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The optimization of the macro- and microstructures of traditional solid oxide fuel cells (SOFCs) faces the
dual challenges of time-consuming experimental iterations and insufficient exploration of parameter
space. This study proposes an anode-supported SOFC optimization approach based on multiphysical
modeling and machine learning, aiming to achieve the coordinated optimization design of its macro-
and microstructures, thereby ensuring the improvement of power density and the reduction of failure
probability. The study first constructed a database of maximum power density and failure probability
based on multiphysical modeling, and then screened out 10 key features that affect the above two target
parameters through feature engineering. On this basis, 15 machine learning predictive models were
constructed, among which the random forest (RF) regression model showed excellent prediction
performance, and the determination coefficients (R?) of the maximum power density and failure
probability predictive models reached 0.99 and 0.95 respectively. The cooperation of the genetic
algorithm and RF obtained the optimal combination of key parameters, ensuring that the cell achieved
the highest power output within the failure probability range of 0.632. The SOFC button cell prepared

based on the cathode optimization results was experimentally verified, and its maximum power density
Received 30th April 2025 hed 1.43 W cm™2, which 29% higher than the initial | ifying the effecti f th
Accepted 28th July 2025 reached 1. cm™ <, which was % higher than the initial sample, verifying the effectiveness of the
proposed optimization approach. In addition, Shapley additive explanations (SHAP) were introduced to

DOI: 10.1039/d5ta03421c improve the interpretability of the model. The results show that most key features have opposite effects

rsc.li/materials-a on the two target quantities, demonstrating the necessity of considering the failure probability.

The performance of an SOFC is heavily influenced by its
macroscopic and microscopic structures, including electrode

1. Introduction

Solid oxide fuel cells (SOFCs), renowned for their high electrical
efficiency and long-term stability, are being widely adopted
across residential power generation, industrial manufacturing,
military applications, and more, positioning them as a forward-
looking solution in renewable energy.>* SOFCs consist of an
anode, a cathode and an electrolyte, and operate based on the
conduction of electrons (or electron holes) and the transport of
oxide ions.” Based on their structure, SOFCs can be classified
into three main types: electrolyte-supported SOFCs (ES-SOFCs),
anode-supported SOFCs (AS-SOFCs), and metal-supported
SOFCs (MS-SOFCs).** Among these, AS-SOFCs are more preva-
lent in commercial applications due to their higher power
densities."™'" At the current stage, commercial AS-SOFCs typi-
cally employ porous nickel/yttria-stabilized zirconia (Ni/YSZ) as
the composite anode, dense 8 mol% yttria-stabilized zirconia
(8YSZ) as the electrolyte layer, gadolinium-doped cerium oxide
(GDC) as the barrier layer, and porous lanthanum strontium
cobalt ferrite (LSCF) as the cathode layer."
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thickness, porosity, and phase composition (e.g., Ni/YSZ volume
ratio in cermet anodes)."”>** These structural parameters directly
impact key processes within the cell, such as mass transfer, heat
transfer, and electrochemical reactions, ultimately determining
the cell's output power, efficiency, and stability.”>'* Among
these, the maximum power density (Ppa,,) and failure proba-
bility (Py) are selected as critical metrics because they play a vital
role in evaluating the actual performance and reliability of
SOFC full cells.’” " As a result, optimizing the macroscopic and
microscopic structures of SOFCs is essential for enhancing
performance, reducing costs, and extending their lifespan.*
The optimization of SOFCs dates back to 1996, when Kleitz
and Petitbon enhanced SOFC performance by refining electrode
designs through an analysis of double-layer microstructures.*
Costamagna et al. used analytical models to study the interac-
tion between structural parameters (such as electrode thickness
and porosity) and their impact on SOFC performance.”® Bhat-
tacharyya et al. developed an isothermal model to evaluate the
performance of tubular SOFCs, demonstrating that optimizing
factors such as anode thickness, porosity, and operating
conditions can substantially enhance SOFC efficiency and
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overall performance.* Feng et al used the finite element
method (FEM) to determine the optimal geometric configura-
tion to significantly improve the output power of tubular SOFCs,
including the optimal anode, cathode and electrolyte thick-
nesses and the optimal cell length.>® Abdullah and Liu investi-
gated simulation-based methods to optimize the
microstructure of SOFCs for low-temperature operation,
demonstrating that tailoring electrode microstructures can
significantly improve power output and efficiency, enabling
effective performance at reduced operating temperatures.”®
Goncalves introduced a novel numerical framework that
combines two-dimensional (2D) topology optimization with
three-dimensional (3D) multiphysical modeling to optimize
SOFC channel layouts.”” This method enhanced SOFC perfor-
mance by achieving more uniform flow and current density
distributions, reducing pressure drops, and improving overall
system efficiency and durability.

