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Electrostatic correlation free energy for finite polymer
chains'

Jacob Horne,* Jian Qin,*

Electrostatic correlation free energy (ECF) is the basis for modeling the thermodynamic behavior of
polyelectrolyte solutions. In the past, it has mainly been estimated using the Edwards approximation,
valid for infinite chains. Here, we show that the leading contribution due to finite molecular size is
of order N7!, regardless of the fractal dimension d, where N is proportional to molecular weight.
This contribution is a local effect, originating from the missing correlations among connected charges
near chain ends. In contrast, the contribution from the long-wavelength or infrared regime is weaker,
of order N=3/4InN. Closed-form expressions for the free energy are provided for polyelectrolytes
exhibiting either coil- or rod-like statistics, in the absence or presence of small ions. The consequence
of the end effect is demonstrated by evaluating the phase diagram, surface tension, and molecular

weight-driven partitioning.

1 Introduction

Solutions of oppositely-charged polyelectrolytes (PEs) exhibit
a demixing transition known as polyelectrolyte complexation
(PEC), owing to the electrostatic interactions among the charged
groups. I8 PEC results in the coexistence between a supernatant
that is nearly depleted of polymers, and a polymer-rich com-
plex.7¥ The complex may behave as a solid-like precipitate, or
flow and coalesce like a liquid.T*3 Such liquid-like complexes are
often referred to as coacervates, and the demixing transition as
coacervation. T3 PEC and the concentrated coacervate phases it
produces have found various applications in, for example, drug
delivery devices®, adhesives®Z, and food products®2.  More-
over, recent interest in PEC has been further spurred by its recog-
nition as an important mechanism controlling the organization of
biomolecules in intracellular environments. 1011

The simplest form of solution free energy required for model-
ing PEC is obtained by combining the mixing entropy with contri-
butions from electrostatic interactions. For typical PEC resulting
from macrophase separation, the charge density vanishes every-
where, owing to global charge neutrality, so the electrostatic in-
teractions cannot be handled at the mean-field level. A minimal
treatment of charge density fluctuations is needed. The interac-
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tion of these charge density fluctuations gives rise to the electro-
static correlation free energy (ECF), which is intrinsically a non-
mean-field effect. With few exceptions,[m most literature focus
on the charge-neutral system, for which ECF is the leading elec-
trostatic contribution.

Different levels of treatment have been adopted to evaluate the
ECF. In the Voorn-Overbeek (VO) model, the ECF is approxi-
mated by that of point-like ions, i.e., the Debye-Hiickel correlation
free energy for the fully ionized plasma.’# Despite its simplicity,
the VO model reproduces several key features of PEC such as the
effect of added salt and the degree of ionization 215117, The
apparent success of the VO model is surprising because it essen-
tially neglects charge connectivity by “chopping” polyelectrolytes
into point-like species, and because the Debye-Hiickel cor-
relation is expected to work only in the regime many orders of
magnitude more dilute than typical PECs.2/18

Following the landmark work of Borue-Erukhimovich, 19220
many studies have attempted to account for the effect of polymer
structure on ECF.21"28 When applied to weak polyelectrolytes,
i.e., those with low charge density, these works all rely on some
version of the random phase approximation (RPA),2%31 which
treats the fluctuation of charge density at different wavelengths
independently. These efforts parallel the earlier developments on
composition fluctuation in neutral polymers, and have been
summarized in several recent reviews. 2153435 The effects of a
wide range of molecular scale features have been explored, which
include chain stiffness23/36, liquid-state packing,37*9 counterion
condensation 2836138141143 charge pattern,*#>1 and the forma-
tion of nematic phases and microstructures. 5254

The RPA-based approaches assume that the density fluctuation
is weak, which limits their application in dilute regime that is
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especially relevant for the description of the supernatant phase.
Several developments have been made to handle the strongly
fluctuating regimes, including variational approaches,>>20 fyl]
field theoretical sampling, 4057762 scaling arguments, 4416366l 3pq
coarse-grained simulations on polyelectrolyte aggregation. 62120

Except for recent work,Zl the majority of these studies adopted
a continuum description of the solvent. The static dielectric per-
mittivity of the solvent is used to capture the effects of screen-
ing, and its dependence on temperature is employed to capture
the effects of solvent reorganization entropy.°8 Once a picture of
continuum dielectric media is adopted, the excess free energy of
ionic solutions can be decomposed into two types of contribu-
tions: self-energy and ECF. The self-energy is closely related to
the Born solvation free energy, and has been carefully examined
for both small ions2 and polyelectrolytes. =2

As far as phase separation in charge neutral solutions is con-
cerned, ECF is the most important electrostatic contribution
to free energy, except when the degree of ionization is vari-
able.”2l The VO model, despite its limitations, is still widely
used in recent studies, 212173773l |argely because it offers a com-
pact description to the ECF based on the familiar picture of
Debye-Hiickel screening. In contrast, the more sophisticated ap-
proaches2330138152I56172176! often require numerical calculations.
With the simple intuition and molecular parameters buried in al-
gebra, application in experimental studies is somewhat discour-
aged.

The Edwards approximation simplifies the ECF signifi-
cantly. When the structure factor of polyelectrolytes is replaced
with that appropriate for infinite chains, the ECF in a solution

of symmetric and charge-neutral Gaussian chains is found to be
given by 1920123128137

32133

Aol — o934, 1)

where ¢ is the total volume fraction of the pair of polycations
and polyanions. The expression for the prefactor ¢y will be given
in Sec. and depends on monomer size, charge density, and
dielectric permittivity of solvents, but not on molecular weight
(MW). Equation generalizes the Debye-Hckel correlation free
energy in the VO model to flexible polyelectrolytes.”Z In case of
the VO model, the ECF is proportional to kg7 per cube of the
Debye length, where the Debye length is inversely proportional
to the square root of ion concentration, kg is the Boltzmann con-
stant, and T the absolute temperature. In eq. (I, the ECF is kg T
per cube of the screening length A, with A o ¢~'/4. In the pres-
ence of both polyions and small ions, a similarly compact expres-
sion has also been obtained, 1220223163/ which smoothly interpo-
lates the behavior at low and high salt concentrations.

It should be stressed that the effect of charge connectivity is
solely contained in the dependence on concentration ¢. Different
conformational statistics will lead to a different expression.’23 For
instance, the polyions adopting rod-like conformations have the
ECF%3

feg? =—crgng ®)
which underlies the plateau in osmotic coefficient observed for
long polyeletrolytes. 2% Similar to ¢, the coefficient ¢, is a combi-
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nation of molecular parameters but is independent of MW.

