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The size ratio effect on the microstructure and
magnetization of a bidisperse magnetic colloidal
suspension†
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Heberth Diestra-Cruz, d Obidio Rubio, e Ubaldo M. Córdova-Figueroa f and
Glenn C. Vidal-Urquiza *g

This research examines how the size ratio influences the microstructure and time-dependent magnetization

in a bidisperse magnetic colloidal suspension under a uniform magnetic field. Two types of particles model

the bidisperse suspension: the small particles of radius Rs and the large particles of radius Rl. The size ratio,

x = Rl/Rs, defines the particle size difference. The total volume fraction of the suspension, f, is obtained

from f = fs + fl, where fs and fl are the volume fractions of the small and large particles, respectively. The

magnetic dipole–dipole interaction among the small particles and the large ones is characterized by the

dipolar coupling parameters ls and ll, respectively. The interactions among the applied magnetic field and

the magnetic dipoles of the small and large particles are measured by the Langevin parameters as and al,

respectively. This study performs Brownian dynamics (BD) simulations of a bidisperse suspension comprising

N = 1000 particles, with f = 10�3 and fs = fl = 5 � 10�4. Also, as ranges from 0 to 1000, and ls from 5 to

30. The size ratio, x, takes values of 1, 2 and 3. The values of ll and al are computed by the parameters

aforementioned by assuming that all particles exhibit the same saturation magnetization. Our results show a

rich variability in the microstructure as x increases. As the large particles increase in size, they exhibit a

greater magnetic dipole moment, which induces a non-uniform local magnetic field around them. The sur-

rounding small particles then aggregate with the large ones, driven by this local magnetic field. Small as

values lead to the formation of flux-closure structures such as rings of small and large particles as well as

shell-like structures, which consist of small particles surrounding the large ones. The formation of these

microstructures directly affects time-dependent magnetization of the suspension, which exhibits a decay

with time in the limit of long times. These findings have important implications for synthesizing magnetic

colloidal suspensions with enhanced properties.

1 Introduction

A magnetic colloidal suspension is a dispersion of very small
magnetic particles immersed in a non-magnetic carrier fluid.1

Generally, these particles are covered by thixotropic agents or
surfactant molecules2–5 in order to avoid particle aggregation
caused by attractive short-range interactions as a consequence
of their tiny sizes. Also, because of these small sizes, the
particles exhibit Brownian motion originating from random
collisions between them and the molecules of the carrier
fluid.6–8

The magnetic nature of the particles relies on the formation
of magnetic multi-domains within them. However, when the
particle size ranges from 20 nm to 100 nm approximately, these
multi-domains are reduced to mono- or single-domains that lock
onto the particle (single-domain ferromagnetic behavior).9,10

Hence, each particle bears an intrinsic magnetic dipole moment
rigidly fixed at its center of mass, which constitutes the target
system of this work.

Particles interact with each other because of their dipole
magnetic moments. Depending on the interaction strength,
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this can lead to a self-assembled aggregation (or clustering) process
into structures commonly called clusters.11–14 For instance, for
dipole moments located at the center of mass, particles typically
assemble into clusters arranged in a head-to-tail configuration,
resulting in chain-like or ring-like structures.15–20

The clustering process and the morphology of the resulting
clusters can also be influenced by other factors, such as the
particle volume fraction in the suspension,21,22 the application
of an external magnetic field,23–25 the application of a shear
flow,26–28 etc. The resulting variability in the microstructural
behavior in the suspensions leads to modification of its macro-
scopic properties including optical (birefringence),29–31 rheologi-
cal (viscosity, yield stress, etc.)32–37 and magnetic (magnetization
and magnetic susceptibility) properties.17,38–40 Therefore, by steer-
ing the microstructure suspension, the magnetic colloidal suspen-
sions can become tunable, which allows them to be used as the
working fluid in several devices for engineering (e.g. shock
absorbers41–43 and anti-seismic devices44–46) and biomedical (e.g.
drug-delivery systems47 and tumor removal48) applications.

As a result, numerous studies have been carried out using
experimental and theoretical approaches. Many of them have
demonstrated variability in the behavior of these suspensions
that can be achieved by controlling the characteristics and
functionalities of the constituent particles.49–51 One such char-
acteristic is the polydispersity of particle size, commonly pre-
sent in realistic systems.52 It is known that polydispersity exerts
an influence on the morphology of the microstructure.53–55

Likewise, there are improved macroscopic responses in poly-
disperse suspensions56–61 relative to those without polydisper-
sity (monodisperse suspensions).

Due to the complexity introduced by polydispersity, it is
common to model it in theoretical studies through simplified
approaches, such as bidispersity.62–65 This considers the
suspension to be composed of a population of small and
large particles. Then, studies using this model have revealed
the role of both small and large particles in microstructure
formation66–70 and the effect of bidispersity on magnetic prop-
erties, such as magnetization.71,72 However, despite these
findings, the explored systems involved particles with weak
magnetic interactions, with limited attention given to the
temporal evolution of both the microstructure and magnetic
behavior. Thus, this has become the focus of this work, as the
authors believe that it may guide the synthesis of magnetic
colloidal suspensions with enhanced properties.