In addition to the numerical calculation methods introduced
above, there are also many studies focusing on experimental
optimization.”®** Haanappel et al. investigated the optimization
of processing and microstructural parameters of LSM cathodes
to enhance the electrochemical performance of AS-SOFCs.*®
They achieved a current density of 1.4 A cm™> by adjusting the
thickness of the LSM/YSZ cathode and the cathode current
collection layer. Ahmed et al. explored the use of gadolinium-
doped ceria (GDC) to optimize the anode microstructure of
intermediate-temperature SOFCs (IT-SOFCs) and increased the
peak power density to 48.62 mW cm 2% Li et al. focused on
optimizing the composition of samarium strontium manganite-
yttria stabilized zirconia (SSM-YSZ) cathodes to enhance their
electrochemical performance in IT-SOFCs.** The optimal
loading amount was 18 wt% Smy 5Sr, sMnO; (SSM55), and the
planned resistance of the prepared electrode could be reduced
to 0.17 Q cm® Kuterbekov et al significantly improved the
efficiency, durability, and environmental sustainability of SOFC
technology by combining a ceria-doped electrolyte and
a composite anode.*” The study found that the composite anode
with graded porosity achieved a power density of 1.2 W cm ™2
and remained stable for 5000 hours with a degradation rate of
less than 1% per 1000 hours.

However, traditional SOFC structure optimization
methods—experimental trial-and-error, simulations, and
conventional techniques (mathematical, heuristic, simple
hybrids)—face low efficiency, high costs, and difficulty finding
global optima.”” These methods face several limitations,
including low efficiency, high costs, and challenges in identi-
fying the global optimal solution.*® Traditional mathematical
methods such as gradient descent and linear programming rely
on explicit mathematical models or physical mechanisms for
their accuracy. They struggle to handle complex structures with
high dimensionality and strong nonlinearity.** Single heuristic
methods, such as particle swarm optimization (PSO), corely rely
on heuristic rules to efficiently search the solution space.
During the optimization process, they need to frequently call
physical models to evaluate the quality of solutions, which is
not only inefficient but may also lead to insufficient accuracy of
the final optimization scheme due to the accumulation of
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evaluation errors.*® Even simple hybrid methods that combine
mathematical models with basic heuristics often fail to fully
capture the intricate parameter interactions in SOFCs, resulting
in suboptimal outcomes.*® Experimental trial-and-error
approaches demand significant time and resources,*”*® while
numerical simulation methods, although capable of providing
deeper insights into underlying mechanisms, incur high
computational costs and are impractical for large-scale
parameter optimization.** Furthermore, the complex interac-
tions among SOFC structural parameters are often difficult to
fully account for using these traditional approaches, resulting
in suboptimal optimization outcomes that fall short of
expectations.

To overcome these challenges, machine learning (ML), as
a data-driven method, enables SOFC performance prediction
and optimization. ML can automatically learn complex
nonlinear relationships from large experimental or simulation
data to establish efficient predictive models.”*** Xu et al
combined computational fluid dynamics (CFD) with an artifi-
cial neural network (ANN) to optimize SOFC power output to
0.63 W cm 2 via operational adjustments.** However, their
study emphasized comparative analysis with the baseline CFD
model, lacking experimental validation for methodology effec-
tiveness. In addition, the “white-box” SHAP (SHapley Additive
exPlanations) method enhances the interpretability of “black-
box” ML models.** SHAP quantifies each input feature's
contribution to predictions, providing intuitive feature impor-
tance analysis. Kim et al. used ML to predict proton ceramic fuel
cells (PCFCs) and identify key factors affecting cell performance
through feature importance analysis, providing data-driven
insights for PCFCs.** However, their limited dataset (591
points) and operational confounding effects led to an R of 0.85,
with poor generalization; lacking experimental verification
weakened conclusions’ credibility and practical value.

This study proposes a new ML-based AS-SOFC design
approach, including four modules: thermal-electro-chemical-
mechanical multiphysical modeling and evaluation, database
construction based on multiphysical simulations, predictive
model building in ML algorithms, parameter optimization and
experimental verification, to guide the rational design of SOFC
button cell structure. First, the microscopic parameters of
a single button cell sample are obtained by 3D reconstruction.
Then, the multiphysical model is established and verified using
the measured data of the sample. Then, the maximum power
(Pmax) and failure probability (Pr) databases are constructed
through TECM simulations by varying the thickness and
microscopic parameters (22 features) of the cell. Next, feature
engineering is used to identify the 10 key features that affect
P and Py, and predictive models for these two target quanti-
ties are established respectively. Finally, random forest (RF) and
genetic algorithm (GA) are used to for structural optimiza-
tion.***” The optimal combination of key features is determined
under the constraints of failure probability below 0.632 and
maximum power density. Based on the optimization results, the
cathode is designed and the optimized cell is measured to verify
the reliability and feasibility of the proposed method. Addi-
tionally, the interpretable SHAP method is introduced to

This journal is © The Royal Society of Chemistry 2025
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analyze the importance of and interactions between macro- and
microscopic parameters, and how they influence the perfor-
mance and failure probability of the cell to be designed.

