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-assisted optimization design for
enhanced oxygen evolution reaction based on
vanadium-doped nickel–cobalt layered double
hydroxides†

Chandrasekaran Pitchai, ‡a Ting-Yu Lo, ‡a Hou-Chien Chang, a

Hung-Chung Li, *be Ming-Der Yang *cde and Chih-Ming Chen *ade

The increasing demand for sustainable energy has driven significant research into efficient water splitting,

particularly the development of electrocatalysts for the oxygen evolution reaction (OER) which is limited by

sluggish kinetics. Optimization of the OER process remains, however, a big challenge due to the

compositional complexity of multicomponent catalysts and the influences of electrolyte and

temperature. In this study, machine learning (ML)-assisted optimization design is performed to enhance

the OER performance using vanadium-doped nickel–cobalt layered double hydroxides (NiCoV LDHs) as

the catalyst. In the ML framework, a polynomial regression model is systematically trained by

experimental datasets to successfully elucidate the correlation between the target feature (overpotential)

and the input features (catalyst composition, electrolyte concentration, and reaction temperature) with

a high coefficient of determination (R2) of 0.842. Based on the optimized input features predicted by the

ML algorithm, a superior overpotential of 196 mV is experimentally obtained which is reduced by 21%

compared to the best catalytic performance (238 mV) in the original training datasets. Structural and

electrochemical characterizations confirm a well-defined layered morphology and efficient charge

transfer dynamics for the optimized electrocatalyst. Our results stand as a significant milestone for

integrating an ML algorithm with experimental synthesis for the rational design and optimization of high-

performance, cost-effective OER electrocatalysts.
1 Introduction

In recent decades, rapid population growth and technological
advancements have driven a surge in energy consumption,
highlighting the limitations of fossil fuels and the pressing
environmental challenges.1–4 This has sparked widespread
research into renewable and eco-friendly energy alternatives,
with hydrogen emerging as a key focus. The elds of energy
conversion and storage have seen rapid advancements, with
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hydrogen emerging as a leading contender for future energy
solutions due to its clean nature, high energy density, recycla-
bility, and abundant availability.5–7 Eco-friendly characteristics
and cost-effective production methods, particularly through
electrochemical processes, make hydrogen an increasingly
attractive option. Building on the importance of electro-
chemical hydrogen production, water splitting in an electrolyzer
plays a vital role in sustainable energy systems. It is essential for
green hydrogen generation and involves two key half-reactions:
the hydrogen evolution reaction (HER) and the oxygen evolution
reaction (OER).8–10 This process necessitates a higher over-
potential (1.8–2 V vs. SHE) than the theoretical minimum
(1.23 V vs. SHE) due to intrinsic reaction barriers.11 Noble
metals such as Pt, Ru, Ir, and Au have shown exceptional
performance in reducing overpotential, with Pt and Ru/Ir oxides
being particularly effective in minimizing energy losses at the
cathode and anode.12 In particular, the OER involves complex
reaction mechanisms with multiple catalytic steps, resulting in
sluggish electrochemical kinetics, and is a complex four-
electron transfer process requiring substantial additional
potential.13,14 Addressing these kinetic challenges is critical, as
the OER signicantly impacts the overall efficiency of energy
J. Mater. Chem. A
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production and storage systems. Developing advanced, cost-
effective electrocatalysts is essential to overcome these limita-
tions, facilitating faster reaction rates and enhancing the overall
water splitting process.15–18

Recent studies have increasingly highlighted the potential of
hydroxide-based catalysts, particularly layered double hydrox-
ides (LDHs) with their distinctive stratied architectures, for
promoting the OER under alkaline conditions.19 Transition
metal-based LDHs such as CoFe-LDHs, NiCo-LDHs, and NiFe-
LDHs have demonstrated notable OER performance.20,21

However, challenges remain, especially with NiCo-LDHs, which
oen suffers from inadequate long-term electrocatalytic
stability. This decline in activity is largely due to unavoidable
aggregation and restacking of its nanosheets, in addition to its
inherently low electrical conductivity and overall stability. To
address these limitations, researchers have explored doping
strategies; incorporating one or more foreign cations into these
bimetallic hydroxides has proven effective in signicantly
enhancing OER kinetics by tuning both their electronic prop-
erties and structural resilience.22