In this study, a simplified generalized model of a bidisperse
magnetic colloidal suspension is employed to investigate the
influence of bidispersity on the microstructure and magnetiza-
tion of such suspensions. The study was conducted in the
dilute regime under strong magnetic dipolar interparticle inter-
actions and in the presence of a uniform magnetic field. This
bidisperse model takes into account small magnetic particles
of size Rs and large magnetic particles of size Rl. The size ratio
x = Rl/Rs is introduced to quantify the bidispersity of the particle
size. This work is then mainly focused on two aspects. First, the
effect of x on the development of the microstructure in bidis-
perse systems is observed. This microstructure is qualitatively

analyzed through direct observation from simulations for dif-
ferent magnetic dipole–dipole interactions and magnetic field
strengths. In addition, a simple quantitative analysis is carried
out through the calculation of the radial distribution function
of the small particles around the large ones at different stages
of the clustering process. Second, the influence of the micro-
structure (developed in the bidisperse suspensions) on the
time-dependent magnetization of these systems is investigated.
To perform analysis of these aspects, the Brownian dynamics
(BD) simulation method is developed to track the dynamics of
the translational and rotational motion of the particles com-
prising the bidisperse suspension model. However, to indepen-
dently assess the influence of the size ratio on the clustering
process and magnetization, simulations have been conducted
in the dilute regime.

The sections in this work are organized as follows: the
description of the bidisperse suspension model is presented
in Section 2. In Section 3, the BD simulation method is
developed, where the evolution equations are derived for the
linear (translation) and angular (rotation) of the small and large
particles. In Section 4, the radial distribution function is
defined, whereas magnetization is shown in terms of dimen-
sionless quantities, such as the size ratio (x), the particle
volume fractions, the dipolar coupling parameters and the
Langevin parameters. In Section 5, results of the microstructure
and time-dependent magnetization of the suspension are pre-
sented for different values of the simulation parameters.
Finally, the conclusions are presented in Section 6.

2 Bidisperse suspension model

The model comprises two distinct categories of rigid spherical
magnetic colloidal particles—small and large—suspended
within a quiescent, incompressible Newtonian fluid subject to
a constant magnetic field H. These particles differ in size
according to their corresponding radii Rs and Rl, as illustrated
in Fig. 1. In addition, they exhibit single-domain ferromagnetic
behavior, modeled as a permanent magnetic dipole moment
fixed at their center, denoted by ms and ml, respectively. These
dipole moments permit interaction between the particles and
each particle with the magnetic field. Here, it is considered that
the magnetic dipoles are aligned along the x0-axis of a rigid-
body reference frame x0–y0–z0. The magnetic field H is applied
along the z-axis of a laboratory reference frame x–y–z, as
illustrated in Fig. 1.

3 Brownian dynamics simulations

The Brownian dynamics (BD) simulation method takes into
account the force and torque balance acting on colloidal
particles by means of the Langevin equations approach.73 The
terms related to particle inertia are negligible because the
numerical resolution timescale to solve the equations is signifi-
cantly larger than the translational and rotational particle
inertial relaxation times. Then, assuming that the suspension
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is composed of N rigid interacting magnetic particles, divided
into Ns small particles and Nl large particles, in the presence of
a uniform magnetic field, the Langevin equations for transla-
tion and rotation read as follows.

0 ¼ FH
i þ FM

i þ
X

FD�D
ij þ

X
FR
ij þ FB

i ; (1)

0 ¼ TH
i þ TM

i þ
X

TD�D
ij þ TB

i ; (2)

where subscripts i and j denote a generic small or large particle
of the suspension. Here, FH

i and TH
i are the hydrodynamic drag

force and torque acting on particle i, respectively; FM
i and

TM
i are the force and torque exerted by the uniform magnetic

field on particle i, respectively; FD–D
ij and TD–D

ij are the magnetic
dipole–dipole interaction force and torque, respectively, exerted
on particle i by particle j; FR

ij is the repulsive force exerted by
particle j on particle i to avoid particle overlapping; and FB

i and
TB

i are the Brownian force and torque, respectively, acting on
particle i.

The hydrodynamic viscous drag force, FH
i , and torque, TH

i ,
for a spherical particle i, with hydrodynamic radius Ri, moving
with linear, Ui, and angular, Xi, velocities in a Newtonian fluid
are calculated as follows:74

FH
i = �RFU�Ui, (3)

TH
i = �RTX�Xi, (4)

where RFU = 6pZRiI and RTX = 8pZRi
3I are the hydrodynamic

resistance tensors, respectively, for translation and rotation, in
the absence of many-body hydrodynamic interactions. Here, I is
the unit isotropic tensor, and the i subindex adopts the nota-
tion s or l according to the type of particle (small and large,

respectively). Here, many-body and lubrication hydrodynamic
interactions are neglected due to the dilute regime assumed for
the suspensions.