2. Experimental
2.1 Preparation of AS-SOFC

The AS-SOFC button cells in this work were prepared based on
commercial half-cells (Ningbo SOFCMAN Energy Technology
Co., Ltd, China), comprising a NiO/3YSZ anode support, a NiO/
8YSZ anode functional layer (AFL), an 8YSZ electrolyte, and
a gadolinium-doped ceria (GDC) buffer layer. The cathode of the
cell was prepared by screen printing. The screen-printing ink
with a solid content of 65 wt% was prepared using commercial
Lay 6Sr.4C0pFep 303 s powder (LSCF, Fuel Cell Materials,
USA). A 3:1 mixture of pine alcohol and turpentine was used as
a solvent and first mixed with 2.2 wt% polyvinyl butyral (PVB,
Shanghai Macklin Biochemical Co., Ltd, China) powder. Then
LSCF powder, 1.3 wt% dispersant triethanolamine (TEA,
Shanghai Aladdin Biochemical Technology Co., Ltd, China) and
3 wt% plasticizer dioctyl phthalate (DOP, Shanghai Aladdin
Biochemical Technology Co., Ltd, China) were added in
sequence. The mixture was uniformly mixed with a self-rotating
and revolving vacuum mixer (MV300SVII, Simai Co., Ltd, Japan)
for 5 min and finally ground with a three-roller grinder (ZYTR-
50, Guangdong ZhongYi Technology Co., Ltd, China) to
obtain the LSCF ink. LSCF ink was screen-printed onto half-cells
(D = 1.5 cm, t = 414 pm) for the cathode layer. An initial
reference sample was prepared by screen-printing LSCF ink on
the as-received half-cell, followed by debinding at 500 °C for 1 h
and sintering at 800 °C for 2 h.
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Fig.1 GAN network structure for generating 3D microstructures from
2D slices.

View Article Online

Journal of Materials Chemistry A

2.2 3D reconstruction and electrochemical analysis

The microstructure of each layer of the full cell was analyzed
using a cross-section polisher (CP, JEOL, Japan) and a scanning
electron microscope (SEM, Hitachi, Japan), as shown in
Fig. S1(a). A focused ion beam scanning electron microscope
(FIB-SEM, Carl Zeiss Crossbeam 350) was used to prepare
a cross-section of the button cell with the ion beam and to
image the 2D microstructures of the cross-section using the
InLens detector, as shown in Fig. S1(b)-(f). SlicecGAN*® was used
to obtain the 3D microstructure of the cell based on FIB slices,
and its network architecture is shown in Fig. 1. Based on the
Avizo 3D platform, the microscopic parameters of each part of
SOFC were calculated and the results are shown in Table 1. The
i~V curves were measured using an electrochemical workstation
(Interface 5000e, Gamry, USA) at an operating temperature of
800 °C. Pt paste was screen-printed onto the surfaces of the two
electrodes of the cell as the current collector. The button cell
was placed on an alumina tube and sealed with ceramic sealant
(552-VFG, AREMCO, USA). The anode side was fed with 100
sccm of hydrogen, and the cathode side was exposed to air. The
specific measurement setup is shown in Fig. S2, and the oper-
ating environment parameters are summarized in Table 1.

3. Multiphysics coupled model

A multiphysics model including electrochemical reaction, gas
flow, species diffusion, heat transfer and thermal stress was
established, and the failure probability (P;) caused by these
processes was calculated. According to the actual test device,
this study adopted 2D axisymmetric geometry modeling, as
shown in Fig. 2(a). The main governing equations of each
physical process are shown in Table 2. By fitting the test results
of the initial reference sample, the invariant reference current
densities i rpg and 5 ppg Were obtained, corresponding to the
anode and cathode, which were 0.0026 A m~* and 7.8 A m™>
respectively. The comparison between the fitted simulation
model and the measurement results is shown in Fig. 2(b).

It should be noted that in order to improve the controllability
of optimizing microscopic parameters in the experimental
system, this model uses Bruggeman relation®* and percolation
theory®*® to describe the relationship between microscopic
parameters and microscopic morphology. The tortuosity of
each section, the three-phase boundary (TPB) density on the
anode side, and the two-phase boundary (DPB) density on the
cathode side can be calculated by the following formula:

= 871/2 (1)

Table 1 Geometric, microscopic and operating parameters of initial SOFC samples

Parameters

Value

0 0 0 0 0
XH,> XH,07 X0, *N, » T° Voe
tas’ ta’ te, tgdc’ tc, Da, D¢ (mm)

as a C as as a a C 1 C
&%, &%, €, PN, B¥szs PNy Piszy PLscr, 07 05, PP, PF, P(1)

as jas as a a a C
dp) Nis YSZvdpa Niydysz, dpydLSCF (nm)
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0.97, 0.03, 0.21, 0.79, 1073.2 K, 0.7 V
0.39, 0.0074, 0.0127, 0.00436, 0.01685, 15, 10

0.202, 0.15, 0.404, 0.424, 0.374, 0.35, 0.5, 0.596, 0.4346, 0.6857, 0.807,
0.998, 1

703.44, 373.15, 563.8, 398.06, 242.82, 1337.87, 901.04, 450.91
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Fig. 2 Establishment of the multi-physics coupling model: (a) sche-
matic diagram of the button cell test (left) and schematic diagram of
the 2D axisymmetric geometric model and mesh configuration (right);
(b) i-V curve and power density curve of the simulation and test
results.