The predictions of eq. are consistent with the scaling ar-
guments developed for PE solutions.2263I78| Accordingly, these
approximate theories are most commonly used alongside scal-
ing arguments to substantiate their conclusions and provide ex-
act expressions for numerical prefactors. For example, previous
works have used this approach to examine the dependence of
the coacervate composition, 2344163179180l jnterfacial tension, 380
and salt-resistance® on the charge density. In addition, a small
number of works have employed eq. and the generalized
version containing salinity; 234281l to obtain phase diagrams for

salted polyelectrolytes that agree qualitatively with experimental
results, 1H3115123145

2  Why bother with finite MW

Equation (1)) is obtained by applying the Edwards approximation,
which captures the correlations in the internal sections of polymer
chains and thus is, strictly speaking, applicable only to “infinite”
chains. 1220123137052 B finjte chains, we will show that the ECF
has a correction of order N~!, where N is proportional to MW and
counts the number of repeating units. (In the remainder of this
work, we use the terms MW and N interchangeably.) The correc-
tion applies to chains with different conformational statistics. For
the most familiar example, Gaussian coils, the ECF has the form

St = o9t = T gV, ®

Here c; is a combination of molecular parameters independent of
molecular weight, similar to ¢y. The dependence on N is com-
parable to the contribution of mixing entropy. In the regime of
low concentration, the correction term actually has a stronger
¢-dependence than the Edwards term, i.e., ¢!/ > ¢3/4 which
competes with the weakening factor N~!.  Equation is the
simplest form of the ECF for binary mixtures of coil-like polyions
and solvent. More general expressions, valid for solutions with
small molecule salt in addition to polyions with coil or rod-like
conformations, are provided in Sec.

The Edwards approximation is usually justified by noticing
that, when the MW is sufficiently high, the ECF is dominated
by the structural correlations in the middle portion of polymer
chains. This argument holds for polymers in good solvent, where
the composition fluctuation is an additional contribution to the
mean-field level excluded-volume interaction. For symmetric
polyelectrolyte solutions, due to charge neutrality, the leading-
order contribution to ECF is itself a result of charge density fluc-
tuation. In this case, the correction due to finite MW can be sig-
nificant.

The accuracy of eq. for the Edwards approximation and
eq. (3) are illustrated in Fig. which shows the pairs of bin-
odal and spinodal curves for a solution of symmetric polycation
and polyanion, calculated using the exact chain structure factor,
the Edwards approximation eq. (I), and the finite-N corrected
ECF eq. (B). The Edwards approximation clearly overestimates
the magnitude of ECF, resulting in a wider coexistence window.
Moreover, the critical point, i.e., the minimum value of charge
density needed to induce the phase separation, is absent or van-
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ishes. In contrast, the predictions from the finite-N corrected ex-
pression agree with the full theory nearly quantitatively.

The Edwards approximation is valid when the screening length
A is smaller than the chain size R o< v/N. For systems undergo-
ing PEC, the supernatant phase and the critical point fall within
the regime of low concentration, where the screening length 4 is
large. When the value of A exceeds chain size, the Edwards ap-
proximation breaks down. This can be resolved by retaining the
full structure factor, which requires numerical evaluation of the
ECF. In contrast, eq. is accurate and is as compact as eq. (1)),
convenient to use in practice.

It should be noted that an N-dependent ECF has already ap-
peared in the literature.2%82 In these works, an approximate
structure factor is designed to interpolate the behavior in both
high-q (ultraviolet, UV), where the Edwards approximation ap-
plies, and the low-q regimes (infrared, IR), where the finite size of
chains is important. The N-dependence predicted by these stud-
ies is a consequence of applying the specific interpolated structure
factor, derived from the IR contribution. We show below that the
IR contribution, when explicitly worked out, results in a contribu-
tion of order N=3/21nN for Gaussian coils, which is weaker than
the order N~! term contained in eq. . The N~! term is instead
derived from the sub-leading behavior in UV regime. Therefore,
the physics identified in the two sets of work should be differ-
entiated. The order N~! term is stronger and is comparable to
the mixing entropy, which is particularly relevant for discussing
partitioning of a mixture of finite chains.

The derivation of eq. and the analogous results for alterna-
tive chain conformational statistics, as well as those for systems
with added salts, constitute the main results of our work. We
shall show that the N-dependent correction in eq. can be at-
tributed to the missing correlations for charges near the chain
ends. As sketched in Fig. the charges near chain ends have
fewer connected neighbors, which weakens the inter-charge cor-
relation, an effect particularly relevant for long-ranged electro-
static interactions. Such correction is proportional to the concen-
tration of chain ends, hence the factor N~! in eq. . The precise
form of concentration dependence is derived from the conforma-
tional statistics, which counts the number of missing neighbors
near chain ends.

The remaining sections are organized as follows. First, we in-
troduce the model, define the relevant molecular parameters, and
provide the general expressions for ECF in a multi-component
mixture. Then, the detailed derivation for eq. is presented and
generalized to alternative chain conformational statistics, chain
architecture such as ring polymers, and systems with added salts.
The results section examines how the N-dependent correction af-
fects salt resistance, interfacial tension, and MW-dependent chain
partitioning between phases. Since the N-dependence is not spe-
cific to electrostatic interactions, we discuss additionally the rel-
evance of the end effects when other forms of interactions are
involved, which includes in particular the short-ranged excluded
volume potential. The influence of the interaction range mainly
shows up in the consideration of the missing correlations depicted
in Fig. The last section summarizes our main findings.

Soft Matter

View Article Online
DOI: 10.1039/D55SM00633C

3 Model and free energy

We consider a liquid mixture of m species in a volume V at
temperature 7. Each species has n; molecules, molecular vol-
ume V;, and volume fraction ¢; = n;V;/V, where 1 <i <m. The
mixture is treated as incompressible, and volume fraction is the
same as composition. For convenience, a common reference vol-
ume v is used to calculate the number of monomers per molecule,
N; =V;/v. For polyions, N; is also referred to as polymer length. It
is important to note that the choice of v is arbitrary and does not
affect the consideration of any physically measurable quantity.