The dipole–dipole magnetic interaction force and torque
exerted by the particle j on particle i, are obtained from the
dipolar interaction potential75

FD�D
ij rij ;mi;mj

� �
¼ m0

4prij3
mi �mj �

3

rij2
mi � rij
� �

mj � rij
� �� �

;

(5)

where mi and mj are the dipole moments of particles i and j,
respectively; rij = ri � rj is the separation vector between
the positions of particles i and j, rij = |rij| is the magnitude of
the vector rij (center distance to center distance between the
particles) and m0 is the magnetic permeability of the free space
(m0 = 4p � 10�7 N A�2).

The dipole–dipole magnetic interaction force and torque
between the particles are then obtained by applying the trans-
lational, = = q/qr, and rotational, R ¼ u� @=@u (with u = m/|m|
as particle orientation), space gradient operators, respectively,
to the magnetic potential as follows:

FD–D
ij = �=FD–D

ij , (6)

TD�D
ij ¼ �RFD�D

ij : (7)

Thus, the explicit equations for the dipole–dipole magnetic
interaction force and torque, respectively, read76,77

FD�D
ij ¼ 3m0

4prij4
½mi �mj � 5ðmi � r̂ijÞðmj � r̂ijÞ�̂rij
�

þ ðmi � r̂ijÞmj þ ðmj � r̂ijÞmi

�
;

(8)

TD�D
ij ¼ � m0

4prij3
mi �mj � 3 mj � r̂ij

� �
mi � r̂ij

� �
; (9)

where r̂ij = rij/rij is the unit vector of rij.
The external magnetic field, H, induces a torque on the

magnetic particles that reads

TM
i ¼ �RFM mi;Hð Þ ¼ m0 mi �Hð Þ; (10)

where FM(mi, H) = �m0mi�H is the external magnetic potential
on the i th particle. This potential also induces a magnetic force
on the particles. However, in this case, it is zero, FM

i = 0, because
the external magnetic field is uniform.

A repulsion potential energy is established between particles
to avoid particle overlapping in the simulations. For this study,
the truncated Lennard-Jones potential was chosen. This energy
is expressed as follows:

FLJ
ij rij
� �

¼
4E

sij
rij

� 	12

� sij
rij

� 	6

þ1
4

" #
; rij o 21=6sij ;

0; rij � 21=6sij ;

8>><
>>: (11)

where sij = Ri + Rj, and E (depth of the potential well) is assumed
to be equal for any pair of suspension particles.

Then, the repulsion force to prevent particles from
approaching so close is calculated by FR

ij = �rFLJ
ij (rij), that in

Fig. 1 A bidisperse suspension of magnetic interacting colloidal particles
under an external uniform magnetic field H. The dark red and light blue
parts of each particle represent its north and south poles, respectively.
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turn, reads as

FR
ij ðrijÞ ¼

24E
2sij12

rij13
� sij6

rij7


 �
r̂ij ; rij o 21=6sij

0; rij � 21=6sij :

8>><
>>: (12)

Brownian motion is due to the thermal fluctuations of the
fluid molecules acting on the suspended particles via a sto-
chastic force and torque called Brownian force and torque,
characterized by the fluctuation–dissipation theorem78–80

hFB
i i = 0 and hFB

i (0)FB
i (t)i = 2kBTRFUd(t), (13)

hTB
i i = 0 and hTB

i (0)TB
i (t)i = 2kBTRTXd(t), (14)

where d(t) is the Dirac delta function, T is the absolute tem-
perature of the suspension, and kB is the Boltzmann constant
(kB = 1.380649 � 10�23 J K�1).

The translational and rotational evolution equations of the
ith particle are obtained by following Ermak and McCammon’s
(1978)81 approach, leading to:

D~rið~tþ D~tÞ ¼
XN

j¼1;jai

12lij~F
D�D
ij þ ~F

R

ij

� 
" #
D~t

xi
þ D~rBi ðD~tÞ; (15a)

D~rBi
� �

¼ 0 and D~rBi D~r
B
i

� �
¼ 2

xi
ID~t; (15b)

D~hið~tþ D~tÞ ¼ 3ai
4
~T
M

i þ
XN

j¼1;jai

9lij ~T
D�D
ij

" #
D~t

xi3
þ D~hBi ðD~tÞ; (15c)

D~hBi
� �

¼ 0 and D~hBi D~hBi
� �

¼ 3

2xi3
ID~t; (15d)

where each magnitude with a tilde denotes its dimensionless
form, taking the features and phenomena of the small particle
as references. In this way, r̃i and t̃ are the dimensionless form of
length ri and time t, respectively, nondimensionalized by radius
Rs and its corresponding translational diffusion time scale tB =
Rs

2/Dtra
s (Dtra

s = kBT/6pZRs). Then, xi = Ri/Rs defines the size ratio
of particle i A {s,l}; Dr̃i and D~hi are the dimensionless linear and
angular displacements of the particles during the time step Dt̃;
Dr̃B

i (Dt̃) and D~hB
i (Dt̃) are the random dimensionless linear and

angular displacements due to Brownian motion that have zero
means and covariances, 2Dtra

i I for translation and 2Drot
i I for

rotation, respectively, where Dtra
i = kBT/6pZRi and Drot

i = kBT/
8pZRi

3 are the translational and rotational diffusion coefficients
of a single isolated particle.