min (dyg,, di;)

[1pg = 6 % v (L= ) sin 0% g x¢ Xion ™ Znivsz
()
(2)
SSpp = s Y eer xSy S, + s c
DPB = TdLSCFNLSCFXeXion T YLSCF.e"LSCFXe (3)

where 7 is the tortuosity, ¢ is the porosity, ¢ is the volume
fraction, d is the average particle size, and 6 is the contact angle.
The superscripts a and c represent the anode and cathode,
respectively, the subscripts e and ion represent the electronic

Table 2 Governing equations of multiphysics coupled model
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phase and the ionic phase, respectively, and the superscripts S
and V represent the contact surface between the electrolyte and
the electrode and the electrode body, respectively. nyscy and
niscr represent the number of LSCF particles per unit volume
and per unit electrolyte surface area, respectively, and vyrscr,e
represents the electrochemical reaction site at each contact
between the LSCF particles and the dense electrolyte. The
calculation formulas are as follows:****”
\ 6-(1 — &) prscr

n = 4
LSCF p d]iSCF (4)

6-(1 — &) ¢rscr
T discr

(5)

S _
Nyscr =

YLSCE.e = T0-dLscE-sinf° (6)

Among them, x represents the percolation probability, which
is used to describe the probability of forming a permeable path
in the composite medium. For the Ni-YSZ anode, the active
length of TPB depends on the probability of simultaneous
percolation of Ni/YSZ/H,; for the LSCF cathode, the active DPB
depends on the probability of simultaneous percolation of
LSCF/O,. In this paper, the proportion y of the penetrating
reaction interface is obtained through the 3D microstructure, as
shown in Fig. S3. So, for the anode x* and the cathode x“:

X" = xe Xon" Zniysz (7)

XC = Xg'Xfon (8)

4. Predictive model

The power density and failure probability of SOFC are affected
by the synergistic effects of its macroscopic and microstructural
parameters. Therefore, the macro- and microstructural param-
eters of the SOFC simulation model were swept while keeping

Physical process Equations

Theoretical model

Electrochemical reaction P 2F (0 + none)
i* = Lppily ren T, ¢Xp (7“ cone )
l’EZf RT

; ; 1.2F (ner + Meonc)
c _ Sc C act conc
! ppBlo,DPB |:eXP (71”1

Gas flow V'(PV) = Smass

VI (F(n:u + nz*ma)]

Butler-Volmer equation®®

H,0
ref

RT

0,

Pret RT

_ e exp <F(’7§ct + ngnnc)>:|

Navier-Stokes equation®

2 .
pv-Vyv=-dVp+ V- {M(Vv +vV) — g,ule} — ¥S mass
Species diffusion . M M; Stefan-Maxwell equation®®
p Ji= 7pDi-“KV(U,‘ — p(,L),'D,r-nK 7 + pPw; Ek ﬁD;nKin q

Heat transfer
Stress-strain
Failure probability

e=(Vu+uV)2;V.e+f=0;0=C:¢

i=3 m
g; dr
Pr=1—|]exp| — — —
' ,IJ p{ JV <0w> VO}
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V‘(_AeffVT) + pCpV- VT = Qohm + Qact + Qentr

Energy Conservation®
Continuum Mechanics®?
Weibull method>?
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the operating conditions unchanged, including 22 features
such as layer thickness, porosity, component content, and
particle size. The dataset included two target variables:
maximum power density (Pn,ay) and failure probability (Py), with
a size of 2000 groups.

Then an accurate predictive model is established here. It
mainly includes three steps: (a) evaluate 15 common ML algo-
rithms to select the most suitable model, (b) find key features
through feature engineering, (c) establish a predictive model
and evaluate it. The regression coefficient of determination (R?)
and root mean square error (RMSE) were used to evaluate these
models. The mathematical expressions are shown in eqn (9)
and (10) respectively.*®*®

)9
R=1-5—— ©)
)

RMSE = (10)

i=1
where y; is the actual value, y; is the predicted value of the ML
model, and y is the mean of the actual values.

4.1 Predictive model algorithm screening

In this work, in order to screen out the algorithm suitable for
performance predictions of SOFCs, 15 widely used ML algo-
rithms were introduced to construct P, and P¢ predictive
models based on SOFC macro-microstructure parameters,
including linear regression (LR), decision tree regression (DT),
random forest regression (RF), K nearest neighbor regression
(KNN) and support vector machine (SVM), etc. For this purpose,
the dataset was randomly divided into two subsets, namely
training set and test set, with a ratio of 2:1, for the task of
model training and testing.

Fig. 3 summarizes the RMSE and R of all 15 ML algorithms
for predicting (a) Pmax and (b) Pg. R* is between 0 and 1, and the
closer its value is to 1, the more accurate the predictive model is.
RMSE can be directly interpreted as the average difference
between the predicted value and the true value, and the smaller

1800 1 - K\ISE 0.9882 1.0

-

= B
\lo&
8 & 3

%—J
=]
-

LR: Linear

RR: Ridge Reg)

LGBM: Light Gradient Boosting Machine, SVM: Support Vector Machine, GBR: Gradient g AdaB
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its value is, the more accurate the predictive model is. It can be
seen that the RMSE of the RF for the test set prediction of Pyax
and P; are the smallest and the R> are greater than 0.9.
According to the above analysis, RF shows the best regression
performance for the predictive models of P, and Py when
RMSE is minimum and R* is maximum. Therefore, RF is used to
predict the electrical performance and failure probability of
SOFC in this study.