The molecular architecture is described by the intramolecu-
lar correlation function, which can be factored into the form
Qi(q) = ¢:Nigi(q)/v. The function g;(q) is the single-molecule
structure factor and q is the wavevector. In isotropic liquids, g;
and Q; only depend on the magnitude ¢ = |q|. Small molecu-
lar species, such as solvents and ions, are modeled as point-like
with constant structure factor g = 1. For polymers adopting Gaus-
sian coil conformation, the structure factor is the Debye function
go(x) =2(x—14+e7*)/x*, where x = qué and Ry = N'/?b is the
radius of gyration with b being the statistical segment length.3
For polymers with rod-like conformation, the structure factor is
the Neugebauer function gn(x) = 2[fg drsint/r — (1 — cosx)/x] /x,
where x = gL and L is the molecular length.®4 The Edwards ap-
proximation is recovered by setting either L or N in the structure
factor to infinity, which will be discussed in Sec. [4.2

The Hamiltonian for such mixtures contains contributions from
intramolecular interactions Hy and intermolecular interactions
Hin, H= Hy+ Hj,,. The exact form of H is left unspecified as
its effects are captured by the appropriate choice of &; for each
species. The intermolecular interactions are assumed pairwise
and are expressed as

Hin 1 / ~ - ~
== (a)Uij(9)9;(—q “
wr ~ 2 L, S0 @)
Here, the notation [, = % Jdq is used to represent integration

over Fourier space. The microscopic composition fields ¢;(q) are
the Fourier modes of the instantaneous composition fields ¢;(r),
0;(r) = vY i 8(rg —r). Here 8(r) is the Dirac delta function and
the summation is performed over all monomers belonging to a
given species i.

The interaction kernel U;; has two contributions, U;; = vB+Uj;.
The first piece B is an effective bulk modulus which serves to
suppress density fluctuation. The value of B is set to infinity af-
ter the expression for free energy is obtained, so that only com-
position fluctuations compatible with a constant density are in-
cluded. The second piece U;; encodes all other pairwise inter-
molecular interactions present in the system. In this work, we
are primarily interested in the effect of Coulomb interactions.
In Fourier representation, they are written as U;; = 4nlg0;0;/ qz,
where Ig = % /(4nekgT) is the Bjerrum length.’2322 The dielectric
permittivity € is assumed to be equal to that of the solvent species,
typically water. Under these conditions, the Bjerrum length is
Ig ~ 7.6A at 300K. The terms o; are charge densities, defined
by o; = Z;/N;, where Z; is the valency, i.e., the total charge car-
ried by each molecule of species i. The charge density of neutral
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Fig. 1 @ Critical points, spinodal curves, and binodal curves for polyion solutions with N = 100 predicted by the different approximations for feor ':
fea and fygq. Binodal curves give the coexisting supernatant and coacervate phase polymer content ¢ for a given value of charge density 6. No
critical points are shown for fgq, as no nonzero critical points are predicted. @ lllustration of the missing correlations near the chain ends, responsible

for the finite-N correction.

species is zero.

It has been previously shown2231i85 that the free energy for

incompressible homogeneous liquid mixtures with pairwise inter-
actions specified by eq. can be expanded as
1= v = I 0 i L 0010000 +
&)
Here, the first term captures the translational entropy of mix-
ing and is present in non-interacting systems. The second term
includes contributions from intermolecular interactions at the
mean-field level and is evaluated using the average values of the
density fields (¢;(r)) = ¢; which are independent of r for a ho-
mogenous system. The final term f., contains all corrections
arising from composition fluctuations around the mean-field val-
ues ¢; and depends on the underlying molecular architecture and
nature of interactions.

The first two terms in eq. comprise the mean-field contri-
butions to the free energy and are commonly applied to neu-
tral polymer blends via the Flory-Huggins (FH) model, where
U;j is the FH parameter y; j.31 In this work, we focus on the
Coulomb interaction. Upon substitution of the Coulomb ker-
nel U;; = 4rnlgo;0; /qz, the second term in eq. vanishes, be-
cause Y; 0;(¢;(q)) is the average total charge density, which van-
ishes in homogeneous and charge-neutral systems. In such sys-
tems, the nontrivial contribution from electrostatics has to come
from the microscopic fluctuation of charge density. The minimum
model of free energy requires the consideration of fluctuation cor-
rection contained in feorr, Which is the same as the electrostatic
correlation free energy, i.e., ECF.

Several previous works 1211212002324 haye shown that the lead-
ing contribution to ECF is given by the random phase approxima-
tion (RPA) or Gaussian fluctuation theory. In terms of the nota-
tion introduced above, the RPA contribution to the free energy for

4 Journal Name, [year], [vol.], 1

arbitrary mixtures can be written31:8>

1 ~ ~
feorr =5 /q Indet (1+6(q)0(q)) 6)

Here, the mxm matrices Q(q) and U(q) encode the molecular
structure and interactions. The entries of U(q) are the interac-
tion kernels U;;(q) given above. The diagonal entries of (q) are
the intramolecular correlation functions Q;(q). The off-diagonal
entries of Q represent intermolecular cross correlations, which
may be present, for instance, when block copolymers are con-
sidered. For incompressible systems dominated by electrostatic
interactions, eq. (6) can be reduced to?3

TA N2
Seorr = %/qln <1+5Tﬁs— (uﬂs)) )

uTQu

where U(q) has been replaced by s(q) and u. The vector s is a
factored form of the Coulomb interaction potential with entries
si(q) = v/47wlgo;/q. The vector u = (1,1,---,1)T contains m ones
and arises from the incompressibility constraint.

The final term of eq. that depends on u excludes the con-
tribution from charge density fluctuations that are incompatible
with the constant liquid density. Nearly all previous studies us-
ing the RPA to estimate ECF neglected the contributions from
this coupling. This coupling can be dropped for systems with
symmetric correlations among the positive and negative species,
e.g. polycation and polyanion with the same structure factor and
charge density or cation and anion with the same valency and ra-
dius, since uTQs = 0. However, most practically relevant systems
do not fall into this category, which includes for instance solu-
tions of polyanions and their counterions. Since the focus of this
work is the effect of finite MW, we shall restrict our analysis to
symmetric systems, in which uTQs = 0. The effects of such cou-
pling in asymmetric systems will be addressed in an upcoming
work, which clarifies the condition of charge symmetry and ex-
amines the contribution from excluded volume in the asymmetric
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systems.