In (15a) and (15c), lij is a dimensionless parameter that
characterizes the competition between the magnetic dipole–
dipole interaction of the particles i and j in contact, and the
thermal energy, kBT. The dipolar coupling parameter li, for a
generic particle i A {s,l}, is defined as li = m0mi

2/16pRi
3kBT.

However, lij is defined in terms of Rs according to the dimen-
sionless process of the equations, which reads

lij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlixi3Þðljxj3Þ

q
: (16)

Similarly, the Langevin parameter ai for a particle i A {s,l} reads

ai ¼
m0miH

kBT
; (17)

which measures the relative interaction between the magnetic
field-dipole energy of particle i and the thermal energy. The
coupling parameter and Langevin parameter of large particles
are related to the coupling parameter and Langevin parameter
of small particles, respectively, as

ll = lsx
3, al = asx

3. (18)

The total volume fraction, f = fs + fl, is another characteristic
parameter in this work. Denoting ñs and ñl as the dimensionless
number densities of small and large particles, respectively, and fs =
4pñs/3, fl = 4pñlx

3/3 as their corresponding volume fractions, the
total volume fraction of the suspension reads

f ¼ 4

3
p ~ns þ ~nlx3
� �

: (19)

To establish a rigid body reference frame x0–y0–z0 where the
particle magnetic moments have a permanent orientation
along the x0-axis as illustrated in Fig. 1, the laboratory reference
frame x–y–z suffers a transformation (or three successive angu-
lar rotations) characterized by the Euler angles. These rotations
are measured by a transformation matrix A in terms of Euler
angles. Adopting a x convention (that is, second rotation about
the intermediate x axis) and expressing the Euler angles in
terms of the quaternions e0, e1, e2, and e3 (also known as Euler
parameters) for the numerical computations free from singula-
rities, the transformation matrix reads82

A¼

e0
2þ e1

2� e2
2� e3

2 2ðe1e2þ e0e3Þ 2ðe1e3� e0e2Þ

2ðe1e2� e0e3Þ e0
2� e1

2þ e2
2� e3

2 2ðe2e3þ e0e1Þ

2ðe1e3þ e0e2Þ 2ðe2e3� e0e1Þ e0
2� e1

2� e2
2þ e3

2

0
BBB@

1
CCCA;

(20)

where the quaternion parameters satisfy the relation e0
2 + e1

2 +
e2

2 + e3
2 = 1.

The product of this matrix with each vector of (15c) leads to
the desired transformation

D~y0 ið~tÞ ¼
3ai
4
~T
M0

i þ
XN

j¼1;jai

9lij ~T
D�D0
ij

" #
D~t

xi
þ D~hB

0
i ; (21)

where the prime symbol on each vector denotes its transformation

to the rigid body reference frame and D~y0 ið~tÞ ¼ ~y0ið~tþ D~tÞ � ~y0 ið~tÞ.
Then, with D~y0 i the quaternions of particle i can be updated

to time t̃ + Dt̃ as follows83

De0

De1

De2

De3

0
BBBBBB@

1
CCCCCCA
¼ 1

2

�e1 �e2 �e3

e0 �e3 e2

e3 e0 �e1

�e2 e1 e0

0
BBBBBB@

1
CCCCCCA
� D~y0 ið~tÞ; (22)
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eð~tþ D~tÞ ¼ eð~tÞ þ De
jeð~tÞ þ Dej; (23)

where e = (e0, e1, e2, e3) and De = (De0, De1, De2, De3).
To convert any vector from the rigid body reference frame

to the laboratory reference frame, it is necessary to make the
product of the transposed matrix, AT, by this vector. In this
manner, by multiplying the matrix AT by the unit vector of ui,
the orientation of this dipole moment is obtained in the
laboratory reference frame.

4 Properties
4.1 Radial distribution function

In dimensionless terms, this property represents the ratio of the
local number density at a dimensionless distance r̃ from a
reference particle to the average number density of the suspension.

In this study, the analysis focuses on the spatial distribution
of the ith-small particles surrounding each jth-large (reference)
particle. This property, denoted by g(r̃), then reads as

gð~rÞ ¼ 1

4pfsNl~r2D~r

XNl

i¼1

XNs

j¼1
dð~r� ~rijÞ

* +
; (24)

where Dr̃ is the width of the dimensionless bin and r̃ij, the
dimensionless distance between particles i and j.

4.2 Magnetization

The equation to calculate the dimensionless magnetization of
the suspension, hM̃i, as a function of time, t̃, of a bidisperse
colloidal suspension composed of N particles reads

~Mð~tÞ
� �

¼

PNs

i¼1
~mið~tÞ

Ns 1þ fl

fs

ffiffiffiffiffiffiffiffiffi
ll
lsx3

r� 	þ
PNl

j¼1
~mjð~tÞ

Nl 1þ fs

fl

ffiffiffiffiffiffiffiffiffi
lsx3

ll

s !; (25)

where m̃i(t̃) and m̃j(t̃) are the unit vectors of the magnetic dipole
moment of the small particle i and the large particle j, respectively.
Here, the time-dependent magnetization has been dimensionless
by the suspension saturation magnetization, Msat.