Vanadium (V) doping in FeNi3N/Ni3N results in an over-
potential of 230 mV, compared to 244 mV for the undoped
counterpart. This improvement in OER kinetics can be attrib-
uted to the electronic modications occurring at the interface
between the two nitride phases due to vanadium incorpora-
tion.23 Similarly, He et al. modied sheet-like Ni3Se2 through
vanadium doping, which signicantly altered the selenide
structure and enhanced its OER performance, achieving an
overpotential of just 270mV.24 Additionally, Bera and colleagues
synthesized V-doped NiCo LDHs via a co-precipitation method
and demonstrated its effectiveness as an electrocatalyst for
OER. Their catalyst reached a current density of 10 mA cm−2 at
an overpotential of 280 mV, accompanied by an impressively
low Tafel slope of 67 mV dec−1.22

Machine learning (ML), as a key technology to implement
articial intelligence, has become an emerging tool for optimal
performance prediction through dataset analysis and model.25–30

In recent years, ML has been used as a screening tool of efficient
electrocatalysts for hydrogen production.31–34 Cao et al. used ML
to screen specic transitionmetals (TM) dopedmetal phosphides
as potentially active HER catalysts.35 In their study, density
functional theory (DFT) was used to construct the adsorption
energy of HER intermediates and critical catalyst features, e.g.
local average electronegativity, as the ML dataset. Zhou et al. re-
ported a similar methodology for the design of TM-doped cova-
lent organic frameworks (COFs) as efficient OER catalysts.36 The
DFT calculation method was used to acquire the dataset of the
free energy required for the four-electron transfer pathway
toward the OER for all catalysts of interest.37 Although the DFT-
based ML screening methodology is time and cost effective, its
prediction accuracy still needs further experimental evidences.
Besides, the DFT calculation merely considers the inuence of
the structures and compositions of the catalysts, rarely empha-
sizing the inuence of other features such as synthesis temper-
ature and electrolyte concentration. Noteworthy, the interplay
between synthesis temperature/electrolyte concentration and
catalysts plays a vital role in the OER and HER.38–40
J. Mater. Chem. A
The generation of initial dataset is the key rst step to drive
the ML technology. Collecting experimental data from different
literature sources is an approach commonly used to generate
the dataset.41,42 However, the sources of experimental data are
relatively scattered, and there may be differences in the catalyst
synthesis methods, resulting in high incompleteness and
uncertainty of the collected data, which seriously affects the
training results of ML. In this study, TM-based NiCoV LDHs
were used as the electrocatalyst of the OER and the initial
dataset was generated experimentally with the catalyst compo-
sition, synthesis temperature, and electrolyte concentration as
the feature variables. Thirty-ve sets of feature variables were
randomly selected within a specic framework as the process
conditions of the OER, which also produced thirty-ve sets of
experimental data as the training dataset of ML. Subsequently,
ML optimization was performed to systematically investigate
the inuences of four critical features on the electrocatalyst
performance. Based on the ML results, the optimized catalyst
was synthesized, demonstrating signicantly improved OER
performance with a low overpotential of 196 mV and Tafel slope
of 102.8 mV dec−1. A minor deviation of 6.1% from the pre-
dicted overpotential of 185 mV shows that the ML framework
used in this study is a useful tool for the rational design of more
efficient catalysts for alkaline OER applications.
2 Results and discussion
2.1. Generation of training dataset by experiments

TM-based NiCoV LDHs electrocatalysts and their electro-
chemical performance of OER, that is, the overpotential
required to reach a current density of 10 mA cm−2 were
systematically evaluated using ML. The catalyst composition,
synthesis temperature, and electrolyte concentration were used
as the feature variables to experimentally synthesize the cata-
lysts, and the synthesized catalysts were evaluated to acquire the
overpotential for the OER. Thirty-ve sets of experimental data
were generated according to the ranges of feature variables in
Table S1 (ESI)† and used as the initial training dataset for ML.
In Table S1,† the catalyst composition includes Ni, Co, and V.
The compositions of the two transition metals, Ni and Co, were
the same, ranging from 0.35 to 0.45, and that of the V dopant
ranged from 0.1 to 0.3. The temperature used for the catalyst
synthesis was set in the range of 150 °C to 200 °C, and the
concentrations of the electrolyte (KOH) and urea were from
0.1 M to 1 M and 5.83 mM to 7.43 mM, respectively. The elec-
trochemical activity of all synthesized NiCoV LDHs coated on
the nickel foam (NF) electrode was investigated through linear
sweep voltammetry (LSV) with a scan rate of 10 mV s−1. Based
on the LSV curves in Fig. S1 (ESI),† the overpotential data
required to reach a current density of 10 mA cm−2 were found to
be in the range of 238 mV to 361 mV as shown in Fig. S2(a).†
2.2. Optimization of synthesis parameters by machine
learning