Equation for ECF is valid for mixtures with arbitrary num-
ber of components and molecular architecture. To highlight the
effects of finite MW, we first focus on symmetric solutions contain-
ing oppositely charged and otherwise identical polycations and
polyanions, then study the effects of added salts in a later sec-
tion. The salt-free system has three species (m = 3): polyanion,
polycation, and solvent. For simplicity, polycations and polyan-
ions are assumed to have the same degree of polymerization N,
structure factor g(g), and composition ¢, = ¢. = ¢ /2. The charge
densities are opposite, so that o, = —0, = 6. Due to the constraint
of incompressibility, the composition of solvent is ¢, = 1 — ¢. The
structure factor and the charge density vector £(q) and s(q) are
given by

) ¢Ng(q)/2 0 0
Qg) = 0 ¢Ng(q)/2 0O
0 0 1—¢
(8
—-0/q
s(¢) =4nlg| o/q
0

Substituting the definitions of eq. (8) into eq. (7) gives the famil-
iar form of the RPA expression for ECF in symmetric solutions

o[~ 4nlgc?
fcon:m/o dqq ln|:1+ q2

¢Ng(q) 9

The analogous expression with salt addition will be provided in

Sec.[4.4

4 Finite-MW correction to ECF

Equation (9) serves as the basis for our discussion of finite MW.
The Edwards approximation, which has been extensively used in
the literature to evaluate ECF, amounts to replacing the structure
factor g(g) with its limiting form in the high-g regime. In the
following, we compare the results obtained from the Edwards ap-
proximation with eq. (9), and show that the difference revealed
in Fig.|1|can be associated with the end effects for polyelectrolytes
with finite MW. Such end effects are considered for coil-like and
rod-like molecules, as well as for more general fractal conforma-
tional statistics. The effect of molecular topology is illustrated by
considering ring polymers. A compact, generic form of the cor-
rection to the Edwards approximation is provided for these cases,
and generalized to systems with added salt. The physical inter-
pretation of the correction term is discussed and contrasted with
the related results of past studies. 1226182

4.1 End effect on electrostatic correlation

We first consider polymers with coil-like conformations. The full
ECF is obtained by replacing g(g) in eq. (9) with the Debye func-
tion mentioned above. The Edwards approximation amounts to
approximating the Debye function with g, (x) ~ 2/x. Substituting

Soft Matter
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it into eq. (9) leads to eq. (I),

coil \E 1
féd = 23

3/4
lgo? 3/4
- () ¢ (0)

1/4
vb? —1/4
4871:130'2¢) =<9

is the screening length.1223 It measures the decay length of
the screened potential around a test charge introduced to
the solution, analogous to the Debye length for point-like
plasma. The screening length can be written equivalently as

for the free energy density. Here A = (

o\ 1/4
A= (% ‘;"Tlf;) . Since polymer volume V}, = Nv, radius of gy-

ration squared Ré, valency Z = No, and volume fraction ¢ are
all measurable quantities, the value of A is independent of the
choice of v. Moreover, the dependence on molecular weight N
cancels out, making A an intrinsic length scale, which mainly de-
pends on composition ¢ and Bjerrum length /g. Equation
is obtained under the assumption that the electrostatic correla-
tion is dominated by that among the internal chain segments. It
is valid for large values of N and has been employed in several
recent analyses of experimental results. 8280

The finite N correction is incorporated by including the sub-
leading term in the Debye function: gp(g) ~ 2(x—1)/x>. Substi-

tuting this to eq. (O] gives
1 1
14— (1= s
7 < PR )

The integral is convergent in both low and high-g regimes. To
seek the leading correction, we note that 1/(¢?Rz) scales as N~ !.
Expanding the integrand perturbatively, keeping the terms up to
order 0(N~'), and completing the integrals results in

coil 1 el
S = /0 dgq*In 1n

flslcl;)(lil) :fi-(33011> +j}51coil) (12)
o) __V2(ANL L (Igo? o (13)
N 16w\ Ry ) A3 T\ wp? Nb?

which is eq. (3). The first part fgq is given by eq. (I0). The
second part fy scales inversely with N, which can be attributed to
the effects of chain ends.

The above expansion makes it clear that fy is derived from
the term —2/x? in the Debye function. Section S.1 shows, by
decomposing the Debye function into monomer-monomer corre-
lations, that this term originates from the missing correlation for
monomers near the chain ends: compared to monomers in the
middle of chain, they miss about half the connected neighboring
beads, as highlighted in Fig.

The expression for fy can be understood as follows. In the limit
of infinite N, the ECF is kgT per correlation volume A3. For fi-
nite N, this ECF is reduced by the concentration of “defects”, chain
ends. Each polymer chain may spread itself into Nb?/A? number
of correlation domains. The inverse, A2/(Nb?), gives the fraction
of correlation domains containing chain ends. The product of this
factor and A3 gives the reduction of ECF in eq. . The correc-
tion fy is comparable to fg4 in the dilute regime, when ¢ < N2,

The N-dependent correction to fgq is derived from the correc-
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Fig. 2 Comparison of the effect of molecular weight on binodal points
predicted by the Edwards approximation, fgq and the N-corrected Ed-
wards approximation, fygq-

tion to the Edwards approximation in the high-g or UV regime. In
contrast, previous works2282 have considered the N-dependent
structure factor by interpolating the Edwards approximation with
the behavior of the Debye function in the low ¢ or IR regime.
In the IR regime, with ¢ < R;!, the Debye function has the
form 1 — qué /3 or simply 1. The error introduced by replacing
the full Debye function with the Edwards approximation is

Ry 4rilgo
AfiR = dgq* {m (1+ 3 ¢N)

Anlgc? 12¢
—In(1 —= 1
n( e bzqzﬂ (19

as the border of the IR regime. The

1
472 Jo

The upper bound is set to Rgl

—1
dominating contribution to the integral scales as f: ¢ dgq*lng ~
Rg3In(R;"). Since Ry o« N'/2, we find that

InN

B (15)

Afir =~
The dependence on N in the IR regime is indeed weaker than fy ~
N~!, so we conclude that the leading N-correction to ECF sits in
the UV regime, and is an end effect.

The effects of the finite-N correction are demonstrated in
Fig. which shows both the binodal and the spinodal curves
for N = 100 calculated from egs. @), (I0), and (I2). The pro-
cedure for generating the binodal curves is detailed in Sec. S.6,
and is based on the balance of osmotic pressure and chemical po-
tentials. It is clear that, with the end-correction added, eq.
agrees to the prediction of the full Debye function nearly perfectly.
In particular, the lower critical point that cannot be captured by
the Edwards approximation is restored, and the accuracy of the
polymer concentration in the coacervate branch is remarkable.