5 Results

The total number of particles used in the simulations is N =
1000. The initial configuration of the system is such that
the initial positions and orientations of all the particles are
randomly distributed in the simulation box. The simulations
are carried out in a cubic simulation box with periodic bound-
ary conditions, where the minimum image methodology is
considered.1

The Lennard-Jones repulsion potential is implemented in
the simulations to prevent particle overlapping and agglomera-
tion. According to test simulations and previous work,50 the
potential well E ¼ 100 avoids overlapping of any pair of particles
with no significant impact on the dynamics of the particles.
Therefore, this value has been used in this work.

A total particle volume fraction of f = 10�3 has been chosen
for our simulations of dilute suspensions to ensure meaningful
interparticle interactions, which would otherwise be absent in
overly dilute systems. Similarly, to ensure a balanced distribution
of large and small particles, the volume fraction for each has been
assigned as fs = fl = 5 � 10�4. In addition, (18) allows one to
reduce the simulation control parameters to x, ls and as. In view
of the size range (20–100 nm) associated with single-domain
ferromagnetic behavior, the size ratio x has been assigned values
of 1, 2, and 3. The parameter ls has been selected in the range of 5
to 30, corresponding to the typical values in small particles that
exhibit the aforementioned ferromagnetic behavior. Furthermore,
the parameter as has been varied from 0 to 1000 to assess the
influence of low and high magnetic field strengths on the
clustering process and magnetization. Then, each set of values
x–ls–as represents a bidisperse magnetic colloidal suspension
(see Table 1). Five repetitions have been performed for each
set to achieve good statistics in the results. The end time of
the simulations is 10 000, with a time step of dimensionless
units 10�4.

5.1 Microstructure

Simulations of monodisperse suspensions (x = 1) have been
carried out to depict the microstructural changes induced by
the particle size difference (x 4 1) in bidisperse suspensions.
According to (18), the equalities ls = ll and as = al hold for x = 1.

The dipole–dipole magnetic interaction characterized by ls =
ll = 5 represents a very weak interparticle interaction, which is
unable to promote the clustering process.14 This does not occur
with the following values of ls used in this work.

As shown in Fig. 2, the microstructure developed for x = 1
and ls = 30 up to t̃ = 10 000 agrees with that expected.84,85 In the
absence of a magnetic field, that is, as = 0, the formation of
flexible chains is initially carried out following the head-to-tail

Table 1 Set of values of size ratio (x), small particle dipolar coupling
parameter (ls) and small particle Langevin parameter (as) used in simula-
tions of N = 1000 particles. Each set x–ls–as characterizes a bidisperse
magnetic colloidal suspension subject to an external uniform magnetic
field

x ls as

1 0
0.01

5 0.03
15 0.1
30 0.25

0.5

2 1
5 1.5
15 2.5
30 5

10

3 25
5 50
15 100
30 300

1000
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configuration. However, the thermal fluctuations over time lead
them to collapse onto themselves, leading the population to
consist only of rings of different sizes.86

In the presence of a very strong magnetic field, such as as =
1000 in Fig. 2, the formation of rigid chains along the magnetic
field direction is carried out, which exhibit temporal growth.14

For bidisperse suspensions (x4 1), the difference in particle
size implies different intensities of magnetic dipole moment in
the particles, according to (18).

Consequently, large particles in the suspension yield strong
magnetic dipole–dipole interactions with other particles and
undergo a stronger interaction with the applied magnetic field.
However, because of their larger sizes, thermal fluctuations
diminish in large particles in comparison with small ones.
Overall, this different behavior of the large particles hardly
influences the interaction between them and small particles,
which leads to a different microstructural behavior.

As such, in both bidisperse suspensions simulated (x = 2 and
x = 3) with ls = 5, the dipolar interaction strength of the large
particles (characterized by ll = 40 and ll = 135, respectively)
induces a clustering process. The large particles interact with
each other, forming rings and chains according to the applied
magnetic field strength (see Fig. 3 and 4). Furthermore, their
intense dipole moments also promote the adhesion of small
particles to these formed chains,87,88 as observed in Fig. 3 and
4. However, the last process occurs to a lesser extent. Hence, for
dilute bidisperse suspensions with ls o 5, it turns out that both
populations of small and large particles behave separately as if
they were monodisperse suspensions.

The increase of ls to ls = 30 produces a stronger magnetic
dipole–dipole interaction between particles, with ll = 240 for x =
2 and ll = 810 for x = 3. The microstructural behavior and
morphology in this case are very similar to those observed for
ls = 15. However, strengthening the interparticle interactions
can promote variability with respect to the size of the cluster.

In simulations of monodisperse suspensions with ls = 30,
each particle possesses no more than two neighboring particles

due to the head-to-tail configuration. However, in simulated
bidisperse suspensions, large particles can be surrounded by a
larger population of small particles, as observed in Fig. 3 and 4.

This is also evidenced by Fig. 5(a), which represents the
radial distribution function, g(r̃), for as = 0 of small particles
around large particles at t̃ = 1. In this initial stage of the
clustering process, the increase in the peak height of g(r̃) with
increasing x for r̃ close to 1 implies a larger number of small
particles attached to the large ones. This is consistent with the
stronger magnetic interaction displayed by the latter as well as
their larger surface.