Fig. 1 illustrates the complete ML optimization process, and
Fig. 2 illustrates the feature engineering and selection for
This journal is © The Royal Society of Chemistry 2025
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Fig. 1 Workflow of the machine learning optimization.
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polynomial regression model. During the construction of the
ML model, the four input features, including synthesis
temperature, urea concentration, electrolyte concentration, and
Fig. 2 Feature engineering and selection for polynomial regression mod

This journal is © The Royal Society of Chemistry 2025
the molar fractions of catalyst components, were rst analyzed
concerning the target variable. Subsequently, the data stan-
dardization, polynomial feature generation, and feature
el.

J. Mater. Chem. A
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Fig. 4 Scatter plot of predicted OER values and actual overpotential
values.
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selection were performed to train the polynomial regression
model. The polynomial regression model was implemented
using the scikit-learn library. Besides, the training procedure
adopted the grid search method to identify the optimal hyper-
parameters. Moreover, leave-one-out cross-validation (LOOCV)
was utilized to compute the root mean square error (RMSE) for
quantitative model performance evaluation. This approach
determined the best-performing model and hyperparameters.
The ESI materials† provide a detailed explanation of the ML
process.

This study aims to optimize the process parameters of OER
electrocatalysts to reduce overpotential. First, the correlations
between the four input features and the target feature (over-
potential) were analyzed. The relationships and correlations
between the two features were determined by calculating the
Pearson correlation coefficient. Fig. 3a shows the correlation
between the input features and the target variable. It can be
observed that, from the perspective of overpotential, the highest
correlation was 0.38 with temperature, indicating a positive
correlation, while the lowest correlation was −0.62 with elec-
trolyte concentration, indicating a negative correlation.

The gradient boosting regression (GBR) algorithm was used
to obtain the weights of the input features' inuence on the
target variable, and a radar chart was generated, as shown in
Fig. 3b. It indicated that electrolyte concentration has the
highest weight of 74.4%, making it the most inuential feature,
followed by temperature with 15.8%. From this, it was clear that
electrolyte concentration had the most signicant inuence
among the input features, while the impact of the molar frac-
tions of individual metal elements on overpotential is limited.
Therefore, based on the training process, it was found that the
second-degree polynomial model outperformed the rst-degree
polynomial (Fig. S4 and S5†). As a result, the nal features
included interaction terms between the features as inputs to the
polynomial regression model.
Fig. 3 (a) The correlation coefficient between the input features and targ

J. Mater. Chem. A
In machine learning, coefficient of determination (R2),
RMSE, and mean absolute error (MAE) were three evaluation
metrics used to assess the performance of regression models.
Fig. 4 shows the scatter plot of the predicted results versus
actual overpotentials aer training the machine learning
model. The closer the data points are to the 45° reference line,
the more accurate the model's predictions are. According to the
experimental results, the model demonstrated accurate
predictive performance, successfully predicting the over-
potential with the data points closely aligning with the 45°
reference line. The R2, RMSE, and MAE values were all favor-
able, with respective values of 0.842, 0.012, and 0.010.
et variable, (b) the feature importance predicted by the GBR algorithm.