4.2 Feature selection

To improve the performance of the RF predictive model, we
performed a three-step feature selection to obtain the key
features for predicting P« and Pg. It is worth noting that we
select the same key features for the two target variables Py, and
Py, aiming to ensure that the impact of the features on the two
target variables is taken into account during the GA optimiza-
tion process. The first step is to remove features with high
correlation. Fig. 4(a) and (b) show the Pearson correlation
coefficients between the top 15 features of the P, and P¢
predictive models, respectively. Except for the expected strong
correlation (r = —1) between the cathode layer porosity (poro_c)
and the LSCF volume fraction (LSCF_c), Pearson correlation
analysis showed that there was no significant correlation
between other structural features (|r| < 0.8), which confirmed
the independent influence mechanism of each feature on the
target performance index.

The second step is to use the RF algorithm to rank the
features by importance. Here, the importance of the features to
the target quantities P, and P are taken into account at the
same time. Therefore, the features are sorted according to the
sum of the importance coefficients of the two target quantities,
as shown in Fig. 4(c). Features that contribute little to the
predictive model (importance coefficient <0.002) are deleted,
and features ranked by importance are stored as candidate
feature sequences.

The third step is to extract key features. Starting from the
empty set, features are gradually added to the target feature
subset from the candidate feature sequence. RF regression is
used for prediction to obtain the R> curves of the P, and P
predictive models with the number of features, as shown in

o) P

0.0036
0.00288

0.00216

0.00144

DT: Decision Tree, RF: Random Forest, ET: Extra Tress, KNN: K-Nearest Neighbors, XGB: eXtreme Gradient Boosting,

Adaptive Boosting Reg] , B-Ridge:

Bayesian Ridge, E-Net: Elastic Net, SVR-RBF:Support Vector Regressor with Radial Basis Function Kernel

Fig. 3 R? and RMSE of each algorithm for (a) Pmay and (b) Ps predictive models.

This journal is © The Royal Society of Chemistry 2025

J. Mater. Chem. A


https://doi.org/10.1039/d5ta03421c

Published on 01 August 2025. Downloaded by Y unnan University on 8/23/2025 5:34:03 PM.

Journal of Materials Chemistry A

1.00
(a) poro_a

Maximum Power Density (P,,,,) dYSZ a
TOP 15 Features Pearson Correlation , ,
Filled fraction:
YSZ |
The absolute valuc of B 2 ' 0.50.
Pcarson corrclation cocfficient dNi_a

0.75

Color: YSZ_as 0.25
b v corsion ;o @ OGO S
dPore_as )
theta_c -
dLSCF ¢ e
h_as
poro_c | [ j-0:50
1SCF < @ ) o® y &)
hc [ ) e;; R

-1.00

theta_c
- Il rr
dYSZ _a

T T T T

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Importance

View Article Online

Paper
1.00
(b) theta_c
Failure Probability(Py) YSZ a 075
TOP 15 Features Pearson Correlation ha '
Filled fraction: Ni_as 0.50
The absolute value of
Pearson correlation coefficient bie @
Color: dLSCF ¢ 0.25
bluc—positive corrclation poro_as Y
ed eoativ clati o -4 >
red—negative correlation LSCE ¢ n P { -
p()l'ﬂ C. - L (-\ L . !
h as Y ) [==) -0.25
dNi_a )
YSZ as ) ' [0
poro_a e, &) '
dPore_as 0B
he ( = (AW ®
-1.00
(d)
1O} Je o ok ok ke ke ke ke ok ok ke k
Loos L -1 LS L {1 L L L]
7
09} / g X e ke ke K
* /
’ *
0.8 * 7
/
o 071 *
“ 7/
*
0.6 L
/
i
0.5 !
'
0.4 F P 4 * ~% Pmax
-% Pf
0.3 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14

Number of features

Fig. 4 The process of feature selection. (a) and (b) Removing highly correlated features. (c) Ranking features by the sum of their importance, Pnax

and P;. (d) Selection of key features.

Table 3 Key features of P, and Ps predictive models

Abbreviation Description

h_e The thickness of the electrolyte layer (EL)

poro_c Porosity of cathode layer

h c The thickness of cathode layer

YSZ_as Volume fraction of YSZ in the anode support layer (ASL)

dPore_as The average diameter of the ASL pores
poro_a Porosity of anode
h_as Thickness of ASL

dNi_a The average diameter of Ni particles in the anode layer

dLSCF_c The average diameter of LSCF particles in the cathode
layer

poro_as Porosity of ASL

Fig. 4(d). It can be seen that when the first 3 features are input,
the R? of the predictive model of Py, is greater than 0.95, and
remains stable as the number of features increases. The R* of
the predictive model of P; reaches the maximum when the first
10 features are input. Therefore, the first 10 features are selected
as the key features of the P, and Pr predictive models, as
shown in Table 3.

