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Crystallization of non-convex colloids: the
roles of particle shape and entropy†
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Particle shape and entropy play critical roles in order–disorder transitions; examples include liquid crys-

tals and crystals formed from hard polyhedra. With few exceptions, colloidal crystals reported in the lit-

erature form from convex particles, for which the roles of particle shape and entropy are well explored.

However, recent experimental work has shown that a cubic diamond lattice, elusive but long sought

after for its wide and robust photonic band gap, can be assembled from non-convex particles. Here, we

use simulations to explore the crystallization of colloidal diamond from non-convex tetrahedral-lobed

patchy particles (TLPPs). Our results show how the entropic cost of binding, measured using umbrella

sampling, can be tuned through subtle changes to the particle geometry. Geometric constraints,

uniquely provided by the particle’s non-convex features, select the staggered bond conformation

required for cubic diamond. These constraints and the entropy associated with them can be

geometrically tuned to vary the flexibility of the bonds. Depending on the particle geometry, TLPPs form

liquid, diamond, or amorphous structures. Importantly, all geometrical parameters can be controlled in

experiments, which should lead to larger crystals with less disorder, improving the resulting photonic

band gap.

1 Introduction

Since the proposal over 35 years ago that periodic dielectric
structures could exhibit remarkable optical properties,1,2

including a photonic band gap,1–3 researchers sought to self-
assemble colloidal diamond.4–6 Despite intense activity on
synthesizing colloids with diamond-like bonds,4,7,8 a solution
eluded researchers until 2020, when it was demonstrated that a
novel kind of colloidal particle with a non-convex shape and
DNA-coated patches, could self-assemble into the desired dia-
mond structure.9

Particle shape plays an important role in the self-assembly of
different structures. It profoundly affects particle packing10 and
the entropy of self-assembled structures.11 Onsager showed
that changing particle shape from spherical to rod-like can
lead to nematic liquid crystalline order.12 Later studies
explored the myriad of structures, crystalline and amorphous,
that self-assemble from convex hard polyhedra.11,13 To date,

most studies of crystallization have focused on particles with
convex shapes.5,11,13–16

However, the only known colloidal particles that self-
assemble into a diamond crystal with a photonic band gap
are non-convex.9 This result, unanticipated by simulations or
previous experiments, suggests that using non-convex particles
is an important modality to explore for the self-assembly of
colloidal crystals.

While self-assembly involving non-convex particles leads to
a number of interesting structures in experiments, including
lock-and-key binding,17,18 chains,19–21 and assorted liquid crys-
talline phases,22 there are few examples of three-dimensional
crystalline order emerging from the self-assembly of non-
convex particles, and there has been only limited exploration
of 3D crystallization of non-convex particles in simulations.23–26

In this paper, we report simulations of non-convex colloidal
particles that self-assemble into a cubic diamond lattice, as
described by He et al.9 The particles consist of four overlapping
tetrahedrally oriented spherical lobes with DNA-coated sticky
patches nestled between the lobes (Fig. 1). The particles are
designed so that DNA-coated patches on neighboring particles
can bind only if their lobes interlock, as shown in Fig. 1a. The
interlocking lobes enforce the staggered conformation of bonds
required for a cubic diamond crystal.

The interlocking of these particles’ concave features is
designed to restrict the rocking and twisting of bonds between

a Department of Physics, New York University, New York, NY 10003, USA.

E-mail: pine@nyu.edu
b Department of Chemical and Biomolecular Engineering, New York University,

New York, NY 11201, USA
c Department of Chemistry and Simons Center for Computational Physical

Chemistry, New York University, New York, NY 10003, USA

† Electronic supplementary information (ESI) available. See DOI: https://doi.org/

10.1039/d5sm00158g

Received 14th February 2025,
Accepted 17th April 2025

DOI: 10.1039/d5sm00158g

rsc.li/soft-matter-journal

Soft Matter

PAPER

Pu
bl

is
he

d 
on

 2
1 

A
pr

il 
20

25
. D

ow
nl

oa
de

d 
by

 Y
un

na
n 

U
ni

ve
rs

ity
 o

n 
8/

6/
20

25
 2

:0
3:

34
 P

M
. 

View Article Online
View Journal

https://orcid.org/0000-0002-7466-602X
https://orcid.org/0000-0001-6029-5005
https://orcid.org/0000-0002-5637-0698
https://orcid.org/0000-0002-3304-6684
http://crossmark.crossref.org/dialog/?doi=10.1039/d5sm00158g&domain=pdf&date_stamp=2025-04-28
https://doi.org/10.1039/d5sm00158g
https://doi.org/10.1039/d5sm00158g
https://rsc.li/soft-matter-journal
https://doi.org/10.1039/d5sm00158g
https://pubs.rsc.org/en/journals/journal/SM


Soft Matter This journal is © The Royal Society of Chemistry 2025

particles when their patches bind. However, perfectly inter-
locked particles cannot rock or twist, imposing a prohibitive
entropic binding cost. Therefore, some rocking and twisting
must be allowed, but how much and how can it be controlled?
As we shall see, the degree of rocking and twisting can be
controlled by adjusting the radial extent of the patches
(concavity).

The use of patchy spheres to promote the self-assembly of
cubic diamond has long been studied using simula-
tions.5,16,26–33 In these studies, patches on the surface of
spheres are precisely arranged, shaped, and sized to enforce
the valence and, if possible, the bond conformation. Simula-
tions using patch geometries designed to enforce the staggered
bond conformation propose complex features that have proved

experimentally unrealizable thus far.5,31 Alternatively, binary
mixtures of patchy particles have been proposed to promote the
selection of even-numbered rings, as diamond has only six-
membered rings.16 Unfortunately, this does not exclusively
select the staggered bond conformation required for cubic
diamond. Similarly, triblock patchy particles of spheres32 and
rods,34 designed with patch-specific interactions or with a
hierarchy of bond interaction strengths, self-assemble into
mixtures of diamond-like polymorphs involving both staggered
and eclipsed bond conformations.

The present study is distinguished from these previous
studies in that the concave particle shape, rather than the
precise size and shape of the patches, is used to impose the
requisite staggered bond conformation. Moreover, the particles
have been realized experimentally.9 In contrast to a previous
study,26 the attractive interaction used in our simulations is
both short-ranged and narrow, which isolates and highlights
the role of entropy in the self-assembly, while better modeling
the experimental conditions used by He et al.9

In this paper, we report simulations of tetrahedral-lobed
patchy particles (TLPPs) with short-range DNA-like interactions
to explore the roles of particle shape and entropy. We find that
the influence of these two factors is subtler and more important
than one might expect. For example, the four lobes of a particle
must overlap to a considerable extent for crystallization to
occur. Moreover, these new simulations reveal how the entropic
contribution to the binding free energy can be tuned using the
radial extent of the patches, which affects the concavity of the
particles. They also elucidate entropy’s critical contribution to
the liquid-to-crystal phase transition and determining the
crystal-to-amorphous boundary, expanding on previous
work exploring the role of entropy in the crystallization of
convex particles.33,35 Finally, they highlight the subtle and
fundamental role of many-body interactions in stabilizing the
diamond phase.