The accuracy of the Edwards approximation, eq. (10), is ex-
pected to improve asymptotically as N increases. This trend is
verified in Fig. |2| Although fg4 predicts a vanishing supernatant
composition regardless of the value of N, the agreement of the
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coacervate concentration with that of the full theory continues to
improve as N increases. This figure and Fig. show the sim-
plest comparison between the Edwards approximation and the N-
corrected expression. The more substantial comparisons, on the
effects of salt, surface tension, and MW-dependent partitioning in
multi-component mixtures will be presented in Sec. [5}

4.2 Dependence on conformational statistics

The end effect for Gaussian chains identified in the previous sec-
tion is expected to work for other conformational statistics. We
first consider the rodlike case, which has a unique logarithmic
dependence on composition, then generalize it to statistics with
fractal dimension 1 < d < 2. As noted in Sec. [3| the structure
factor for rodlike objects is the Neugebauer function. It can be
expanded in the high ¢ regime as follows

i(/‘qLdlSiﬂ_lfcos(qL)>:1_ 22 16)
qL \ Jo t qL gL (qL)

gn(qL) =

Here L is the rod length. If the cross-section area is denoted A,
the chain length is given by N = LA /v. For convenience, we intro-
duce ¢ =v/A as the length of segment filling the volume v, whose
value depends on the choice of reference volume and should not
be confused with the Kuhn length. Then we also have N = L//.
Likewise, the charge density o = Z/N is the number of elemen-
tary charges carried within one reference volume. Inserting the
above high-q expansion into eq. (9) gives

(rod) 1 2q
fcorr an 2/ dq|:q ll’l( 3)(;) L(l+q3;l,3):| a7

W )'/3 < 1/3,

4n2lg o2

The first term in eq. has been discussed in previous
works2322l  The integral is divergent in the UV regime, which
can be renormalized by subtracting a linear function of ¢, i.e.,
¢*¢In[1+(94°2%)"!]. Such renormalization removes the self-
energy of polyions and does not affect the thermodynamic proper-
ties. After regularization, the correlation free energy for rod-like
chains is

Here the screening length is given by A = <

(rod) 1 111¢ \E Al
N~ o 23~ om L3
(18)
=B g - (lBG )2/34)2/3
- 74 NY

Here, the leading N-independent term is the ECF for rodlike ob-
jects given by the Edwards approximation, identical to eq. (11) of
ref. |23l The second term is the negative finite-MW correction, of
order N~!, analogous to eq. for Gaussian chains. Following
the treatment in the coil-like case, it can be shown that the contri-
bution from the IR regime is of order N3 InN, much weaker than
the N~! dependence caused by end effects. So eq. captures
the leading correction due to finite MW.

The similarity between egs. and implies that the
finite-N correction in the rod-like case can also be attributed to
end effects. To show this cleanly, we consider a generic poly-
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mer with fractal dimension d (1 <d < 2), so that the rod-like and
coil-like cases correspond to d = 1 and d = 2 respectively. Let the
polymer size be R = N'/44, where a is the microscopic length, e.g.,
b for coil-like or ¢ for rod-like molecules. In the high-g regime,
with ¢ > R™!, the structure factor can be written

1 1 1
O T ) e

The prefactor is synonymous to the definition of the fractal di-
mension d, which is the product between the probability of ran-
domly selecting a monomer 1/N, and the number of connected
monomers 1/(ga)?. The correction term in parenthesis counts
the missing correlation: 1/N is the fraction of ends and o /(ga)?
is the number of connected monomers that would be present on
an infinite chain, as shown in Fig. The parameter ¢ is a nu-
meral depending on the conformation statistics. Section S.3 com-
pares the exact structure factors for rodlike chains, coils, and ring
polymers with the corresponding predictions of eq. (19), showing
excellent agreement for ¢ >> R.

Substituting eq. into eq. (9) and following the same line
of analysis as for Gaussian coils or rod-like chains, outlined in
Sec. S.4, we obtain the following ECF

(fractal) _ CSC (23_%1) 1
Tved =g

o (3% (l)d 5o

A3 4m(2+d) \R) A3

This expression has the same form as egs. and (TI8).

1/(2+d
A= (L> /) o ¢~ 1/(2+d) i5 a generalized version of the

4nlgo?

screeningB le(flgths for Gaussian rodlike chains. The first term says
that the ECF in a homogeneous polyion solution is kg T’ per screen-
ing volume.23 The second term accounts for the finite-N correc-
tion due to the missed correlations. The ratio (R/A)? gives the
number of screening volumes that one chain spans, and its in-
verse is the faction of such volumes containing chain ends. The
picture is general, and the conformational statistics enters mainly
through counting the number of missing correlated segments near
ends.

4.3 Finite but no ends: ring polymer

Not all polymers with finite MW have ends. In the following,
we examine the effect of topology by evaluating the ECF for ring
polymers adopting Gaussian statistics. The structure factor is
given by

gR(x):—D(T) :%—l—iz 2n

where D(y) = e [Jdre’” is the Dawson integral®” and x =
¢*Nb? /6. Following the treatment in the earlier sections, the last
step keeps the leading terms in the high-q regime. Note that the
radius of gyration for ring polymer with N monomers is Nb?/12.
The definition for x is kept to facilitate the comparison with linear
chains.

Substitution of the asymptotic form of the structure factor into
eq. @) gives the ECF including the order N~! correction, analo-
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Fig. 3 Schematic comparison of the finite-N effects for ring and linear
polymers: missing correlations near chain ends for linear polymers become
enhanced correlations for ring polymers due to the constraint of end-to-
end connectivity.

gous to eq. (12)),

(ring) _ \@ 1
corr  — EF

3v2 1 A2
+ i 30 (22)
4mw A3 Nb
The first term is the ECF for infinitely large N, which is identical
that for linear chains as the chain topology is not discernible in
this limit. The second term has the expected N~! dependence,

but is positive, opposite to the case of linear chains.

The positive contribution to the ECF is due to the enhanced
correlation of ring polymers. A ring polymer can visualized by
forcing the ends of a reference linear chain with the same N
to close, which results in a more compact molecular size. All
monomers on a ring polymer are statistically identical. So we
can choose a monomer labeled i = 1 as a reference. The correla-
tion between this reference monomer and the other monomers,
indexed i =2,3,...N, decays as i increases, reaches the minimum
at i = N/2, then grows between i = N/2 and i = N. Such non-
monotonic correlation is a long-range effect derived from ring
topology, and is distinct from the behavior of linear chains, for
which correlation decays away from the reference monomer. This
difference is illustrated in Fig. [3] To demonstrate concretely that
the positive correction is a direct result of non-monotonic corre-
lations, Sec. S.2 provides a derivation of the approximate struc-
ture factor for ring polymers analogous to that provided for linear
chains in Sec. S.1.