Then, as occurs in monodisperse suspensions, the cluster
population in the bidisperse suspensions for as = 0 comprises
only closed structures, involving small and large particles.
However, these clusters begin to emerge from open structures
consisting of large particles linked to short chains of small
ones. This corresponds to the peaks observed in Fig. 5(b) for
t̃ = 100 at r̃ close to 1 and 3.

Fig. 2 Predominant microstructure in a monodisperse magnetic colloidal
suspension (x = 1) with a magnetic dipole–dipole interaction strength
characterized by ls = 30, in the absence of the magnetic field (as = 0) and
exposed to a very high uniform magnetic field H (as = 1000).

Fig. 3 Predominant microstructure in a bidisperse magnetic colloidal
suspension (x = 2) with a magnetic dipole–dipole interaction strength
characterized by ls = 5 and ls = 30, in the absence of a magnetic field (as = 0)
and exposed to a strong uniform magnetic field H (as = 1000).

Fig. 4 Predominant microstructure in a bidisperse magnetic colloidal
suspension (x = 3) with a magnetic dipole–dipole interaction strength
characterized by ls = 5 and ls = 30, in the absence of a magnetic field (as =
0) and exposed to a uniform magnetic field H (as = 1000).
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The absence of a peak at this final value of r̃ for x = 3 is due
to the stronger magnetic force and the larger surface area of the
large particles. These factors allow the small ones to come even
closer, breaking their chain formation. In contrast, the
presence of peaks at r̃ E 5 for x = 2 and at r̃ E 7 for x = 3
arises from the clustering process of large particles. Therefore,
these peaks correspond to the most distant small particles that
are aggregated to large particles that neighbor the large refer-
ence particles.

Afterward, the strong magnetic interaction between particles
in the same cluster triggers its collapse observed in Fig. 3 and 4.
However, despite the strong attraction offered by the large
particles on the small ones, this does not prevent the formation
of clusters composed of only small particles, which consists of
small rings and chains. However, in the course of time, most of
them have incorporated into structures containing large parti-
cles as a result of the strong local attraction induced by the latter.

The thriving formation of closed structures leads to the
agglomeration of more small particles around the large ones,
as shown by the higher values of g(r̃) in Fig. 5(c), which
corresponds to t̃ = 10 000.

The presence of significant peaks in r̃ E 2 and r̃ E 3 for x = 1 is
correlated with the formation of small rings and the prevalence of
the head-to-tail configuration, respectively. However, the prominent
peaks observed at r̃ E 3 for x = 2 and x = 3 imply the assembly of at
least two layers of small particles on the magnetic poles of the large
particles (see Fig. 3 and 4 for as = 0). The appearance of additional
peaks at higher values of r̃ corresponds to the population of small
particles surrounding the large particles that are neighbors of the
reference large particles, as previously explained.

A very interesting cluster obtained in the simulations for x =
3 is the structure composed of one large particle and several
small particles, as observed in Fig. 4. This is a shell-like structure
and clearly shows the impact of the particle size difference in a
bidisperse magnetic suspension. The small particles tend to
align in the opposite direction of the magnetic dipole moment
of the large particle due to the non-uniform local magnetic field
produced by the latter. Then, the small particles are arranged
according to the corresponding local magnetic field lines. The
importance of this aggregation mechanism, which is observed
even for moderate magnetic field strengths, that is, 0 o as o 1,
will be discussed in the next section.

Finally, the increase of as to 1000 leads all the magnetic
dipole moments of the particles to align with the direction of
the applied magnetic field. This implies that all the dipole
moments adopt a parallel configuration, which favors magnetic
dipole–dipole interactions. In addition, the high values of as

imply that the stronger uniform magnetic field screens the
local field, avoiding the formation of shell-like structures.
However, the presence of intense local magnetic fields is still
evidenced due to the formation of bulk chains between large
particles as observed for as = 1000 and both values of x.

5.2 Magnetization

A general analysis of the magnetization hM̃(t̃)i (25) of the
simulated suspensions reveals that the x- and y-components

Fig. 5 Radial distribution function, g(r̃), of small particles around large
ones in monodisperse (x = 1) and bidisperse (x = 2; x = 3) magnetic
colloidal suspensions (ls = 30; as = 0). The dimensionless distance r̃ = r/Rs

is measured from the surface of the large particles. The radial distribution
function is plotted at (a) t̃ = 1, (b) t̃ = 100 and (c) t̃ = 10 000.
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of hM̃(t̃)i are constantly zero over time. Therefore, hM̃(t̃)i relies
solely on its z component, hM̃(t̃)iz, which is now denoted as
hM̃(t̃)i.