2 TLPP geometry

The tetrahedral-lobed patchy particles (TLPPs) synthesized and
crystallized by He et al.9 comprise four spherical lobes arranged
in a tetrahedron and compressed into each other, with one oil
droplet at their center that is extruded and polymerized to form
four patches. The resulting geometry is shown in Fig. 1. The
non-convex geometry of the TLPPs is characterized by two
parameters: the compression ratio and the size ratio. The
compression ratio, depicted in Fig. 1c, quantifies the overlap
of neighboring spherical lobes. The size ratio, depicted in
Fig. 1e, quantifies the degree to which the patches extend into
the concave basin formed by three lobes surrounding each
patch. Together, the compression and size ratios determine the
concavity of the TLPPs, whether they can bond, and whether
they form the diamond structure.

A bond between two particles forms when two patches on
neighboring particles touch. As shown in Fig. 1a and b, bond-
ing can occur only if the patches extend sufficiently far out from

Fig. 1 SEM images and 3D renders depicting the geometry of a tetra-
hedral lobed patchy particle (TLPP) synthesized in experiment and input
into the molecular dynamics simulations, respectively. (a) Image of two
bound TLPPs at the ‘‘kissing’’ geometry, where the patches are touching
and the lobes are perfectly interlocked. (b) Image of two bound TLPPs at a
larger size ratio, where the lobes are not interlocked. The TLPPs are
capable of exploring a range of bond angles, off of the normal bond axis,
and torsion angles, about the normal bond axis (c) and (d) images high-
lighting a TLPP’s compression ratio dcc/2a, the ratio of the center-to-
center distance between two neighboring lobes dcc to the diameter of the
spherical lobes 2a. The compression ratio quantifies the degree to which
the lobes of the TLPP overlap each other. (e) and (f) Images highlight the
size ratio b/a of the TLPP, where b is the distance from the center of
the TLPP to the edge of the patches. The size ratio quantifies how far the
patches protrude and thus the the degree to which bound particles can
rock and twist relative to each other.
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the TLPP center, that is, only if the size ratio is greater than
some minimum value. When the size ratio is at this minimum
value, two TLPPs, with their lobes interlocked, as shown in
Fig. 1e, have seven contacts, two contacts for each of the three
interlocked lobes and one for the bound patches. We call
this the ‘‘kissing’’ geometry, depicted in Fig. 1a. When patches
extend beyond the kissing value, fewer contacts can form,
which allows the two particles some freedom to rock and twist
relative to each other while the patches remain bound, as in
Fig. 1b.

In addition to having the proper geometry, an attractive
interaction is necessary to enable binding and crystallization.
In experiment, the four patches are functionalized with DNA
that facilitates a short-range, attractive interaction. The
strength of the DNA interaction can be tuned by changing the
temperature during assembly. The four lobes of the TLPP
ensure that the patches are capable of binding only when two
TLPPs are rotated B601 with respect to each other, interlocking
the lobes as illustrated in Fig. 1a and b. The lobe–lobe interlock
ensures the staggered orientation of next-nearest neighbor
bonds, which is essential for the selective growth of cubic
diamond.9

The combination of directional interactions and non-convex
particle geometry means that two-particle binding is dictated by
a competition between the attractive DNA interaction and the
entropic cost of binding. The TLPP’s compression and size
ratios determine how tightly two particles interlock when they
bind, influencing both the entropy of binding and the disorder
of the final lattice.

As noted above, the kissing geometry is the most tightly
interlocked configuration possible and would lead to a ‘‘per-
fect’’ bond with no orientational disorder. However, such
bonds would also completely restrict the rocking (orientational)
and twisting (rotational) degrees of freedom of bound particle
pairs (see Fig. 1). For particles to establish these ‘‘perfect’’
bonds, they must relinquish all of their entropy, a sacrifice
that renders this tight fit entropically forbidden.

A similar phenomenon was noted by Sacanna et al.17 for
lock and key colloids whose binding is driven by a depletion
interaction between geometrically complementary features.
They showed that if the lock and key are made to fit perfectly,
the particles do not bind; instead, some free volume has to be
left to ensure that the entropic binding cost is not too high.
Similarly, we show in the following sections that retaining some
orientational and rotational freedom decreases the entropic
binding cost and promotes crystallization.35

One consequence of loosening the lobe interlock is the
introduction of orientational and rotational disorder in the
bonding. In the limit opposite to the ‘‘kissing’’ geometry,
the patches can protrude so far that they can bind and freely
rotate without any lobe–lobe interlock, as illustrated in Fig. 1b.
Here, there is little geometric bias to the angular conformation
of the bond, so bonds have random orientations and form an
amorphous structure instead of a diamond. By performing
molecular dynamics simulations in HOOMD-Blue,36 we vary
the TLPP geometry and map out a phase diagram of the various

structures that form. These include a colloidal liquid, where
particles are incapable of binding, a crystalline diamond phase,
where the particles bind and interlock, and an amorphous
phase, where the particles bind but do not interlock or have
long-range tetrahedral order. Throughout these regimes, we use
umbrella sampling to numerically determine the entropic cost
of binding for a pair of TLPPs. A quantitative understanding of
the entropy associated with different geometries gives us the
tools to manipulate the crystallization phase space by tuning
the interaction strength. This command of the geometric land-
scape for crystal assembly should prove useful in experiments
where highly tunable interactions like DNA are employed to
grow larger and less disordered crystals.

3 Computational approach

A simulation TLPP is made up of four large spheres (‘‘lobes’’),
which are typically about 1 mm in diameter, and four small
spheres (‘‘patches’’) designed to mimic the shape of real TLPPs.
The lobe centers are positioned at the corners of a tetrahedron
and partially overlap to achieve the desired compression ratio.
The patch centers are situated between the lobes and pushed
out from the TLPP center to achieve the desired size ratio. In
real TLPPs, the patches are created from a liquid droplet with a
fixed volume that fills the space between the spherical lobes.
Therefore, the size of the simulated patch sphere is chosen so
that the interstitial patch volume remains constant. This
ensures that, similar to real TLPPs, smaller size ratio patches
are flatter, whereas higher size ratio patches bead up on the
surface of the lobes. Each TLPP is treated as a single rigid body
within HOOMD-Blue. Additionally, a ninth non-interacting
sphere is placed at the center of the TLPP to serve as the center
of mass.