This journal is © The Royal Society of Chemistry 2025
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Fig. 5 Residual distribution plot of the best polynomial regression model.
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Subsequent calculation of the errors between the actual and
predicted values led to the residual distribution shown in Fig. 5.
The gure indicates that the majority of the residuals are
concentrated between −0.03 V and 0.02 V, with positive resid-
uals slightly higher than the negative residuals, suggesting that
the model may slightly underestimate some data points. Over-
all, the kernel density estimation (KDE) curve indicates that
most prediction errors are close to 0, reecting the model's
stable predictive performance.
Fig. 6 Bar plot of SHAP values from a polynomial regression model wh

This journal is © The Royal Society of Chemistry 2025
Shapley additive explanations (SHAP) analysis was conduct-
ed on the best model to calculate the importance of input
features for the predictive model and to interpret the model's
predictions. Fig. 6 presents the average SHAP absolute values
for each feature, indicating the overall inuence of the features
on the model output. It can be observed that the interaction
between electrolyte concentration and metal V has the highest
average SHAP value, suggesting that it has the strongest impact
on the model's predictions. This result aligns well with the
en predicting overpotentials.

J. Mater. Chem. A
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Fig. 7 Beeswarm plot of SHAP values from a polynomial regression model when predicting overpotentials.
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study's focus on doping with vanadium to improve over-
potential performance. Fig. 7 illustrates how the SHAP values of
different features inuence the model output. The gure shows
that Electrolyte*V, Electrolyte*Ni, and Electrolyte*Co are the
most signicant features affecting the model output, as evi-
denced by their wide SHAP value ranges and broad distribution
of points.

The study also analyzed the ordinary least squares (OLS)
regression results, with Table 1 listing the statistical perfor-
mance in predicting overpotential. Regarding the p-values, both
electrolyte and electrolyte2 had p-values smaller than 0.05,
indicating a signicant inuence on overpotential. Based on the
condence intervals (CI), electrolyte had a negative effect,
whereas electrolyte2 had a positive effect. Electrolyte*Ni and
Electrolyte*Co had p-values (p = 0.054) close to the signicance
threshold (p = 0.05), suggesting a potential inuence. On the
other hand, SQRT_Urea, Electrolyte*V, and
Table 1 Statistical analysis of the ML model

Variables Coefficient Standard error t S

Const 3.2029 1.684
ELECTROLYTE −0.0485 0.013 −
SQRT_UREA −0.0087 0.006 −
ELECTROLYTE2 0.0541 0.006
ELECTROLYTE*Ni −1.5289 0.762 −
ELECTROLYTE*Co −1.5289 0.762 −
ELECTROLYTE*V −2.8756 1.672 −
ELECTROLYTE*SQRT_UREA 0.1084 0.233

a t Statistic is calculated as the coefficient divided by its standard error. b P (
that the coefficient is zero. A p-value < 0.05 indicates a statistically signica
interval (2.5th percentile). d Upper bound of the corresponding condence
Ri

2 is the coefficient of determination obtained by regressing a given varia

J. Mater. Chem. A
Electrolyte*SQRT_Urea had p-values signicantly greater than
0.05, indicating a minor impact on overpotential. However,
these results were inconsistent with the SHAP analysis
mentioned earlier. This discrepancy arose because the molar
fractions of the three metal elements were correlated, leading to
multicollinearity issues when generating interaction terms,
which resulted in variance ination factor (VIF) values
exceeding 10, directly affecting the estimation of each variable's
independent inuence. Additionally, the regression model
assumed a linear relationship between variables, whereas SHAP
could capture nonlinear effects. Therefore, the SHAP-based
feature importance analysis was considered more reasonable
and reliable. Aer completing model training, a for-loop was
employed to automatically generate all possible process
parameter combinations within a specic range (approximately
970 000 data). These generated parameters were used for
prediction, identifying the optimal process parameters that
tatisticsa Pb (>t) CIc (0.025) CId (0.975) VIFe

1.902 0.067 −0.246 6.652 5.449 × 105

3.692 0.001 −0.075 −0.022 2.350
1.354 0.187 −0.022 0.004 1.078
8.757 0.000 0.041 0.067 1.072
2.007 0.054 −3.089 0.031 Innity
2.007 0.054 −3.089 0.031 Innity
1.720 0.096 −6.300 0.549 1.761 × 104

0.466 0.645 −0.368 0.585 3.587 × 102

>t) represents the p-value of the t-statistic used to test the null hypothesis
nt impact on the model. c Lower bound of the corresponding condence
interval (97.5th percentile). e VIF is dened as VIF = (1/(1 − Ri

2)), where
ble against all other variables. If VIF > 10, collinearity issues may exist.