4.4 Addition of small ions

We extend the above treatment to solutions with added ions,
and present the closed-form expressions for free energy includ-
ing the contribution of finite MW. With the addition of salt, the
correlation array and charge vector, Q(q) and s(q) introduced in
Sec. (3] contain 5 components each. Denote the volume fractions
of cations and anions by w,; and y_, and their valencies by z
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and z_. We need

$aNg(q) 0 0 0 0
| o eNe@ 0 00
Qq) =+ 0 0 v 0 0

0 0 0 vy 0

0 0 0 0 1-¢-y

(23)
—0/q
o/q
s(q) = V4nlg | z4/q
z-/q
0

Here, the structure factors of both cations and anions are set
to the g-independent constant 1. The total polymer fraction
is ¢ = ¢, + ¢, and the total ion fraction is v = yy + y_. The
solvent volume fraction is ¢y, = 1 — ¢ — y, constrained by incom-
pressibility.

As noted earlier, we study symmetric mixtures. The polyca-
tion and polyanion have same charge density, structure factor,
and equal composition, ¢, = ¢, = ¢ /2. By charge neutrality, we
further require z4 y; = z_y_. For this set of symmetric parame-
ters, the term coupling charge density and mass density in eq.
vanishes. The ECF for asymmetric mixtures will be studied in a
future work. Under these conditions, by substituting eq. into
eq. (7), we obtain the following form of ECF

foorn = 13 /O dgq’In {H—%(o ONg(a)+ziz-) | (24)

Due to charge neutrality, the contributions from cations and an-
ions are combined to zyz_y = z2 y +z2 y_, which is propor-
tional to the ionic strength. Equation (24) can be evaluated by
applying the N-corrected Edwards approximation, for both coil-
like and rod-like cases.

For Gaussian coils, the ECF is written as the sum, flslcgél) =

fécéoil)+f]£,coil)’ with
(coil) _ 1 2.2 2 2\1/2
Jed = g (1-22) (2422) (25)
(coil) _ 1 2 2\ "1/2
W= AR (2+A K) 26)

In the above, RZ = Nb?/6 is the radius of gyration squared.

vb?
48nlg 029
is used as a reference which scales with polymer concentration
as ¢~'/4. The inverse Debye length squared k% = 4nlgz,z_y/v
is proportional to the salt composition y. The term fgq gives
the ECF for infinitely long chains, and has been obtained in the
past. 1212023 we stress that it is valid only when the coupling
between charge density and mass density vanishes, therefore is
limited to the symmetric mixtures. It is straightforward to verify
that féfiml) reduces to eq. when y = 0 and to the Debye-
Hiickel correlation free energy —x>/(127) when ¢ = 0. The sec-
ond term represents the combined contribution of finite-¥N end
effects and screening of small ions. In the high-salt regime, this

1/4
The screening length A = ( ) / from salt-free solutions
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N-dependent correction decays as 1/(R2A%k) ~ ¢'/2/ (R, /).

For rod-like molecules, the ECF can be decomposed similarly,

Iyed =g+ I with

(I‘Od) _ 1 22 &3 K'ZA:;B 2.2
Jea = T3 {lnq) K°p ln(/l3)+ 0 3+Kkp
27)
(rod) _ 1 p/A_|pP (P, (B-Kp?)E
N =533 AR 2,52
2m3A2L 14+2(p/A)0 | A A V3+K2p
(28)

Here L is the molecular backbone length, and the reference length

A= (szﬁ) 3 is the screening length of a salt-free solution of
rod-like chains, introduced in Sec. which scales with poly-
mer concentration as ¢ /3. The parameter p is the screen-
ing length with added salts, given by the unique positive solu-
tion to the algebraic equation p®/A% + x?p? = 1, which implies
that both xp and p/A are less than unity. An explicit expres-
sion for p is provided in Sec. S.5. The parameter 6 is given
by 6 = arccos (7%)' It is easy to see that (p,0) = (1,27/3)
when w = 0, and that (p,0) = (x~',7/2) when ¢ = 0. In the

limit y = 0, féffd) = —In¢/(127?A%), which was obtained previ-
ously, 2% and the end-correction reduces to the form in eq. (18).

In the limit ¢ =0, féffd> reduces to —x>/(12x) as expected, and

the end effect scales as 1/(LA%k) ~ ¢ /(L\/¥).
5 Results

The effects of the finite-N correction are demonstrated by apply-
ing the ECF to three problems investigated experimentally: the
stability of the complex phase to addition of salt, the interfacial
tension between the coacervate and supernatant phases, and the
partitioning of finitie-MW polymers between coexisting phases.

5.1 Salt resistance

Many previous experimental43Z3[7986188-921 and  theoreti-

cal1619120123136142193) ¢ty djes have estimated phase diagrams
for solutions of oppositely charged polyelectrolytes in presence
of monovalent salts. In Fig. we compare the two phase
coexistence diagrams for fixed MW N = 200, obtained using
the full RPA calculation eq. 23], eq. for the Edwards
approximation, and the finite-N corrected expression eq.
respectively. The equilibrium compositions are obtained by
equating chemical potentials and osmotic pressure, as detailed in
Sec. S.6.

In all three cases, the biphasic window narrows as the salt
concentration y is increased. In the limit y = 0, the coexisting
compositions are the same as given by Fig. which shows
the nearly quantitative agreement between the finite-N corrected
free energy and full calculation. Here we observe that the agree-
ment between the two is similarly quantitative as a finite amount
of salts are introduced. In particular, the locations of the critical
points are nearly exactly captured by the free energy with finite-¥
correction. In contrast, the Edwards approximation substantially
overestimates the salt resistance, resulting in a wider two-phase
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Fig. 4 @] Critical, spinodal and binodal points predicted for a salted flexible polyelectrolyte system with N =200 and ¢ = 0.12 using different

(coil)

approximations for fcorr : the Edwards approximation, the N-corrected Edwards approximation, and the exact RPA expression. @ Effect of molecular
weight on predicted critical and binodal points using the Edwards approximation and the N-corrected Edwards approximation.

window and a maximum salt concentration nearly twice that of
the exact value. The overestimation is consistent with our obser-
vation that the end-effects weaken the electrostatic correlations,
thus lowering the driving force for phase separation.

The convergence of the prediction from the N-corrected ECF
to that of the Edwards approximation is illustrated in Fig.
Increasing N widens the two phase window slightly and results
in higher salt-resistance. This is partially related to the entropy
cost of phase separation, which is captured by both free energy
models, and is also related to the finite-N correction to the ECF,
which is only captured by eq. (26). For the highest MW studied,
N = 1000, the composition in the low salt regimes between the
two models are nearly indistinguishable, except near the critical
point. In the limit N — o, the two models should yield identical
results, and the polymer composition at the critical point van-
ishes.