A full simulation comprises 2400 TLPPs that start evenly
distributed throughout a tall but narrow simulation box with
periodic boundary conditions. The box is 4a wide, where a is
the lattice constant of the perfect diamond. TLPP positions are
evolved using Langevin dynamics. Additional details defining
the TLPP geometry in simulation are given in ESI† Section S1.
The particles are placed in a constant field applying a force of
Fg = �0.025kBT/a in the vertical (z) direction, corresponding to a
nearly density-matched solution in experiments with gravita-
tional height hg E 14 mm. At the bottom of the tube is a hard
wall with seven ordered TLPPs immobilized on the surface to
template and seed the diamond growth for conditions under
which the crystal is thermodynamically favorable. In four
parallel simulations without a template, the time to nucleate
a crystal was found to vary dramatically and be much longer
than in the templated case. By templating the crystal, nuclea-
tion occurs faster and more consistently, allowing us to spend
more computational time observing crystal growth, necessitat-
ing only a single simulation for most TLPP geometries.

After the system has been initialized, it is left to evolve for
4 � 108 time steps. By studying the diffusion of one colloidal
particle and comparing it to experimental particle tracks, a
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simulation time step Dt was determined to be equivalent to
approximately 5 ms; 1 second E 2 � 105 Dt. Each particle’s
trajectory is governed by diffusion in the presence of a gravita-
tional field, subject to interactions with the hard wall at the
bottom and particle–particle interactions described in the next
section. Further simulation details are given in ESI† Section S1.

3.1 Wang–Frenkel interaction potential

Recent measurements made using total internal reflection
microscopy (TIRM) by Cui et al.37 have shown that the colloidal
DNA interactions we want to replicate are well-described by a
short-ranged Wang–Frenkel potential,38 which we use for the
attractive potentials in simulation. The potential has two para-
meters rc and s, which define the range of interaction, and a
third parameter e, which defines the depth of the well in kBT:

UWFðrÞ ¼ ea
s
r

� �2
�1

� �
rc

r

� �2
�1

� �2
for r � rc

0 for r4 rc

8<
: (1)

where

a ¼ 2
rc

s

� �2 3

2 rc=sð Þ2�1
h i

0
@

1
A

3

(2)

when s o r o rc, the potential is attractive with a minimum of
depth e, which models the range and strength of two particles’
DNA brushes binding. For r o s the potential becomes repul-
sive, so s is the radius of the compressed DNA brush where it
starts behaving like a hard sphere. The Wang-Frankel potential
UWF is designed so that it smoothly goes to zero as r approaches
rc. For our particles, rc is the maximal extent of the DNA brush.
For spheres of diameter 1 mm, a typical brush compression is
20 nm, with the maximal extent of the DNA interaction 10 nm
beyond that. We choose e to be 10kBT for the DNA interaction
on the patches, experimentally reached by lowering the tem-
perature of the sample below the melting by approximately one
degree. When two TLPPs come into contact, we allow the lobes

to interact with a weak Wang–Frenkel potential (e = 1kBT) to
mimic a small amount of depletion present in our experiments.

A separate regime of strong depletion and a wider range of
attraction, with depletant sizes up to 40% of a TLPP lobe, was
studied by Marı́n-Aguilar et al.26 By using a shifted 96–48
Lennard-Jones potential representing a Mie interaction, they
probed the phase space of crystallization when the attractive
interactions have a width of 10% of their spherical particle’s
diameter, an order of magnitude wider than our DNA-like
Wang–Frenkel potential. Here, we show that use of a narrow
interaction range, like those resulting from the use of DNA in
experiments, limits the crystallization phase space because the
particles must overcome the steep entropic barrier associated
with the concave particle shape, which would be compensated
for by a longer-ranged attraction.

4 Results and discussion
4.1 Overview

In a typical simulation, we allow the particles to sediment down
onto the templated substrate. Gravity creates a concentration
gradient in z, biasing the crystal to nucleate in the more
concentrated regions near the bottom. For favorable crystal-
lization conditions, particle–particle interactions lead to one of
three states: diamond, liquid, or amorphous. Diamond, on the
bottom, and liquid, on top, phases can be seen in the simula-
tion output of Fig. 2.

When the TLPP compression and size ratios allow lobes to
interlock and patches to touch, all bonds are staggered, and the
cubic diamond structure forms. However, when the patch size
ratio is too small, the recessed patches cannot bind, and a
liquid state results. Conversely, when the patch size ratio is too
high, patches bind, but lobes fail to interlock, leading to
randomly oriented bonds and an amorphous structure.
Between these extremes, patches bind while lobes interlock
with a finite free volume, allowing particles to explore various
configurations. Particles binding with finite free volume,

Fig. 2 (Left) Particle geometry input into the simulation. The radius of curvature of the patch is varied as a function of compression and size ratio to
conserve the volume of the patch as the geometry changes. (Middle) A typical simulation output. (Right) A depiction of the orientational freedom afforded
to particles that bind when the patch size ratio is larger and the lobe–lobe interlock is weaker.
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depicted in Fig. 2, possess higher entropy compared to rigidly
interlocked particles. In subsequent sections, we examine the
transition from liquid to crystalline to amorphous phases as
the size ratio increases, examining in some detail how these
phases correlate with the entropic cost of binding.

4.2 Structure determination

We set the compression and size ratios for each simulation and
then determine the final structure to be either crystal, liquid, or
amorphous based on the radial distribution function g(r) and
the structure factor S(k). The final structure varies as a function
of the height z due to the applied gravitational field, which
induces a concentration gradient. Therefore, g(r) and S(k) are
calculated as a function of height using the local density, which
is sufficiently constant over a dozen or more coordination
shells to obtain meaningful results.

The three phases, liquid, crystalline (diamond), and amor-
phous, are readily distinguished by their different radial

distribution functions g(r), which are shown in Fig. 3a. For
comparison, we have also simulated an assembly of spherical
patchy particles, compression ratio 0.0, and plot its g(r) in ESI†
Section 2. Additionally, the structure factor S(k) is calculated for
these structures, as shown in Fig. 3b. While S(k) and g(r) both
easily identify the diamond phase, we focus on g(r) because it
also distinguishes between the liquid and amorphous phases
we observe in our system.

The radial distribution function g(r) for diamond (Fig. 3)
exhibits a large first peak at the bond length calculated for a
perfect diamond crystal. Subsequent peaks correspond to the
second through fifth nearest neighbors of a perfect diamond
crystal. This phase is observed for intermediate values of the
size ratio where the lobes loosely interlock.