This journal is © The Royal Society of Chemistry 2025
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Table 2 The optimal OER process conditions predicted by the ML model and the corresponding experimental data

Temperature (°C) Electrolyte (KOH) (M) Ni Co V Urea (mM) Overpotential (mV)

Polynomial regression 150 1 0.44 0.44 0.12 5.50 184.024
Experimental verication 196
Experimental dataseta 150 0.84 0.44 0.44 0.12 7.30 238

a The best overpotential in the initial 35 experimental dataset and the corresponding OER process condition.
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yielded the lowest overpotential, as listed in Table 2. Subse-
quently, experiments were conducted using these parameters to
validate the model's feasibility. As a result, the polynomial
regression model derived the lowest overpotential value of
184.204 mV, while the experimentally obtained actual over-
potential was 196 mV. This value is better than the lowest
performance (238 mV) in the training experimental dataset,
demonstrating that this ML model can effectively identify the
optimal set of process parameters to achieve the best over-
potential performance. Fig. 8 compares the overpotentials of
the optimized NiCoV LDHs with other OER electrocatalysts
developed using the ML algorithm in the literature.36,37,41,43–47 It
is found that the optimized NiCoV LDHs performs better with
an overpotential of 196 mV lower than that of Ni0.77Fe0.13La0.1
(226 mV)41 and Co2.5Ga0.5O4 (220 mV),44 conrming again the
effectiveness of the ML algorithm developed in this work.
2.3. Structural and chemical characterization of optimized
electrocatalyst

NiCoV LDHs was successfully synthesized using the hydro-
thermal method described in ESI,† wherein the material
composition and urea concentration were optimized as shown
in Table 2. The morphological and crystallographic character-
istics of the synthesized catalyst were analyzed using scanning
Fig. 8 The comparison of the overpotential of the NiCoV LDHs with tho

This journal is © The Royal Society of Chemistry 2025
electron microscopy (SEM) and transmission electron micros-
copy (TEM). From the SEM image (Fig. 9a), the catalyst reveals
a stacked sheet-like structure, indicating the typical layered
morphology of LDHs. This observation is further corroborated
by TEM analysis (Fig. 9b and c), which clearly displays the sheet-
like arrangement, conrming the layered nature of the synthe-
sized LDHs. Additionally, the high-resolution TEM image (inset
in Fig. 9b) show well-dened lattice fringes with an interplanar
spacing of 0.196 nm, which corresponds to the (018) plane,
further validating the crystalline nature. Furthermore,
elemental distribution was examined through energy dispersive
X-ray spectroscopy (EDX) mapping (Fig. 10), which conrms the
uniform presence of Ni, Co, and V, verifying the successful
incorporation of these elements into the LDHs structure. These
combined results strongly support the successful synthesis of
NiCoV LDHs with a well-dened layered morphology and
homogeneous elemental distribution.

The crystalline nature of the synthesized NiCoV LDHs was
further conrmed through X-ray diffraction (XRD) analysis. The
XRD pattern (Fig. 9d) exhibits distinct diffraction peaks at 11.4°,
23.6°, 34.01°, 39.8°, 46.08°, 60.84°, and 63.12°, which corre-
spond to the (003), (006), (012), (015), (018), (010), and (013)
lattice planes, respectively. These diffraction peaks are charac-
teristic of LDHs and closely match the standard reference
se of recently reported electrocatalysts at 10 mA cm−2.36,37,41,43–48

J. Mater. Chem. A

https://doi.org/10.1039/d5ta03069b


Fig. 9 Morphological and structural characterization of NiCoV LDHs: (a) SEM image, (b) TEM image (low magnification with an inset of SAED
pattern), (c) TEM image (high magnification), (d) XRD pattern.
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pattern JCPDS 33-0429, conrming the successful formation of
the LDHs phase.49 The presence of the (003) and (006) reec-
tions at lower angles indicates the well-dened stacking of the
layered structure, which is a typical feature of LDHs. The higher-
angle peaks, such as (018), (010), and (013), further validate the
ordered arrangement and crystallinity of the material. These
ndings, in conjunction with morphological analysis, provide
strong evidence for the successful synthesis of NiCoV LDHs
with a well-structured layered architecture.