The temporal behavior of hM̃(t̃)i in monodisperse suspen-
sions (x = 1) is depicted in Fig. 6(a)–(c). The saturation behavior
of hM̃(t̃)i quickly achieved for ls = 5 (see Fig. 6(a)) is related to
the absence of the clustering process. The isolated behavior of
the particles allows, on average, rapid balance of the effect of

the uniform magnetic field H and thermal fluctuations on
the orientations of their magnetic dipole moments. Then, the
resulting equilibrium values of hM̃(t̃)i coincide with Langevin
magnetization.89

In contrast, the development of the clustering process for
ls = 15 and ls = 30 leads to pronounced transient behavior of
hM̃(t̃)i in moderate magnetic fields (0 r as r 5). The bond
between particles induces their magnetic dipole moments to

Fig. 6 Temporal evolution of magnetization, hM̃(t̃)i, of a magnetic colloidal suspension along the applied magnetic field direction. The curves in the
figures corresponds to monodisperse, x = 1 (a)–(c), and bidisperse suspensions with x = 2 (d)–(f) and x = 3 (g)–(i) for ls = 5 (a), (d) and (g), ls = 15 (b), (e)
and (h) and ls = 30 (c), (f) and (i). The uniform magnetic fields applied on the suspensions are characterized by as, whose values are given at the bottom of
the plots.
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adopt similar orientations. In the absence of a magnetic field
(as = 0), thermal fluctuations lead particles and clusters to
exhibit continuous random rotation until they collapse into
rings, which, on average, produces hM̃(t̃)i = 0 throughout the
entire clustering process.90

However, as the strength of the applied magnetic field
increases, their orientations approach that of the magnetic
field. This involves the formation of flexible chains along the
magnetic field direction, which, in turn, implies the enhance-
ment of hM̃(t̃)i over time. Moreover, the increase of ls from 15
to 30 implies a strengthening of the particle bond that leads to
the increase of hM̃(t̃)i as observed in Fig. 6(b) and (c).

Furthermore, in the case of a very strong magnetic field such
as as = 1000, the alignment between all the magnetic dipole
moments and the magnetic field is nearly perfect at the onset of
the clustering process. Therefore, the latter do not have a
significant influence of hM̃(t̃)i over time. These results are used
as a reference frame for the analysis of the temporal behavior of
hM̃(t̃)i in bidisperse suspensions (x 4 1).

The analysis of bidisperse suspensions begins with the case
of ls = 5. Regardless of the x value, the clustering process of
large particles rapidly progresses due to their strong magnetic
dipole–dipole interaction. Then, regarding the poor aggrega-
tion of small particles with large ones, hM̃(t̃)i approaches
saturation behavior quickly. However, due to the development
of the clustering process with large particles, the observed
saturation values of hM̃(t̃)i do not coincide with their corres-
ponding Langevin magnetization values.

However, because of the higher al values and weak random
rotation of the large particles, their intense magnetic dipole
moments tend to exhibit a better alignment with the magnetic
field direction even at low as values. This gives rise to a substantial
enhancement of hM̃(t̃)i for x = 2 and x = 3 compared to the
monodisperse case for moderate as, shown in Fig. 6(a), (d) and (g).

In case of high as values, such as as = 1000, the near-perfect
alignment of particle dipole moments with the magnetic field
causes a similar temporal behavior of hM̃(t̃)i for bidisperse and
monodisperse suspensions.

As occurs in the monodisperse case, the clustering process
developed with ls = 15 and ls= 30 in bidisperse suspensions
gives rise to long transient behavior of hM̃(t̃)i, as shown in
Fig. 6(e), (f), (h) and (i). However, as happens with ls = 5 at
moderate values of as, the stronger sensitivity of the large
particles to the applied magnetic field causes an improvement
of hM̃(t̃)i over the corresponding monodisperse case at the
initial stage of the clustering process. This is evidenced in
Fig. 7, where the very high initial contribution of the large
particles to magnetization is shown, Fig. 7(b), compared to that
of the small particles, Fig. 7(a).

However, around t̃ = 100, the growth over time of hM̃(t̃)i
ceases and begins to decline. In general, because both small
and large particles contribute to the reduction of hM̃(t̃)i as
observed in Fig. 7(a) and (b), this decay can be attributed to the
formation of the closed structures mentioned above. This is
because such a structure involves the reduction of the magnetic
dipole moments along the magnetic field direction.

For x = 2, all closed structures comprise more than one large
particle, which is able to close itself by acquiring small parti-
cles. The net contribution of their magnetic dipole moments to
hM̃(t̃)i becomes negligible. Therefore, with the progress of
closed structure formation, the intense magnetic dipole
moments of the large particles no longer impact hM̃(t̃)i, and
this begins to wane.

For x = 3, the decay of hM̃(t̃)i corresponds to the formation of
shell-like structures. The most basic formation process is
depicted in Fig. 8 and shown in the Videos V1 and V2 of the
ESI.† Although the figure shows this formation for as = 0, this is
also observed for 0 o as r 1. According to the figure, up to

Fig. 7 Contribution to the temporal evolution of magnetization, hM̃(t̃)i, derived from (a) small particles and (b) large particles along the applied magnetic
field direction. The curves in both figures correspond to a bidisperse suspension with x = 3 and ls = 30. The magnetic fields applied on the suspensions
are characterized by as, whose values are given at the bottom of the plots.
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t̃ = 100 a large particle has captured a few small particles. Due to
its high sensitivity, large particles tend to easily align with the
applied magnetic field (as 4 0), which also induces this
alignment on small particles. This explains the very high
increase in hM̃(t̃)i compared to the monodisperse suspension.
However, for 100 o t̃ o 10 000, more small particles surround
the large one and form a shell-like structure. The aforemen-
tioned relative orientation of the small particles in relation to
the large particle leads to the decay of hM̃(t̃)i observed during
this time period.