For the liquid phase, the first peak in g(r) is lower, broader,
and shifted to larger distances corresponding to the typical
particle–particle separation in the dilute phase (Fig. 3). At larger
distances, the correlation peaks diminish rapidly as particle

Fig. 3 Pair distribution functions g(r), structure factors S(k), and particle positions and bonds for three final structures obtained in MD simulations.
(a) The pair distribution function g(r) is plotted for three different patch size ratios at compression 0.70. Size ratio 1.30 (green) has patches that stick out far
enough to bind while still allowing the lobes to interlock. This geometry results in a structure with strong g(r) peaks. By comparing to the dashed lines,
which are the five first nearest neighbor distances for a perfect diamond of size ratio 1.30, it is clear that this structure is a diamond. For size ratio 1.20
(red), the patches are too recessed to be able to bind; g(r) has a large liquid peak, but no longer-range correlations. Size ratio 1.40 (blue) forms bonds
based on the first nearest neighbor peak but has no long-range order, forming an amorphous structure. (b) The structure factor S(k) for these structures
confirms that size ratio 1.30 (green) has long-range order. Comparing the peaks to the dashed lines, which correspond to the first seven S(k) peaks for a
perfect diamond, the structure can again be identified as diamond. Both size ratios 1.20 and 1.40 have no S(k) peaks, corresponding to a lack of long-
range order. (c)–(e) The particle centers of mass (blue) and their bonds (gray) for the final frame of the simulations with compression 0.70 and size ratios
(c) 1.20, (d) 1.30, and (e) 1.40.
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positions become increasingly uncorrelated. This phase is
observed for the smaller size ratios where no permanent
bonds form.

For the amorphous phase, the first peak in g(r) is observed
very near the diamond bond length, but with a diminished
height compared to the crystalline phase. However, for larger
distances, the correlations decay at roughly the same rate as for
unbound particles. We classify these disordered structures,
with short-range binding but no long-range correlations, as
amorphous. We characterize and discuss the disorder of the
amorphous phase in greater detail in Section 4.4.

This analysis is carried out for systems of different compres-
sion and size ratios. The results are summarized by the phase
diagram shown in Fig. 4. The phase diagram shows a crystalline
phase over a significant range of size ratios for compression
ratios near 0.7. Increasing the compression ratio causes the
range of size ratios where crystallization occurs to narrow. As
noted above, unbound particles form a liquid state at the lower
size ratios, while an amorphous phase is observed at the
highest size ratios.

4.3 Crystallization phase space

The phase space for crystallization as a function of size and
compression ratios is shown in Fig. 4. This diagram highlights
how the geometry of the concave particles influences the final
state of the system. A useful reference is the kissing geometry,
discussed in Section 2 and represented by the gray curve in
Fig. 4.

For size ratios below the kissing geometry, the patches on
the particles are too recessed to make contact and form bonds,
resulting in a liquid phase. As the size ratio increases past the
kissing geometry, the TLPPs remain unbound because the
entropic cost of binding is too high for bonds to form (see
Section 4.7 for further discussion).

At still larger size ratios, the particles can bind, forming
either a crystalline or an amorphous phase.

In the crystalline phase, indicated by the blue points in
Fig. 4, two particle patches can only bind if their lobes inter-
lock. This specific arrangement ensures that the bonds adopt a
staggered conformation, resulting in a cubic diamond lattice.

In the amorphous region, marked by the black points in
Fig. 4 for larger size ratios, the patches extend so far that
particles can bind without their lobes interlocking. Because
the bond orientations are not confined to the staggered con-
formation, these particles do not crystallize into cubic dia-
mond; instead, they form an amorphous structure.

When bond orientations are unrestricted, one might expect
the particles to behave like convex particles with tetrahedral
patches. In this scenario, tetrahedrally bound particles can
adopt various bond conformations, including staggered,
eclipsed, and random arrangements. Based solely on geometry,
several structures are possible, including cubic diamond, hex-
agonal diamond, and clathrate structures. Hexagonal diamond
is characterized by a 3 : 1 ratio of staggered to eclipsed
conformations, while clathrate structures comprise entirely
eclipsed conformations.

In previous simulations of convex patchy particles, mixtures
of these structures could lead to amorphous formations.30,39

Moreover, the structures observed could depend on kinetic
factors. In some simulations, kinetic factors produced clathrate
structures, even though free-energy calculations showed that
diamond structures are always thermodynamically favored.39

Therefore, if our system were allowed to evolve over a
significantly longer timescale, it could potentially anneal into
cubic diamond, hexagonal diamond, or other tetrahedrally
bound phases. Even when these other phases can form through
annealing, the unrestricted bond conformations will lead to
competition among multiple phases within the system.30,39

While analysis of the pair correlation function g(r) indicates
that all the blue points in the phase diagram are crystalline, the
crystals all differ in a few key ways. First, the degree of interlock,
which is related to the entropic cost of binding, is different for
different size ratios. Particles with larger size ratios have more
rotational freedom in their bonds. Second, the rate of growth of
the crystals differs for different geometries. The growth is
relatively slow for smaller size ratios and faster for larger size
ratios. Last, the entropic cost of binding varies with particle
geometry, affecting all aspects of the assembly. In the following
sections, we discuss and analyze all of these trends.

4.4 Torsion analysis

Understanding the degree of interlock for the various geome-
tries requires identifying all the bonds and determining how far
they are from a perfect staggered conformation. This provides

Fig. 4 Phase space of structures found in MD simulations based on TLPP
geometry. At lower size ratios, the patches are too recessed, and the
entropic cost of binding is too high, so the particles remain unbound in a
liquid state. Once the patches protrude further, the TLPPs bind and form
diamond for a large range of size ratios (at moderate compression). Once
the size ratio is increased to the point where TLPPs no longer interlock, the
particles bind and form an amorphous structure. The size ratio delineating
the crystalline regime from the liquid and amorphous regions depends on
the compression ratio. The gray line shows the ideal kissing geometry,
which is the predicted absolute cutoff; to the left of this line, the diamond
geometry cannot be formed.
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insight into local disorder in the bonds of the crystalline
samples and how the transition from a crystalline to an
amorphous state is associated with weakening the lobe–lobe
interlock.

The bonds formed during a simulation are identified by
finding nearest neighbors whose patches are in contact. To
quantify how tightly interlocked the bound TLPPs are, we
calculate the torsion angle of each bond. The torsion angle,
defined as rotation about the axis of the bond and depicted in
Fig. 5, is 01 for TLPPs aligned in the eclipsed conformation and
601 for perfectly staggered TLPPs. After analyzing all of the
bonds in a simulation of a given geometry, the distribution of
the torsion angles is analyzed.