The physicochemical properties of the synthesized NiCoV
LDHs were examined through Brunauer–Emmett–Teller (BET)
surface area analysis and X-ray photoelectron spectroscopy
(XPS). The BET analysis (Fig. S7, ESI†) reveals that the specic
surface area of NiCoV LDHs is approximately 25.8 m2 g−1,
indicating a moderate surface area that is benecial for catalytic
and electrochemical applications, particularly in OER and
related energy conversion process. First, the NiCoV LDHs
catalyst, composed of 45.05 wt% Ni, 42.86 wt% Co, and
J. Mater. Chem. A
12.09 wt% V (as determined by inductively coupled plasma
optical emission spectroscopy, ICP-OES), was synthesized via
hydrothermal treatment using optimized precursor ratios
(Fig. S8, ESI†). To gain deeper insight into the elemental
composition and oxidation states of the elements present in
NiCoV LDHs, XPS analysis was performed. The survey spectrum
conrms the presence of Ni, Co, V, and O, with high-resolution
deconvolution providing detailed information on their oxida-
tion states.

The Ni 2p spectrum (Fig. 11a) shows two main peaks at
855 eV and 872.8 eV, corresponding to Ni 2p3/2 and Ni 2p1/2,
respectively. Deconvolution of the Ni 2p3/2 peak reveals two
distinct components at 854.8 eV and 856.8 eV, which are
assigned to Ni2+ and Ni3+, respectively. Satellite peaks are
observed at 861.0 eV and 879.0 eV, characteristic of the Ni2+

oxidation state. The deconvolution was carried out using
a Gaussian–Lorentzian (GL(30)) function, with the full width at
half maximum (FWHM) xed at 1.5 eV for main peaks and
This journal is © The Royal Society of Chemistry 2025
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Fig. 10 (a) TEM image of sheet-like NiCoV LDHs and its corresponding EDX elemental mapping of (b) Ni, (c) Co, (d) V, and (e) O.

Fig. 11 XPS Spectra of (a) Ni 2p, (b) Co 2p, (c) V 2p, and (d) O 1s of NiCoV LDHs.

This journal is © The Royal Society of Chemistry 2025 J. Mater. Chem. A
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3.0 eV for satellite peaks.50,51 Similarly, the Co 2p spectrum
(Fig. 11b) displays two main peaks at 780.2 eV and 796.2 eV,
corresponding to Co 2p3/2 and Co 2p1/2. The Co 2p3/2 region was
deconvoluted into two peaks at 780.2 eV (Co3+) and 782.2 eV
(Co2+). Corresponding satellite peaks at 785.0 eV and 802 eV
further conrm the presence of Co2+ species. The tting
protocol followed the same GL (30) prole with xed FWHM as
used for Ni.52,53 The V 2p spectrum (Fig. 11c) shows a primary
peak at 516.0 eV, corresponding to V 2p3/2. Further deconvolu-
tion of this peak identied three components at 513.8 eV,
516.0 eV, and 516.8 eV, which can be assigned to V3+, V4+, and
V5+, respectively. The presence of multiple oxidation states of
vanadium suggests its role in facilitating redox activity, which is
essential for electrochemical applications.24

The O 1 s spectrum (Fig. 11d) was analyzed to understand the
different oxygen species present in the NiCoV LDHs. The main
peak at 530.8 eV was deconvoluted into three distinct compo-
nents: 530.2 eV, associated with lattice oxygen (OL), 531.0 eV
corresponding to oxygen vacancy (OV), and 532.2 eV, attributed
to adsorbed water (H2O).54,55 A comparative analysis of the O 1s
region for NiCoV (Fig. 11d) and NiCo LDHs (Fig. S9, ESI†)
reveals signicant differences in the oxygen vacancy content.
The calculated oxygen vacancy ratios were 0.34 for NiCo and
0.41 for NiCoV LDHs, indicating that a greater proportion of
oxygen vacancy in the NiCoV LDHs. The higher oxygen vacancy
ratio in NiCoV LDHs not only conrms the successful modi-
cation of the catalyst surface but also supports the notion that
the enhanced activity of NiCoV LDHs arises from its ability to
follow the lattice oxygen mechanism. The presence of oxygen
vacancies improves the electronic conductivity and facilitates
the adsorption and desorption of oxygen intermediates in LOM,
thereby accelerating the OER process.54,55 Furthermore, the
mixed oxidation states of Ni, Co, and V, along with the presence
of oxygen vacancies, create a favorable electronic environment
for charge transfer. This synergistic effect enhances the
intrinsic activity of the catalyst, making NiCoV LDHs
Fig. 12 (a) LSV curve and (b) chronopotentiometry curve of optimized N