Finally, for a strong magnetic field strength, i.e. as 4 1, the
large particles achieve a perfect alignment with the magnetic field
direction since, according to Fig. 7(b), they exhibit the maximum
possible contribution to hM̃(t̃)i. However, depending on the
intensity of their magnetic dipole moments, their local field can
still compete against the applied external field. This can affect the
orientation of small particles and provoke a slight decay of hM̃(t̃)i,
as observed for x = 3 with as = 2.5 in Fig. 6(h) and (i). In the case of
very strong magnetic fields, such as as = 1000, the clustering
process does not influence the growth of hM̃(t̃)i because, as
observed in Fig. 8, the clusters change over time, but all the
particles are perfectly aligned with the magnetic field direction.

6 Conclusions

Using BD simulations, the influence of particle size differences, x,
in bidisperse magnetic colloidal suspensions on their microstruc-
ture and magnetization over time has been investigated. Regarding
the dilute regime, the total particle volume fraction of suspensions
(f = 10�3) is fairly distributed between small and large particles
(fs = fl = 5� 10�4). In addition, assuming proportionality between

the magnetic dipole moment of the particle and its volume, the
parameters related to small particles are used as simulation
parameters.

The high magnetic dipole moment intensities of
large particles in bidisperse suspensions cause variability in
the microstructure compared to monodisperse suspensions,
which show rings and chains, depending on the value of as.
Also, depending on the magnetic dipole–dipole interaction
strength (ls), the clustering process in bidisperse suspensions
develops primarily with large particles (ls = 5) or with large
and small particles (ls = 15, ls = 30). In the latter case,
the significant magnetic dipole moment of a large particle is
capable of attracting numerous small particles, evidenced
by a temporal increase of the radial distribution function of
small particles around the large ones. This improves as ls

increases. In general, large particles in a bidisperse suspension
function as junction points of small particles. As a particular
case, for x = 3, the magnetic dipole moment of large particles
strengthens, causing small particles to form shells around
large ones following the local magnetic field lines generated
by the latter.

The uniform magnetic field applied, characterized
by as, affects the orientation of the structures. Low values of
as allow the formation of flux-closure structures such as
rings and shells. In contrast, high as leads to linear clusters
along the magnetic field direction, such as bulk chains
comprising small particles on the magnetic poles of the
large ones.

Variability in microstructure affects the temporal behavior
of magnetization, hM̃(t̃)i, in bidisperse suspensions irrespective
of the value x. As a result of the higher magnetic dipole
moment intensity of the large particles, despite as taking low
values, the assumption initially mentioned leads to a high as,
which means a strong interaction between the large particles
and the applied uniform magnetic field. Then, the magnetic
dipole moments of these particles adopt a near-magnetic field
alignment with the magnetic field direction at the first stages of
the clustering process (t̃ = 100). Additionally, because of their
larger sizes, thermal fluctuations weakly disturb the orientation
of large particles. Both facts improve substantially hM̃(t̃)i com-
pared to monodisperse suspensions. Afterward, the large
particles continue to aggregate and with the small particles.
For low values of as, such as as o 1, the very strong interaction
between particles in the same cluster leads to the collapse of
this into a closed structure, which occurs mainly at t̃ 4 100.
Then, the progressive formation of these structures, including
rings and shell-like structures, decreases hM̃(t̃)i over time in a
bidisperse suspension. For cases with as 4 1, large particles
can preserve their perfect alignment with the magnetic field,
and the remnant decay still observed in the temporal evolution
of hM̃(t̃)i is entirely caused by small particles, which remain
strongly affected by the local magnetic field of large particles.
For very high values of as, such as as = 1000, the clustering
process does not affect the behavior of hM̃(t̃)i due to the perfect
alignment of all magnetic dipole moments of the particles
along the field direction.

Fig. 8 Aggregation process of small particles around a large particle in a
bidisperse magnetic colloidal suspension with size ratio x = 3 and a high
interparticle dipolar interaction (ls = 30 and ll = 810). The upper panel
shows the formation of a shell-like structure in the absence of a magnetic
field (as = 0) and the lower panel shows the basic structure formed under a
very high magnetic field (as = 1000). Videos of the formation of these
clusters are shown in the ESI.†
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Soft Matter, 2011, 7, 6678–6683.
26 J. Zhang, M. R. Hassan, B. Rallabandi and C. Wang, Soft

Matter, 2019, 15, 2439–2446.
27 C. Lang and M. P. Lettinga, Macromolecules, 2020, 53,

2662–2668.
28 Y. Kawabata, S. Ishida and Y. Imai, Phys. Fluids, 2024,

36, 033353.
29 E. Hasmonay, E. Dubois, S. Neveu, J.-C. Bacri and

R. Perzynski, Eur. Phys. J. B, 2001, 21, 19–29.
30 A. O. Ivanov and S. S. Kantorovich, Phys. Rev. E: Stat.,

Nonlinear, Soft Matter Phys., 2004, 70, 021401.
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