The distributions for three characteristic size ratios at
compression ratio dcc/2a = 0.70 are plotted in Fig. 5. Referring

to the phase diagram in Fig. 4, the three torsion distributions
plotted correspond to: b/a = 1.26, the lowest size ratio for which
binding is observed; b/a = 1.30, a point near the middle of the
crystalline regime; and b/a = 1.40, an amorphous structure
assembled from the largest size ratio studied.

For all three size ratios, the torsion angle distributions peak
at 601. However, the widths of these distributions vary widely.
As shown in Fig. 5a, the standard deviation of the torsion angle
for the lowest crystallizing size ratio is s = 51. This corresponds
to the least rotational freedom required to make binding
entropically favorable. Comparing the two crystalline systems,
the standard deviation in the torsion is increased from s = 51 to
s = 71 as the size ratio increases from b/a = 1.26 to b/a = 1.30.
The torsion standard deviation increases with the size ratio
because the more extended patches can bind with less lobe

Fig. 5 Distributions of torsion angle between bound particles for various patch size ratios at compression 0.70 and standard deviation of torsion
distributions for compression 0.70. (inset) TLPP and stick model of two particles binding with each other and three other neighbors. The bond in the
middle of the two central TLPPs defines an axis about which the torsion angle y of the bond can be measured. (a) The distribution of torsion angles for the
lowest size ratio that crystallizes b/a = 1.26. The bonds that form are Gaussian distributed about 601 with a standard deviation of s = 51, meaning they are
in the staggered conformation with relatively small angular fluctuations. (b) When the size ratio is increased to b/a = 1.30, the bonds are still peaked at 601.
However, the width of the distribution has increased to s = 71. The larger size ratio affords the bound particles more rotational freedom. (c) The largest
size ratio b/a = 1.40 has a flatter distribution. Any conformation is allowed because the patches can bind without the interlocking lobes. The relatively
small peak at 601 is due to weakly attractive depletion interactions between lobes; the staggered conformation maximizes the number of such contacts
and thus lowers the free energy slightly. (d) Plotting the torsion standard deviation for compression dcc/2a = 0.70 as a function of size ratio shows the
standard deviation increases continuously with size ratio up to b/a = 1.38, where it then jumps from s = 101 to s = 331 at b/a = 1.39.
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interlock, leaving more free volume for the TLPPs to explore.
The final amorphous size ratio shown, b/a = 1.40, differs
significantly from the previous two. The distribution is flatter
with a slight bias towards the staggered conformation, but all
conformations from staggered to eclipsed are represented.
Clearly, the TLPPs’ lobes no longer restrict the bonds to form
only near the staggered conformation. The patches protrude far
enough at size ratio b/a = 1.40 that they can bind regardless of
the orientation of the lobes.

The torsion angle distributions are analyzed for every point
in the phase space and the standard deviation for all size ratios
at compression dcc/2a = 0.70, the same geometries discussed in
the previous section, are plotted in Fig. 5d. The standard
deviation increases continuously as the size ratio is increased
from b/a = 1.26, for which s = 51, up to b/a = 1.38, the highest
size ratio that crystallizes, for which s = 101, which corresponds
to a looser interlock.

When the size ratio increases from b/a = 1.38 to b/a = 1.39,
the standard deviation increases discontinuously from s = 101
to s = 331. The discontinuous jump in the torsion angle
standard deviation occurs at precisely the same point where
the structure transitions from crystal to amorphous in Fig. 4,
which agrees with our expectation that the amorphous struc-
ture is associated with a lack of lobe–lobe interlock and
staggered conformation binding.

4.5 Kinetics of crystallization

In addition to the analysis of the final structures, it is also
useful to study how each simulation reaches its final state. Does
the growth of the crystals depend on the compression ratio and
size ratio of the particles? We address this question by analyz-
ing the rate of bond formation for all points in the crystalline
and amorphous regions of the phase space (Fig. 4).

In Fig. 6, we plot the number of bonds per particle as a
function of simulated time for the same conditions discussed
in the previous section (dcc/2a = 0.70), two that ultimately
crystallize (b/a = 1.26 and b/a = 1.30) and one that ends up as
an amorphous structure (b/a = 1.39). Two particles are deter-
mined to be bound when their patches are close enough
together to interact via their WF attractive potentials. In all
three cases, the number of bonds formed per particle increases
sharply with time as particles concentrate and begin to bind. All
geometries’ number of bonds then plateau at approximately 104

seconds. At this plateau, particles are actively binding and
unbinding, but not crystallizing. After the plateau, size ratios
b/a = 1.26 and b/a = 1.30 both begin to sharply rise again.
Inspection of the simulation around these times shows that
crystals begin to nucleate on the surface at approximately 3 �
104 seconds (b/a = 1.30) and 4 � 104 seconds (b/a = 1.26). This
second increase in bond number is then associated with the
particles crystallizing into diamond.

For diamond, the maximum number of bonds per particle is
two since each particle has four bonds, each shared across two
neighbors. Particles in the liquid phase have zero bonds, and
particles that are part of crystal defects and boundaries have
fewer than four bonds. Since every crystal coexists with some

liquid (see Fig. 2), the number of bonds per particle is always
less than the maximal value of 2.

The green and blue curves in Fig. 6 show the bond formation
kinetics for two simulations that crystallize. The number of
bonds per particle does not plateau by the end of the simula-
tion, indicating that the crystals are still growing when the
simulation terminates. The initial rate of bond formation, the
initial slope of the curves, is greater for TLPPs with the larger
size ratio b/a = 1.30 (green) compared to those with smaller size
ratio b/a = 1.26 (blue). The rate of bond formation for the
largest size ratio b/a = 1.40 (red), associated with an amorphous
structure, is even higher. Generally, for a given compression
ratio, the initial rate of bond formation is faster for larger size
ratios. The increased rate of bond formation is associated with
greater rotational freedom (and greater entropy), which poses
fewer constraints on binding.17,35

In contrast to the other two size ratios, the number of bonds
per particle does plateau for size ratio b/a = 1.40 and it plateaus
at a value of 0.6, well below two bonds per particle. The
amorphous structures have far fewer bonds than the diamond
lattice due to the disorder in the bond conformation. When
bonds can be formed in non-staggered conformations, a parti-
cles’ nearest and next nearest neighbors can impede bonding to
all of its patches.

4.6 Umbrella sampling for pairs of TLPPs

While the previous simulations provide insight into the struc-
tures formed by different TLPP geometries, they do not provide
quantitative information about the entropy of bound and
unbound TLPPs. As noted previously, the entropic cost of
binding plays an integral role in determining the equilibrium
structure formed by the TLPPs. To understand the entropic

Fig. 6 Number of bonds per particle in simulations as a function of time.
At the compression ratio of 0.70 for three size ratios, we see that the rate
of bond formation increases as the size ratio increases. Size ratios 1.26
(blue) and 1.30 (green) form diamond but size ratio 1.30’s more protruded
patches allow it to grow faster. Size ratio 1.40 (red) quickly plateaus at a
lower number of bonds, indicating an amorphous phase.
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cost, we use the umbrella sampling method,40 introduced by
Torrie and Valleau,41 to find the free energy of binding of two
TLPPs in an MD simulation.