4.3 Predictive model construction

RF integrates the prediction results of multiple decision trees
and is a ML method that uses voting or averaging mechanisms
to improve accuracy and robustness.®® For regression problems,

J. Mater. Chem. A

the prediction formula of RF is the average value of the output
of each decision tree, which is mathematically expressed as:*

= (1)

Here, grid search (GridSearchCV)** is used to optimize the
hyperparameters of the RF model, and different parameter
search spaces are customized for the two targets. The optimal
parameter combination is determined through 5-fold cross-
validation, as shown in Table 4. 70% of the dataset is used as
the training set, and the rest 30% is used as the test set.
Training is performed according to the optimized parameters,
and the topology diagram is shown in Fig. 5.

Table 4 Hyperparameter optimization of RF predictive model for Ppax
and Ps

Hyperparameters Prax P
bootstrap True True
max_depth None None
max_features 0.9 0.9
min_samples_leaf 1 1
min_samples_split 2 2
n_estimators 100 500
random_state 42 42
n_jobs 4 4

This journal is © The Royal Society of Chemistry 2025
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Fig. 5 Topological diagram of the RF predictive models for P, and P

5. Results and discussion
5.1 Predictive model evaluation

R?> and RMSE were used as indicators to evaluate the P
predictive model and Pr predictive model, and the results are
shown in Fig. 6(a) and (c). As shown in the figures, the closer the
colored solid line is to the diagonal line, the closer the predicted
value is to the actual value. The R* of the Py, predictive model
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in both the training set and the test set is greater than 0.99,
showing excellent prediction ability. The prediction perfor-
mance of the P predictive model in the training set and the test
set is slightly worse. However, its R” is not less than 0.95, which
also shows good prediction ability.

Here, we also introduced 10-fold cross-validation (10-Fold
CV) and leave-one-out cross validation (LOOCV) to more reliably
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Fig. 6 Evaluation of the P, predictive model on the test and training sets (a) and 10-fold crossover and LOOCV validation of the training set (b);
evaluation of the Ps predictive model on the test and training sets (c) and 10-fold crossover and LOOCYV validation of the training set (d).
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model; SHAP feature interaction plot of (c) Pyax predictive model and (d) P predictive model.

estimate the generalization ability of models, as shown in
Fig. 6(b) and (d).

Similarly, the closer the scatter distribution trend is to the
reference line (slope k£ = 1), the more accurate the predictive
model is. The R* of Poax predictive model and P¢ predictive
model are both greater than 0.95, and there is no abnormality in
RMSE. This shows that both predictive models have excellent
generalization ability.

In addition, SHAP analysis was employed to elucidate feature
relationships with Py,.x and P¢ (Fig. 7). The honeycomb diagram
shows the direction of the influence of the features on the
prediction results and the importance ranking, and the bar
chart shows the average value of the absolute SHAP value. The
honeycomb diagram consists of each sample point, and the
symbol of the SHAP value represents the direction of influence
on the target quantity (enhancement/weakening). The deeper
the red color, the greater the value of the feature. On the
contrary, the deeper the blue color, the smaller the value of the
feature. The bar chart shows the importance of each feature.
Notably, Fig. 7(a) demonstrates that electrolyte thickness (h_e)
exerts the predominant negative effect on Py,.x, corroborating
Park et al.’s findings where reducing it to 2.5 um significantly
improved power density.® Conversely, Fig. 7(b) shows that
failure probability rises with increasing h_e, primarily due to
temperature gradient distribution. Thicker electrolytes possess
greater structural strength, enabling better thermal gradient
absorption and redistribution, thus reducing local stress
concentration (Fig. S4). In addition, Fig. 7(b) quantitatively

J. Mater. Chem. A

illustrates how YSZ content in the anode support layer critically
affects Py, aligning with Morales and Vafaeenezhad et al.'s
bending tests on Ni/YSZ ratios’ mechanical impact.***
Regarding performance indicators, higher maximum power
density (Pmax) and lower failure probability (Pg) are desirable,
corresponding to right-shifted scatter in Fig. 7(a) and left-
shifted in Fig. 7(b). Interestingly, most features exert opposite
effects on the two targets. For example, cathode thickness (h_c)
and ASL pore size (dPore_as) positively impact Pp,., but
increase failure risk; while electrolyte thickness (h_e) and
cathode porosity (poro_c) negatively affect P,y yet reduce
failure probability. Because increasing cathode thickness
expands the reaction interface (DPB), enhancing oxygen
reduction reaction (ORR), while larger ASL pore size improves
hydrogen transport, reducing concentration polarization and
boosting power density. However, at high current density, the
heat released by the electrochemical reaction is concentrated,
causing local overheating of the cell and inducing thermal
stress, as shown in Fig. S5. Therefore, the optimization of SOFC
needs to consider these two target quantities (Ppax and Py).
Fig. 7(c) and (d) show the interaction diagrams of the top five
features, that is, the impact of the joint effect between the
features on the prediction results. For power density, there is
a relatively obvious interactive relationship between electrolyte
thickness (h_e), cathode thickness (h_c) and cathode porosity
(poro_c). For example, when h_c and poro_c increase at the
same time, the predicted maximum power density shows
a significant increase trend, as shown in Fig. 7(c). This is
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because the increase in h_c expands the axial active area of the
oxygen reduction reaction, and the increase in poro_c enhances
the transport of oxygen, as shown in Fig. S6. The synergistic
effect of the two makes the number of active sites increase by
multiples. Similarly, when the YSZ content (YSZ_as) and elec-
trolyte thickness (h_e) of the ASL increase simultaneously, the
failure probability is significantly reduced, as shown in Fig. 7(d).
This is because the increase in YSZ_as increases the rigidity
modulus of ASL, while the increase in h_e reduces the thermal
stress of the electrolyte. Therefore, the combined effect of the
two parameters significantly reduces the failure probability
caused by thermal expansion mismatch.

