ua with yields of 76% and 52%, 
respectively. Interestingly, the substrate containing a thiophene 
ring produced the corresponding product 3va in 32% yield. 
Unfortunately, the substrate 1z failed to furnish the expected 
product 3za.

TIPS

+

[Ru(p-cymenCl2)]2 (10 mol%)
AgNTf2 (40 mol%)

1(a-z) 2 3

K2CO3 (2 equiv.)
DCE, 120 °C, air, 16 h

Me 3ba 65%
OMe 3ca 57%

F 3da 75%
Cl 3ea 51%
CF3 3fa 63%

= H 3aa 67%

3ta 76%
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Scheme 3 Scope of ortho-monoalkynylation
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Scheme 4 Scope of ortho-dialkynylation

Furthermore, we evaluated the reaction scope for ortho-
dialkynylation (Scheme 4). Various 2-acylimidazole derivatives 
substituted at the meta and para positions on the benzene ring 
were well tolerated, affording the desired products (4aa–4sa) in 
good to excellent yields. The structure of the product 4sa was 
confirmed by X-ray diffraction analysis. Delightfully, the 
substrate 1t could afford the corresponding product 4ta in a 
relatively lower yield due to the steric hindrance. Encouragingly, 
the optimized reaction conditions were also effective for the 
formation of the thienyl product 4wa in 34% yield. Additionally, 

different N-substituents were well tolerated, yielding 4xa and 
4ya in 65% and 70%, respectively.

As the detailed mechanism remains to be elucidated, a series 
of preliminary mechanistic studies were conducted (Scheme 5). 
First, silver acetylide was successfully synthesized and subjected 
to oxidative ortho-alkynylation with Ag2O or without Ag2O 
under standard conditions, affording the desired product 3aa in 
65% and 60%, respectively (Scheme 5a). This result suggests 
that the reaction involves the formation of an alkynyl-Ag 
species, which may undergo transmetalation to generate a Ru-
alkynyl intermediate. Next, the addition of the radical scavenger 
TEMPO had no effect on the ortho-alkynylation process, 
indicating that a radical pathway is not involved (Scheme 5b). 
Furthermore, H/D scrambling experiments conducted in the 
absence of compound 2a' demonstrated the reversibility of C–
H bond cleavage (Scheme 5c). Finally, the kinetic isotope effect 
(KIE) values of KH/KD were determined to be 3.76 for the 
oxidative ortho-alkynylation and 3.34 for the ortho-alkynylation 
(Scheme 5d). These results suggest that C–H bond cleavage is 
the rate-determining step in both reactions.

b) Radical quenching control

d) Intermolecular kinetic isotope effect study

1a/[1a]'-d2

[Ru(p-cymene)CI2]2 (10 mol%)

K2CO3 (2 equiv.)

AgNTf2 (40 mol%)
Ag2O (2 equiv.)

DCE, 120 °C, air, 16 hTIPS

2 3aa/[3aa]-d1KH/KD = 3.76
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Scheme 5 Control experiments

Based on the aforementioned studies and previous research, 
we propose two possible catalytic mechanisms (Scheme 6). In 
the oxidative ortho-alkynylation using a TIPS-protected terminal 
alkyne 2a as the alkynyl source,15 the Ru(II) catalytic precursor 
is initially generated in the presence of AgNTf₂. This species 
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coordinates with substrate 1a and undergoes base-assisted 
deprotonation at the ortho-C−H bond to form the ruthenacycle 
intermediate I. Intermediate I then undergoes transmetalation 
with the in situ generated alkynyl silver species to afford the 
alkynyl–ruthenium complex II. Subsequent reductive 
elimination furnishes the product 3aa and a Ru(0) species, 
which is reoxidized by Ag₂O to regenerate the active Ru(II) 
catalyst. In the ortho-alkynylation using a TIPS-protected 
bromoalkyne 2a' as the alkynyl source,16 a similar six-
membered ruthenacycle intermediate I is formed and 
coordinates with substrate 2a'. This is followed by alkyne 
incorporation to generate intermediate IV, which undergoes 
base-assisted β-bromide elimination to deliver the product 3aa 
and KBr, along with the regeneration of the active Ru(II) catalyst.

O
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N
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TIPSL
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N
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Scheme 6 Plausible reaction pathways

To evaluate the practical applicability of this strategy, gram-
scale reactions and post-synthetic modifications were carried 
out (Scheme 7). The products 3aa and 4aa were obtained in 65% 
and 67% yields, respectively, on a 3.0 mmol scale. Subsequent 
deprotection of the TIPS group using TBAF afforded the terminal 
di-alkyne product 5 in 80% yield, representing a more 
synthetically valuable compound. Furthermore, the bromo-
substituted product 3ka underwent a Suzuki coupling reaction 
with phenylboronic acid to afford the corresponding product 6 
in 85% yield. Notably, the imidazole group could be readily 
removed to generate ester 7, which was further transformed 
into valuable derivatives 8 and 9, demonstrating the broad 

synthetic utility of this protocol. Finally, under standard 
conditions with a TIPS-protected bromoalkyne as the alkynyl 
source, 2-acylimidazole derivatives containing drug-like 
molecular scaffolds were well tolerated, and the target 
products 10 and 11 were obtained in good yields.
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Scheme 7 Gram-scale synthesis and transformations 

Conclusions
In summary, we have developed a Ru(II)-catalyzed ortho-
alkynylation of 2-acylimidazole derivatives using either TIPS-
protected terminal alkynes or TIPS-protected bromoalkynes. 
This protocol offers a valuable approach for the synthesis of 
diverse molecular building blocks and is particularly promising 
for late-stage functionalization, with potential applications in 
medicinal chemistry and materials science.
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