If an MD run samples all of phase space, the system is
ergodic, and the ensemble-averaged probability distribution of
center-to-center distances x of two interacting TLPPs equals the
time-averaged probability distribution. In the case studied
here, two particles diffusing and interacting typically do not
sample all of phase space because of the large entropic barrier
that must be overcome to reach the bound state. Umbrella
sampling addresses this problem by introducing a biasing
potential Ub(x) to ensure that the particles are able to sample
the full free energy landscape despite a large entropic barrier.
The biasing potential restricts a single simulation to a window
of separations; multiple simulations need to be run, shifting
the biasing potential to probe the full range of separations from
bound to unbound states. The entire set of simulations with
different biasing potentials can be analyzed to determine the

free energy over a wide range of x using the weighted histogram
analysis method (WHAM),42 as implemented by Grossfield.43

When performing umbrella sampling simulations, it is impor-
tant to choose an appropriate Ubias to ensure that the system is
ergodic. For studying the free energy of two particles binding, we

use a harmonic biasing potential: Ubias ¼
1

2
kðx� x0Þ2, where k is

the spring constant, x is the center-to-center distance, and x0 is the
rest length of the spring. The two TLPPs are allowed to diffuse,
rotate, and interact with each other while also being connected by a
spring, as illustrated in Fig. 7a. The spring keeps the particles at
separations near their rest length, giving the particles sufficient
time to sample those separations. The full range of separations is
sampled by performing simulations with springs of various rest
lengths, spanning from separations at which the particles are
bound (x B 1 mm) to separations at which particles are unbound
(xB 2 mm). Further discussion of the spring constants used can be
found in ESI† Section S3.

Fig. 7 (a) Depiction of a typical umbrella sampling simulation. Two particles have their centers of mass connected by a harmonic biasing potential
(spring), while they are allowed to freely rotate, diffuse, and interact with each other. The harmonic potential biases the particles to sample separations
around their rest length and overcome free energy barriers. Simulations with different rest lengths sample the range of separations from bound to
unbound. (b) Free energy of two TLPPs binding for three different TLPP geometries with compression ratio dcc/2a = 0.7 and size ratios b/a = 1.15 (blue),
b/a = 1.30 (orange), and b/a = 1.40 (green). At the lowest size ratio of 1.15, the patches are geometrically incapable of binding and interacting, so there is
no free energy minimum due to the attractive potential. At higher size ratios, the patches can bind, leading to a local minimum of free energy at the
separation. (c) Entropic barrier as a function of size ratio for compression dcc/2a = 0.70. (d) Free energy minimum of the potential well as a function of size
ratio for compression dcc/2a = 0.70.
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The spring’s rest length determines the center of the sam-
pling region, and the spring constant determines its width.
Larger spring constants are associated with sampling a smaller
range of separations. When sampling particle separations close
to binding, we use a spring constant of 3265kBT/mm2, which
corresponds to a range of separations approximately 20 nm
wide. This ensures that we effectively sample the free energy
landscape where the entropic barrier and potential well are
strongest, out to separations of approximately x = 1.37 mm. At
larger separations x 4 1.38 mm, the particles do not interact
very strongly, and a weaker spring k = 326.5kBT/mm2 is used,
which allows us to sample larger ranges of separations more
efficiently. After performing 14 simulations, 10 with the strong
spring and 4 with the weaker spring, the distributions are
analyzed with WHAM, and the free energy as a function of
separation between the two particles F(x) is determined.

4.7 Free energy of binding

The free energy of binding for TLPPs at compression dcc/2a =
0.70 with three different size ratios are shown in Fig. 7b. Two
key features characterize the free energy landscapes: (1) the
entropic barrier and (2) the free energy well. The TLPPs with the
lowest size ratio b/a = 1.15 have patches so recessed that they
are geometrically incapable of binding. As the particles
approach each other, their lobes interlock, restricting their
orientational degrees of freedom and creating a rising entropic
barrier. The TLPPs’ entropic barrier is much higher than that
found for simple spheres, whose free energy is shown in ESI†
Section S4. The free energy curve has no stable position along x
and is determined only by the entropy of the TLPPs.

Particles with size ratios b/a = 1.30 and b/a = 1.40 both have
patches that protrude enough to bind. For these geometries,
there is a free energy well at small separations associated with
the attractive Wang–Frenkel potential. The free energy well is a
local minimum and is located at a distance equal to the size
ratio; size ratios of 1.30 and 1.40 have minima located at 1.3
and 1.4 mm, respectively. Outside of the well, the increase in the
free energy of binding is solely due to the entropic cost
associated with bringing two TLPPs together, which is shown
in ESI† Section S4.

The entropic part of the free energy changes very little with
the size ratio; the primary effect of changing the size ratio is
moving the position of the potential minimum. Because the
entropic barrier increases with decreasing particle separation,
moving the potential minimum increases the entropic barrier
to binding, as shown in Fig. 7c. The lower entropic barrier for
higher size ratios is the reason that the rate of bond formation
is higher at high size ratios, a correlation noted in the previous
section. The entropic barriers for all TLPP geometries studied
are shown in ESI† Section S5.

Away from the potential well, the free energy curves are quite
similar. At large separations x 4 1.8 mm, there is no potential
well and no entropic cost; the particles are too far apart to
interact or restrict each other’s degrees of freedom.

The depth of the free energy minimum for bound particles
also changes with the size ratio. Fig. 7d shows the local free

energy minimum due to the attractive Wang–Frenkel potential.
For size ratios b/a o 1.25, increasing the size ratio causes the
depth of the potential well to decrease as expected. However, at
size ratios b/a 4 1.25 the depth of the well plateaus. Comparing
size ratios b/a = 1.30 and b/a = 1.40 in Fig. 7b, it is evident that
the attractive wells are getting wider instead of deeper as the
size ratio is increased. This is due principally to the increase in
bond angles that are permitted when the patches protrude
farther, studied in ESI† Section S6.