5.2 Surface tension

Several previous works=1619120180194 haye estimated the interfa-
cial tension between the supernatant and coacervate phase. In
particular, ref. (80) considered the variation of interfacial tension
with N in salt-free solutions. A generic dimensionless free energy
for polymers in implicit solvents is used as starting point,

vf = 2109+ 1u(0) (29)

Here, the first term is ideal gas entropy, and the second term
f=(¢) is the excess free energy, assumed to be independent of N.
By further assuming the solvent to be ideal and using the Edwards
approximation to estimate the ECF, the authors set

Fuol) =wo? + L4934 (30)
in which w is the third virial coefficient. The constant c., contains
the effect of Ig, o, b, and all numerical prefactors as shown in
eq. (10). Plugging eq. into the Cahn-Hilliard formalism gives

the surface tension of the form

h
Y:Yw(l—ﬁ) (€2D)

where 1., corresponds to the interfacial tension in the limit N — co.
The coefficient 4 depends on the form of free energy. Expressions
for v, and h are provided in Sec. S.7.

The finite-N correction we identified in this work can be com-
bined with the first term in eq. (29). Then, essentially the same
steps can be taken to evaluate the surface tension. The details
of this analysis are provided in Sec. S.7. The comparison of this
result and the original one from the Edwards approximation is
given in Fig. With the end-correction, the surface tension is
lower due to the weakened ECF. However, the difference between
the two predictions is less than 5% for relevant values of N, and
is likely negligible in most cases. Moreover, the scaling of both
predictions with o is identical, indicating that the relative contri-
butions of entropy and electrostatics to the N-dependence of the
interfacial tension are independent of charge density at this level.

The authors of ref. (80) also numerically estimated the interfa-
cial profile between the supernatant and coacervate phase along
with its leading-order dependence on N. We repeat this analy-
sis and compare the resulting interfacial profiles in Fig. The
details of this analysis can be found in Sec. S.7. Overall, the inter-
facial profiles predicted by the Edwards approximation exhibit a
weaker dependence on N than those that account for the finite-N
correction to the ECF. The interface is asymmetric in both cases;
however, accounting for the additional MW dependence increases
the asymmetry slightly and broadens the interfacial density pro-
file. Similar to the surface tension, the difference between the
predicted profiles is within about 10% and rapidly shrinks as N is
increased.

Overall, the N dependence of the ECF has only a modest effect
on the interfacial tension and profile within this framework. It
is worth noting, however, that several approximations have been
made to arrive at the results in Fig. |5| Most relevant is the as-
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Fig. 5 @] Approximate surface tension between the supernatant and coacervate phase as a function of polyion size N predicted by the Edwards
approximation and N-corrected Edwards approximation with b =1, 6 =0.5, and w=1/6. @ effect of molecular weight on the interfacial profile
predicted by the Edwards approximation and the N-corrected Edwards approximation with b =1 and w=1/6.

sumption of zero polymer content in the supernatant phase. This
assumption is necessary in the original formulation, because the
original ECF is too strong to allow for the finite concentration in
the supernatant phase, as shown in Fig.

5.3 Chain partition: electrostatic vs. entropic

Many synthetic polyelectrolytes have nonnegligible dispersity
and, based on the binodal curves shown in Fig. 2| polymers with
disparate MWs are expected to be partitioned differently. One
would expect that a disperse mixture of polyelectrolytes undergo-
ing complexation expels short polyions in favor of longer chains,
resulting in a shift of the MW distribution. This possibility has
been explored and studied in our recent work.Z Qur study ratio-
nalized the experimental observations using the MW-dependence
of translational entropy. The results obtained in the previous sec-
tions allow us to examine effects of the N correction on ECF, and
compare it to that from the entropic arguments.

First, we note that within the Edwards approximation, such a
scenario is not possible. The condition of zero supernatant com-
position requires that the bulk polymer content is entirely con-
tained within the coacervate phase. Thus, although the absolute
concentration of each component can vary from its bulk value
due to solvent exchange, their distribution must remain fixed and
equal to its bulk value. To demonstrate this, we use the results
in Fig. |2| to approximate the expected distribution of polymer
in each phase when solutions of two oppositely charged polyion
pairs with different MWs are mixed. In principle, an accurate
treatment of such a system requires a slight generalization of the
approach from Sec.[4.2]to include additional polyion species with
unique values of N; in the expression for f;, enabling generation
of complete phase diagrams for these multicomponent systems.
For simplicity, however, we rely on the simple mixing rule de-
scribed below to illustrate the effects of N-correction to the ECF.

As a simple example, we consider a solution of two types of
polyion pairs with Ny =N and N, = rN (r > 1), and assume that
the supernatant and coacervate phase compositions can be esti-

10 | Journal Name, [year], [vol.], 1

mated as
¢(coac) ~ xq)(coac)(rN) + (1 7x)¢(coac) (N) (32)
¢(5up) :x(p(suP) (VN) + (l _-x)¢(sup) (N) (33)

where ¢(©°%)(N) and ¢"P)(N) are the supernatant and coacer-
vate binodal compositions for a single type of polyion with a given
N. The quantity x ranges between 0 and 1, which controls the
mixing ratio of the two polyion species. Each value of x produces
a unique tie line from which the supernatant and coacervate com-
positions can be used to estimate the distribution of species 1 and
2 in each phase:

x¢(coac) (rN)

x(coac) = x(sup)

¢(coac) ’

x¢ (%) (rN))
¢ (sup)

(34

In this case, x(¢®*) and x(5"P) correspond to the concentration of
the higher-MW polymer, species 2 with N, = rN, normalized to
the total polymer content.

To show concretely that nonzero supernatant concentrations
are required to recover nontrivial partitioning behavior, we must
also consider mass balance constraints. For each species, this
takes the form of the lever rule given in eq. (S.17) where v is the
volume fraction of the coacervate phase and ¢; is the bulk com-
position of species i. Considering the Edwards approximation, for
which ¢ (") (N) = 0 regardless of N, combining the mass balance
with eq. shows that x(¢02) — ¢, /¢ where ¢ is the total bulk
polymer content. In other words, distribution of species in the
coacervate is identical to the the bulk solution if the supernatant
concentration is zero.