J. Mater. Chem. A
a promising material for electrocatalytic applications, particu-
larly in energy storage and conversion technologies.
2.4. Electrochemical performance of optimized
electrocatalyst

The four feature variables detailed in Table 2 were meticulously
rened to minimize the overpotential essential for the OER on
the electrocatalyst. The composite material was synthesized
with precisely calibrated concentrations of NiCoV LDHs/NF,
temperature, and KOH concentration. The optimization
process projected an overpotential of 184 mV under optimal
conditions (Table 2). Experimental validation revealed an
overpotential of 196 mV (Fig. 12a), reecting a minor deviation
of 6.1% from the predicted value. This strong concordance
between the experimental and predicted results demonstrates
the efficacy and reliability of the model in ne-tuning the vari-
ables for optimal overpotential reduction. The electrochemical
activity of the optimized NiCoV LDHs/NF electrode, was inves-
tigated through linear sweep voltammetry (LSV) under carefully
optimized conditions. These conditions include a KOH
concentration of 1 M and a scan rate of 10 mV s−1. To evaluate
the intrinsic contribution of the nickel foam (NF) substrate to
the OER performance, a control experiment using bare NF was
conducted under the same electrochemical conditions. The
bare NF required an overpotential of 318 mV to reach a current
density of 10mA cm−2, which is signicantly higher than that of
the optimized NiCoV LDHs/NF electrode (196 mV). This
conrms that the improved electrocatalytic activity is attributed
primarily to the NiCoV LDHs catalyst, rather than the substrate
itself. The comparative LSV curve of bare NF is provided in the
ESI (Fig. S10, ESI†).

Additionally, the inset in Fig. 12a displays the Tafel plot
derived from the LSV data, offering a detailed analysis of the
electrode's performance. To ensure the reliability of the results,
the potential values derived from the LSV tests were calibrated
against the reversible hydrogen electrode (RHE). The optimized
iCoV LDHs (inset in (a) is Tafel plot).

This journal is © The Royal Society of Chemistry 2025

https://doi.org/10.1039/d5ta03069b


Paper Journal of Materials Chemistry A

Pu
bl

is
he

d 
on

 2
5 

Ju
ne

 2
02

5.
 D

ow
nl

oa
de

d 
by

 Y
un

na
n 

U
ni

ve
rs

ity
 o

n 
8/

4/
20

25
 3

:3
5:

11
 A

M
. 

View Article Online
conditions consistently yield a signicantly lower overpotential
and a notably higher limiting current density. These observa-
tions underscore the substantial enhancement in OER catalytic
activity achieved through parameter optimization. This
advancement marks a critical step forward in advancing the
understanding and practical application of NiCoV LDHs/NF
electrocatalysts for the OER. The Tafel slope for the optimized
NiCoV LDHs was measured to be 102.8 mV dec−1. Since a lower
Tafel slope generally indicates faster reaction kinetics, this
result reinforces the superior catalytic activity of NiCoV LDHs
for the OER application. This faster kinetic response is crucial
for practical energy conversion systems, as it directly contrib-
utes to improved efficiency and reduced energy losses.

The stability and reusability of the optimized electrode were
assessed using chronopotentiometry testing. Beyond its
impressive electrocatalytic activity, the composite electro-
catalyst showcased excellent durability for the OER. As depicted
in Fig. 12b, the catalyst maintained consistent performance
over 72 h of continuous operation at a current density of 10 mA
cm−2, highlighting its robust and reliable performance under
Fig. 13 Electrochemical characterization of optimized NiCoV LDHs: (a) ar
scan rates, (d) linear fit of current density vs. scan rates.

This journal is © The Royal Society of Chemistry 2025
prolonged testing conditions. The remarkable stability and
durability observed provide strong evidence of the catalyst's
potential for reuse under identical conditions. This robustness
can be attributed to the abundance of catalytically active sites
and the presence of oxygen vacancies, which together enhance
the catalyst's resilience during the OER. These synergistic
factors play a pivotal role in improving the material's overall
stability and performance.