5.2 Optimization and experimental validation

Based on the obtained predictive models and analysis, we use
genetic algorithm (GA)*® to perform conditionally constrained
single-objective optimization. The purpose of this is to find the
optimal characteristic combination that maximizes the SOFC
power density within a critical failure probability. In addition,
through a simple cathode optimization experiment, SOFC
button cells were prepared and measured according to the
optimal feature combination to verify the feasibility of the
entire optimized approach.

Here, based on the RF predictive model of the power density,
the GA is adopted to optimize the macro- and microstructural
parameters of SOFC. As a global optimization algorithm based
on natural selection and genetic mechanisms, GA has

(a)

©
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Table 5 The scope of key features and optimal solution in GA opti-
mization algorithm

Key features Unit Value range Optimal solution
h_e pm (0.5, 300) 1.98
poro_c 1 (0,1) 0.342
h_c pum (1, 50) 39.29
YSZ_as 1 (0, 1) 0.480
dPore_as nm (400, 2000) 1658.05
poro_a 1 (0,1) 0.362
h_as pm (40, 4000) 490.43
dNi_a nm (50, 600) 198.71
dLSCF_c nm (300, 800) 383.04
poro_as 1 (0,1) 0.282

significant advantages in the field of structural optimization.
The GA used in this paper is implemented based on DEAP
(Distributed Evolutionary Algorithm Framework) and adopts
the classic evolutionary computing paradigm. We encode each
individual as a key feature vector (10 dimensions) and predict
the values of P,,x and P; by calling the RF predictive model in
Section 4.3. The fitness value is calculated according to the
constraint on the failure probability (P¢ < 0.632), and the solu-
tion that does not meet the constraint is assigned a negative
infinite fitness. The detailed calculation framework is shown in
Fig. 8(a). The 0.632 failure probability threshold is adopted
because it aligns with the standard definition of characteristic
strength in structural reliability analysis, where it represents the
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Fig. 8 Optimization and experimental verification results. (a) Flowchart of the collaborative optimization of the RF predictive model and GA; (b)
the change of optimized fitness with generation; (c) the 3D microstructure of the cathode of the initial sample and the optimized sample; (d) the
comparison of the measurement results of the initial sample and the optimized sample.
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Table 6 Processing conditions and measured result parameters for initial and optimized samples

Sample Screen printing layers Sintering temperature h_c (um) poro_c dLSCF_c (nm)
Initial 1 800 °C 16.85 0.404 450.91
Optimized 2 1000 °C 36.60 0.311 627.21

failure probability of a reference structure under uniform
uniaxial stress conditions.®” Through this optimization frame-
work, the optimal features values that can achieve the
maximum power density as much as possible without being
easily damaged can be found.

In addition, considering the realistic constraints and avoid-
ing the generation of invalid solutions, conditional restrictions
were added to each feature, as shown in Table 5. After 100
generations of evolution, the GA optimization algorithm
reached convergence, as shown in Fig. 8(b). The figure shows
that max fitness and average fitness increase rapidly first, then
fluctuate and finally stabilize as the number of evolutionary
generations increases. The average fitness curve gradually
converges towards the max fitness curve and almost overlaps.
This shows that the algorithm successfully achieves a balanced
transition from global exploration to local exploitation and
converges to a high-performance, consistency solution set
under constraints. The optimal characteristic values obtained
are shown in Table 5. The optimized P, can reach 1.67 W
cm 2,

Among the 10 key features, cathode-related thickness (h_c),
porosity (poro_c) and LSCF average particle size (ALSCF_c) have
important effects on the electrochemical and mechanical
properties of SOFC cells. Therefore, the features values of other
parts are fixed and kept as the measured values of the initial
sample, as shown in Table 1. The cathode features values (h_c,
poro_c and dLSCF_c) are optimized through the above-
mentioned RF and GA collaborative optimization approach.
The optimal solutions are 36.8 um, 0.312, and 608 nm,
respectively, and the maximum power density is 1.45 W cm ™2,

Experimentally, we used the same LSCF ink and prepared the
required cathode layer by adjusting the number of screen-
printing layers and sintering temperatures. According to the
comparison of the cathode structural parameters before and
after optimization, its thickness was increased by adding a layer
of screen-printed LSCF layer, and its particle size was increased
by increasing the sintering temperature from 800 °C to 1000 °C.
The processing conditions of the initial sample and the opti-
mized sample are shown in Table 6, and the cross-sectional
SEM and FIB slice images are shown in Fig. S1 and S7,
respectively.