For a given value of charge density o, the binodal compositions
predicted by the N-corrected Edwards approximation fygq can be
substituted into eq. to predict the expected distribution of
polymer species in each phase. The results of this analysis are
shown in Fig. [f] for ¢ = 0.06 and N = 100. In this case, we select
a value of x = 0.5 to represent equal mixing of polyion species in
the bulk. As shown, the predicted value of x(<°2¢) increases mono-
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Fig. 6 Fraction of high-MW (N, = rN) polyion in the (a) supernatant <x<5”p)> and (b) coacervate <x(°"ac)) phase predicted using fygq and fgq as a

function of the MW ratio r = N,/N; with Ny =100 and o = 0.06. (c) Schematic illustration of the difference in predicted partitioning between the
Edwards approximation with ¢(S“P> =0 and the N-corrected Edwards approximation with ¢(5“P) > 0.

tonically with r while x(8uP) decreases. At a ratio of r = 10, more
than 90% of the coacervate phase polymer content is comprised of
the longer polyion species; in contrast, the supernatant is nearly
devoid of higher-MW polymer under the same conditions.

Although we emphasize that these results for fygq are not ex-
act due to the use of a simple linear mixing rule in egs. and
, the overall trends of x(¢®*¢) and x(5“P) with increasing MW
mismatch agree qualitatively with expectations. In addition, the
failure of the Edwards approximation to predict nontrivial parti-
tioning is a direct consequence of mass balance constraints and
thus it is not affected by this approximation. With this in mind,
the stark disagreement between the predictions in Fig. [f]is a gen-
eral feature of the Edwards approximation that would still be ob-
served even in a more complete treatment of the multicomponent
phase equilibrium.

6 Effects of interaction range

The end effect discussed in the previous sections is not lim-
ited to electrostatic interactions. Other interaction forms, such
as excluded volume interactions, may be affected as well. It
is thus necessary to study the circumstances under which the
N-correction is relevant. To reveal the trend, we consider the
molecules with the structure factor described by eq. in
the high-¢g regime and approaching the constant 1 in the low-¢
regime. Similarly, the interaction potential is assigned a generic
form U;; = u/(ga)", in which u and 7 control the strength and
the range of the interaction, and « is the same microscopic scale

in eq. (19). For electrostatic interaction, u is proportional to the
Bjerrum length and n = 2; for excluded volume interaction, u is
the excluded volume parameter and 1 = 0.

Focusing first on the UV regime, we substitute the structure
factor and interaction potential into eq. (6), and obtain the cor-
relation free energy

N ¢ 1«
o= g Jy [ (1= )| 69

The coupling with the compression mode u is absent because the
potential U;; does not depend on species type. Following the pre-
vious analyses, the free energy is given by

3 d-3
e csc (cHZr ) s o ‘Z:(g?’;;’)‘ LLd (36)

2T A3

Here the screening length is given by A = a(u¢)~'/(@*+1), The in-
terpretation of the two contributions are the same as the previous
sections, with the end effect of order N~ !.

In the IR regime, extrapolating the Edwards approximation
to ¢ — 0 results in an error given by

1 R 0 ON
A= g ) G0 [1“ (1 +“(qa>d+n) o <1 ey ﬂ
37)

The upper bound is the inverse of the molecular size R = N'/4q.
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The integrand is dominated by ¢*In(N/q), so we have

InN InN

F:NW" (38)

AfiR ~

Therefore, we find that the IR contribution is weaker than the
end-effect captured by the contribution in the UV regime, irre-
spective of the fractal dimension and the range of interaction.

The N-effect has not been emphasized for the more important
problem of excluded volume interaction because the mean-field
contribution is dominant. Consider polymers in good solvent with
solvent treated implicitly. The osmotic pressure is given by®2

¢

u
IT= m“’g‘i)z“'fcorr (39)

The first two terms are the ideal gas contribution and the mean-
field excluded volume interaction. The correlation contribu-
tion feorr is given by eq. with 1 =0. For 1 <d <2, the
two correlation terms are of order ¢3/¢ and ¢3/4~!/N, respec-
tively, both weaker than the mean-field level ¢ term. In contrast,
for charge neutral systems, the mean-field contribution of electro-
static interactions vanishes, and the ECF is the leading term. The
result of the Edwards approximation necessarily has to compete
with the N~! correction in the UV regime.

Conclusion

Our primary concern in this work is the finite-N correction to the
ECF, electrostatic correlation free energy, which in the past has
been mainly evaluated using the Edwards approximation. We
showed that, for charge-neutral symmetric solutions, an addi-
tional correction of order N~! is needed for polymers of different
conformation statistics and in presence or absence of small ions.
This correction is attributed to the reduced correlation around
chain ends. Closed-form expressions for the end-corrected free
energy are provided for polymers adopting both Gaussian statis-
tics, egs. (25H26), and rod-like statistics, egs. ([27H28), which
should facilitate the theoretical modeling of experimental results.

The finite-N correction we identified is derived from the be-
havior of the structure factor in the UV regime, which is distinct
from that identified in the IR regime.2%82 We showed that the IR
regime contributes a free energy of order N~3/2InN for Gaussian
chains and of order N=3InN for rod-like polymers, which are both
weaker than the N~! correction attributed to the missing corre-
lation at chain ends. The analyses in these two regimes can be
generalized to the other type of interaction potentials, such as ex-
cluded volume interactions. However, the end-correction is par-
ticularly important for charge-neutral system, because the mean-
field contribution vanishes and the fluctuation effect becomes the
leading contribution.

A few examples are discussed to examine the importance of the
N correction. For binary systems containing no added salts, we
showed that the Edwards approximation is too strong, so that the
concentration of polymers in the supernatant is always zero. This
is fixed by restoring the N correction to the ECF. Similarly, when
salts are added, we showed that the N-corrected ECF agrees with
the prediction of the full expression nearly exactly. The contribu-
tions of the finite-N correction to the interfacial tension and the
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partitioning of polyions with different MWs are also discussed.
Given the simplicity of eqs. (25H28)), we recommend them to be
used in place of the full RPA expression for the discussion of finite
chains.

The scaling of the leading order correction to the ECF with
N is the same as that of the translational entropy typically em-
ployed to study polymer solution behavior. As a consequence, it
is difficult to validate the results of this work directly from the N-
dependence of measurable quantities since the parametric depen-
dence on N~! is identical to existing models.®? Given the distinct
concentration dependence of translational entropy and the ECF,
however, combined measurements of both the concentration and
N-dependence of quantities such as the osmotic pressure could
provide a means to verify the key results of this work.

All the results in this work are obtained for symmetric systems,
so that the term coupling the charge density and mass density
in eq. vanishes. The importance of this term, as applied to
systems with conformational asymmetry, charge asymmetry, and
excluded volumes will be presented in the future.
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