4.8 Effect of concentration

As noted above, the potential well obtained from umbrella
sampling is a local minimum of the free energy; the free energy
is smaller at large particle separations, as seen in Fig. 7d. Thus,
for two TLPPs, the 10kBT attractive interaction used in the MD
crystallization simulations is, on its own, insufficient to
have dimerization be thermodynamically favored under very
dilute conditions. By contrast, the crystallization experiments
and simulations are conducted at high concentrations. In the
crystallization simulations, the particles’ chemical potentials
contribute to the free energy, which, at high enough concentra-
tions, tilts the free energy landscape to make crystalline
binding energetically favorable. In our simulations and experi-
ments, gravity induces a concentration gradient of particles
which promotes the nucleation of crystals at the highest con-
centrations. After nucleation, the crystals grow to some term-
inal height which is associated with the equilibrium particle
concentration, shown in ESI† Section S8.

The effect of concentration on the free energy is highly
complex in this case and many-bodied, as it combines effects
from multiple particles being interlocked and chains of parti-
cles interacting through specific bonds. Therefore, to illustrate
how crowding alone influences the binding free energy for
these interlocked particles, we perform umbrella sampling
simulations on two TLPPs, interacting as described in the
previous section but in a bath of other TLPPs with which they
cannot bind. In this case, both particles interact with all other
particles through a 1kBT attractive Wang–Frenkel potential,
both for the patches and the lobes. This weaker patch inter-
action facilitates the bath particles’ volume exclusion but is too
weak for them to bind to the two TLPPs of interest. By control-
ling the number of bath particles surrounding the two bound
TLPPs, we can analyze the free energy of dimerization at
different surrounding concentrations.

The free energy for TLPPs with compression ratio dcc/2a =
0.70 and size ratio b/a = 1.30 is plotted at three different
concentrations in Fig. 8. The highest concentration, 3.8 parti-
cles/a3, is the terminal concentration for which particles
bind (see ESI† Section S8). In Fig. 8, we see that for a concen-
tration of 3.8 particles/a3 or higher, the potential well is
shifted sufficiently low to become the global minimum of free
energy, meaning that the crystal is the equilibrium structure.
Moreover, the entropic free energy barrier is lowered from
approximately 9kBT to 4kBT, which improves the crystallization
kinetics.
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4.9 Effect of interaction strength

Another way to lower the free energy of the bound state is to
increase the strength of the attractive interaction, which pushes
the minimum of the well deeper so that particles can bind at
lower concentrations. This further restricts the motion of the
bound particles and thus reduces the entropy, but the entropic
cost in free energy is compensated by the increased binding
energy. Fig. 9 shows the phase space of crystallization as a
function of patch size ratio and patch–patch interaction
strength for TLPPs with a compression ratio of 0.70. We see

that increasing the depth of the potential from 10kBT to 12.5kBT
causes the TLPPs to start crystallizing at a size ratio of 1.22
instead of 1.25. The extra 2.5kBT of interaction is enough to
compensate for the entropic cost of shrinking the patches, as
seen by comparison to Fig. 7c where the free energy difference
between size ratio 1.22 and 1.25 is approximately 1.5kBT. In
experiments, the strength of the attractive DNA-mediated inter-
action can be adjusted by changing the temperature, giving us
fine external control over this contribution to the energy.

5 Conclusions and outlook

The crystallization of TLPPs into a cubic diamond lattice depends
critically on their non-convex features. These non-convex features,
realized here by partially overlapping tetrahedrally oriented sphe-
rical lobes, are essential for creating a physical interlock. This
interlock restricts the relative orientation of the bonds between
particles and ensures the staggered conformation necessary for
achieving the cubic diamond structure.

The physical interlock mechanism facilitated by non-convex
particles contrasts strongly with previous work that sought to
realize the requisite staggered conformation using convex
particles decorated with elaborate patterns of attractive
patches,5,31 which have little chance of being realized experi-
mentally. Moreover, other schemes that seek to enforce valence
but do not strictly enforce 100% staggered bond conformation
inevitably result in a mixture of bond conformations and thus
do not crystallize into cubic diamond.5,16,31

It is informative to contrast how atomic and molecular
systems achieve the desired staggered conformation with how
colloids achieve it. In both cases, nearest neighbors must bind
while the bonds of next-nearest neighbors must adopt a stag-
gered conformation. In molecules such as ethane, the nearest-
neighbor carbon atoms are bound by a covalent bond (C–C),
which lowers the system’s energy by allowing the electronic
wave function to spread out. The staggered conformation is
preferred to any other conformation because of the electrostatic
repulsion between different C–H bonds. Thus, the simulta-
neous existence of a strong attractive bond between carbon
atoms and a repulsive electrostatic interaction between C–H
bonds leads to a staggered conformation. Similar considera-
tions give rise to the staggered conformation of carbon atoms
in a cubic diamond crystal. In colloids, it is difficult to
simultaneously realize a strong short-range attractive inter-
action between colloidal particles (absent irreversible aggrega-
tion due to van der Waals attraction) and a long-range
repulsion that can stabilize the staggered conformation. This
is particularly true in aqueous solvents, where the Debye
screening length is usually much smaller than the particle
diameter. Therefore, we use DNA hybridization for short-
range binding of nearest neighbors and the steric repulsion
afforded by the non-convex shape of the tetrahedral lobes to
maintain the staggered conformation.

In both the atomic and colloidal systems described here,
the short-range interaction binding nearest neighbors is

Fig. 8 Free energy of binding in a batch of TLPPs for compression dcc/2a
= 0.70 and size ratio b/a = 1.30. At the given patch–patch interaction
strength of 10kBT, the particle concentration of the liquid at the interface
between the liquid and the crystal is 3.8 particle/a3. Below this concen-
tration, the local free energy minima is positive. However, at the concen-
tration of 3.8 particle/a3, the local free energy minima becomes the global
minima. The free energy is negative, which indicates that the TLPPs prefer
to bind in the thermodynamic limit.

Fig. 9 Crystallization phase space for TLPPs of compression ratio 0.7 with
varying patch–patch interaction strengths. When the patches interact
more strongly, higher kBT, the particles bind and crystallize at lower size
ratios. The extra binding strength can compensate for the increased
entropic cost at lower size ratios and make binding energetically favorable.
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attractive—covalent bonding vs. DNA hybridization—while the
next-nearest neighbor interaction that favors the staggered
conformation is repulsive—electrostatic repulsion vs. steric
repulsion between concave surface structures. Different sys-
tems, one quantum mechanical and the other classical, share
common features but demand different solutions to achieve the
same overarching goal.

A nuance of the colloidal system is the critical role played by
entropy. As detailed in this article, the interlocking of lobes is
associated with an entropic cost that can be prohibitive for
crystallization if neighboring particles approach each other too
closely. Fortunately, the entropic cost of binding can be
adjusted by tuning the non-convex features of the particles,
most notably by experimentally controlling how far the patches
protrude (the size ratio) and also by controlling the degree of
overlap of the lobes (the compression ratio).