In addition, the impact of electrical conductivity on OER
performance was examined using electrochemical impedance
spectroscopy (EIS). The resulting Nyquist plots (Fig. S11, ESI†)
and the corresponding equivalent circuit (including the charge
transfer resistance, Rct, shown in Fig. S12, ESI†) provide further
insight into the interfacial properties between the catalysts and
electrolytes. Remarkably, NiCoV LDHs exhibits an exceptionally
low charge transfer resistance of 19.2 U. This minimal interfa-
cial resistance facilitates rapid and efficient electron transfer
during the OER process, which is critical for enhancing overall
catalytic performance and stability in practical applications.
Together, the favorable Tafel kinetics and low Rct underscore
ea of reduction peak, (b) TOF value at 300mV, (c) CV curves at different

J. Mater. Chem. A
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the potential of NiCoV LDHs as highly effective electrocatalysts
for oxygen evolution, offering signicant advantages for
sustainable energy conversion technologies.

The redox-active surface area of the NiCoV LDHs catalyst was
determined by focusing on the reduction peaks and excluding
the corresponding oxidation peaks of the redox couple.56 As
illustrated in Fig. 13a, the calculated value was 5.3614 × 10−4

VA. The result clearly indicates that NiCoV LDHs possesses
a greater number of accessible redox-active sites, which directly
contributes to its superior performance in the OER. Further-
more, turnover frequency (TOF) analysis was conducted using
the redox area curve at a xed potential of 300 mV. The derived
TOF value, presented in the bar chart in Fig. 13b, underscores
that NiCoV LDHs exhibits signicantly enhanced OER activity,
achieving a TOF value of 2.0089 s−1. Detailed methodologies for
the TOF calculations are provided in the ESI.†

The double layer capacitance (Cdl) was used to evaluate the
electrochemical surface area (ECSA) of the optimized sample.
The cyclic voltammetry (CV) curves, recorded at various scan
rates, are depicted in Fig. 13c. Notably, the NiCoV LDHs
exhibited the Cdl value of 0.0389 mF cm−2, corresponding to an
ECSA of 0.9725 cm2 (Fig. 13d). This larger ECSA is particularly
important because it indicates a greater number of active sites
available for electrochemical reactions, which can lead to
enhanced catalytic performance. The increased active surface
area not only improves electron transfer kinetics but also
underpins the material's potential in energy conversion and
storage applications.

3 Conclusions

This work demonstrates a successful integration of ML opti-
mization with experimental datasets to develop a high-
performance NiCoV LDHs electrocatalyst coupled with opti-
mized electrolyte concentration and synthesis temperature for
improved OER. By systematically varying key process parame-
ters (input features such as catalyst composition, electrolyte
concentration, and synthesis temperature), the trained ML
model accurately predicted an optimal overpotential (target
feature) of 184 mV, which was better than the lowest value of
238 mV in the original training experimental datasets. Further
experimental verication based on the optimized input features
produced an overpotential of 196 mV, conrming the high
accuracy of the ML algorithm. Notably, the ML analysis showed
that the interplay between the electrolyte concentration and
vanadium doping played a key role in determining the over-
potential. XPS results further conrmed that the incorporation
of vanadium in the NiCoV LDHs enhanced the availability of
lattice oxygen, thereby achieving more efficient OER through
the LOM mechanism. The optimized catalyst exhibited a Tafel
slope of 102.8 mV dec−1, indicating fast reaction kinetics,
alongside an ECSA of 0.9725 cm2 and a TOF of 2.0089 s−1, both
of which conrmed the enhanced availability of active sites and
intrinsic catalytic efficiency. Detailed morphological and
chemical characterizations further corroborated the improved
structural integrity and enhanced lattice oxygen content due to
vanadium doping. Long-term stability testing proved that the
J. Mater. Chem. A
optimized catalyst maintained stable electrocatalytic perfor-
mance over 72 h. Overall, these ndings validate the effective-
ness of the ML-assisted approach in guiding the synthesis of
efficient electrocatalysts and pave the way for further develop-
ment of advancedmaterials for sustainable energy applications.
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