As with the initial sample, the cathode of the optimized
sample was sliced by FIB and reconstructed 3D using sliceGAN.
Fig. 8(c) illustrates the 3D microstructures of the cathodes from
both the initial sample and the optimized sample. It can be seen
that the cathode porosity of the optimized sample is reduced
and the average particle size of the LSCF particles is increased.
The microstructural parameters were obtained by the Avizo 3D
platform, and the comparison with the initial sample is shown
in Table 6. After the same working condition measurement, the
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maximum power density of the optimized sample is 1.43 W
em ™2, which is 29% higher than that of the initial sample, as
shown in Fig. 8(d).

Please note that all structural parameters of the experimen-
tally prepared LSCF cathode cannot be completely equal to the
values given by the cathode optimization. Here, the macro-
scopic and microstructural parameters we obtained through
simple experiments are different from the optimized values.
Therefore, the measured results (1.43 W cm?) are slightly
smaller than the optimal values predicted by the optimization
approach (1.45 W cm ™). Nevertheless, by trying to get close to
the optimal values of the optimization approach, the electrical
performance has been improved by nearly 30%. This verifies the
effectiveness of the optimization approach in practice. In
addition, we have incorporated a comprehensive stress analysis
of the optimized cell through our multiphysical modeling
approach, as shown in Fig. S8. The analysis reveals that the
electrolyte surface exhibits no significant stress concentration,
with temperature variations remaining below 5 K. The calcu-
lated failure probability of 0.0205 is substantially lower than the
conventional threshold value of 0.632, confirming that the
optimized cell configuration maintains stable structural reli-
ability under operational conditions. By combining the multi-
scale simulation of sintering, it is hoped that the inverse
design of sintering process parameters can be achieved in the
future, and the design process can be optimized as needed.

6. Conclusion

This study aims at the problems of low experimental iteration
efficiency and insufficient parameter space exploration in the
macro-microstructure optimization of traditional solid oxide
fuel cells (SOFCs). We proposed a collaborative optimization
approach for anode-supported SOFCs based on machine
learning (ML), and verified its effectiveness through experi-
ments. Our approach synergistically integrates microstructure
characterization, multiphysical modeling, and ML to achieve
unprecedented macro-micro design capabilities. The key inno-
vations include: (1) data-driven parameterization that replaces
literature-based assumptions, significantly improving model
accuracy; (2) a hybrid finite element analysis (FEA)-ML frame-
work that enhances dataset robustness while reducing experi-
mental costs; and (3) an RF-GA optimization loop that enables
efficient parameter search. The modular architecture further
extends the framework's applicability to multi-objective opti-
mization in various energy systems. The main findings of this
study can be summarized as follows:

(1) Through  thermal-mechanical-chemical-electrical
coupled numerical simulations, a database of SOFC maximum
power density and failure probability was constructed. Ten key
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characteristic parameters were selected by feature engineering,
and high-precision prediction was achieved based on the
random forest (RF) regression model (R* reached 0.99 and 0.95,
respectively), providing an efficient and reliable data-driven
method for SOFC macro- and micro-structure optimization.

(2) Through the integrating of RF predictive model and
genetic algorithm, the optimal combination of key character-
istic parameters was obtained, and the power density was
maximized while ensuring that the failure probability was less
than 0.632, thus solving the contradiction between performance
and reliability in traditional optimization. The optimal combi-
nation of macro- and microstructural parameters was achieved
and accordingly the maximum power density of 1.67 W cm >
could reached, further verifying the optimization potential of
this method.

(3) Based on the optimization results, experiments on SOFC
button cells prepared by regulating the cathode showed that
their maximum power density reached 1.43 W cm 2, an
increase of 29% over the initial sample, verifying the feasibility
and engineering applicability of the proposed optimization
approach.

(4) SHAP analysis reveals the competitive effects of key
features on power density and failure probability, emphasizes
the necessity of multi-objective optimization, and provides clear
parameter regulation directions for SOFC material and struc-
ture design.

The proposed ML-assisted optimization framework in this
study not only significantly enhances the R&D efficiency of
SOFCs but also extends its “simulation-data-experiment”
closed-loop strategy to the optimization design of the entire
SOFC processing chain. This includes, but is not limited to, key
processing parameters such as slurry rheological properties,
sintering schedules (heating ramps and dwell times), and
intelligent regulation of operating parameters like operating
temperature, fuel composition, and current density. By inte-
grating the sintering simulation method, the microstructure
evolution during the cell preparation process can be accurately
predicted and controlled, enabling a full-chain closed-loop
design from material selection and process optimization to
performance prediction. This ultimately achieves precise regu-
lation and optimization of the cell's comprehensive
performance.
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