The simulations provide an improved understanding of the
role of entropy and non-convex particle geometry. They also
provide a detailed guide for using non-convex features on
particles to tune entropy and control orientational interactions.
These advances open up new strategies for manipulating inter-
actions between particles, enabling the self-assembly of struc-
tures never previously realized in colloidal science.
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9 M. He, J. P. Gales, É. Ducrot, Z. Gong, G.-R. Yi, S. Sacanna
and D. J. Pine, Nature, 2020, 585, 524–529.

10 A. Donev, I. Cisse, D. Sachs, E. A. Variano, F. H. Stillinger,
R. Connelly, S. Torquato and P. M. Chaikin, Science, 2004,
303, 990–993.

11 P. F. Damasceno, M. Engel and S. C. Glotzer, Science, 2012,
337, 453–457.

12 L. Onsager, Ann. N. Y. Acad. Sci., 1949, 51, 627–659.
13 R. Ni, A. P. Gantapara, J. De Graaf, R. Van Roij and

M. Dijkstra, Soft Matter, 2012, 8, 8826–8834.
14 P. N. Pusey and W. Van Megen, Nature, 1986, 320, 340–342.
15 E. Bianchi, J. Largo, P. Tartaglia, E. Zaccarelli and

F. Sciortino, Phys. Rev. Lett., 2006, 97, 168301.
16 A. Neophytou, D. Chakrabarti and F. Sciortino, Proc. Natl.

Acad. Sci. U. S. A., 2021, 118, e2109776118.
17 S. Sacanna, W. T. M. Irvine, P. M. Chaikin and D. J. Pine,

Nature, 2010, 464, 575–578.
18 Y. Wang, Y. Wang, X. Zheng, G.-R. Yi, S. Sacanna, D. J. Pine

and M. Weck, J. Am. Chem. Soc., 2014, 136, 6866–6869.
19 D. J. Ashton, R. L. Jack and N. B. Wilding, Soft Matter, 2013,

9, 9661.
20 K. V. Edmond, T. W. P. Jacobson, J. S. Oh, G.-R. Yi,

A. D. Hollingsworth, S. Sacanna and D. J. Pine, Soft Matter,
2021, 17, 6176–6181.

21 J. S. Oh, S. Lee, S. C. Glotzer, G.-R. Yi and D. J. Pine, Nat.
Commun., 2019, 10, 1–10.

22 C. Fernández-Rico, M. Chiappini, T. Yanagishima, H. De
Sousa, D. G. A. L. Aarts, M. Dijkstra and R. P. A. Dullens,
Science, 2020, 369, 950–955.

23 J. De Graaf, R. Van Roij and M. Dijkstra, Phys. Rev. Lett.,
2011, 107, 155501.

24 C. Avendaño and F. A. Escobedo, Curr. Opin. Colloid Inter-
face Sci., 2017, 30, 62–69.

25 R. L. Marson, E. G. Teich, J. Dshemuchadse, S. C. Glotzer
and R. G. Larson, Soft Matter, 2019, 6288–6299.

26 S. Marn-Aguilar, F. Camerin and M. Dijkstra, J. Chem. Phys.,
2022, 157, 154503.

27 F. Romano, E. Sanz and F. Sciortino, J. Chem. Phys., 2010,
132, 184501.

28 E. G. Noya, C. Vega, J. P. K. Doye and A. A. Louis, J. Chem.
Phys., 2010, 132, 234511.

29 E. Bianchi, R. Blaak and C. N. Likos, Phys. Chem. Chem.
Phys., 2011, 13, 6397.

30 F. Romano, E. Sanz and F. Sciortino, J. Chem. Phys., 2011,
134, 174502.

Paper Soft Matter

Pu
bl

is
he

d 
on

 2
1 

A
pr

il 
20

25
. D

ow
nl

oa
de

d 
by

 Y
un

na
n 

U
ni

ve
rs

ity
 o

n 
8/

6/
20

25
 2

:0
3:

34
 P

M
. 

View Article Online

https://github.com/pine-research-group/Gales-Nonconvex-Colloids-2025
https://github.com/pine-research-group/Gales-Nonconvex-Colloids-2025
https://doi.org/10.1039/d5sm00158g


This journal is © The Royal Society of Chemistry 2025 Soft Matter

31 F. Romano and F. Sciortino, Nat. Commun., 2012, 3,
975.

32 A. B. Rao, J. Shaw, A. Neophytou, D. Morphew, F. Sciortino,
R. L. Johnston and D. Chakrabarti, ACS Nano, 2020, 14,
5348–5359.

33 I. Q. Matos and F. A. Escobedo, J. Phys. Chem. B, 2023, 127,
3746–3755.

34 A. Neophytou, V. N. Manoharan and D. Chakrabarti, ACS
Nano, 2021, 15, 2668–2678.

35 X. Mao, Q. Chen and S. Granick, Nat. Mater., 2013, 12,
217–222.

36 J. Glaser, T. D. Nguyen, J. A. Anderson, P. Lui, F. Spiga,
J. A. Millan, D. C. Morse and S. C. Glotzer, Comput. Phys.
Commun., 2015, 192, 97–107.

37 F. Cui, S. Marbach, J. A. Zheng, M. Holmes-Cerfon and
D. J. Pine, Nat. Commun., 2022, 13, 2304.

38 X. Wang, S. Ramrez-Hinestrosa, J. Dobnikar and D. Frenkel,
Phys. Chem. Chem. Phys., 2020, 22, 10624–10633.

39 E. G. Noya, I. Zubieta, D. J. Pine and F. Sciortino, J. Chem.
Phys., 2019, 151, 094502.

40 D. Frenkel and B. Smit, Understanding molecular simulation:
from algorithms to applications, Elsevier, 3rd edn, 2023.

41 G. M. Torrie and J. P. Valleau, J. Comput. Phys., 1977, 23, 187–199.
42 S. Kumar, J. M. Rosenberg, D. Bouzida, R. H. Swendsen and

P. A. Kollman, J. Comput. Chem., 1992, 13, 1011–1021.
43 A. Grossfield, WHAM: The Weighted Histogram Analysis

Method, version 2.0.10, https://membrane.urmc.rochester.
edu/wordpress/?page_id=126.

Soft Matter Paper

Pu
bl

is
he

d 
on

 2
1 

A
pr

il 
20

25
. D

ow
nl

oa
de

d 
by

 Y
un

na
n 

U
ni

ve
rs

ity
 o

n 
8/

6/
20

25
 2

:0
3:

34
 P

M
. 

View Article Online

https://membrane.urmc.rochester.edu/wordpress/?page_id=126
https://membrane.urmc.rochester.edu/wordpress/?page_id=126
https://doi.org/10.1039/d5sm00158g



