

View Article Online
View Journal

Journal of Materials Chemistry C

Materials for optical, magnetic and electronic devices

Accepted Manuscript

This article can be cited before page numbers have been issued, to do this please use: T. Chowdhury, R. Khatun, R. Rahaman and Md. A. Rahman, *J. Mater. Chem. C*, 2025, DOI: 10.1039/D5TC02386F.

This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.

View Article Online DOI: 10.1039/D5TC02386F

Cadmium defect-induced modulation of hole self-trapping in monoclinic gallium oxide for optoelectronic applications

Tasfia Chowdhury, Rahima Khatun, Md. Rabiur Rahaman, and M. Azizar Rahman*

Department of Physics, Bangladesh University of Engineering and Technology, Dhaka-1000,

Bangladesh

* Corresponding author. Email: <u>azizar@phy.buet.ac.bd</u>

ABSTRACT

Self-trap holes (STHs) in β-Ga₂O₃ prohibit p-type conduction in this material, severely limiting the homojunction-based optoelectronic applications. Here, we report that the presence of cadmium (Cd) impurity in β-Ga₂O₃ (CdGa₂O₃) drastically quenches STHs and significantly increases p-type conductivity in this material, making it promising for optoelectronics. Photoluminescence experiments show that Cd-induced defects in β-Ga₂O₃ significantly suppress the characteristic ultraviolet luminescence, indicating the reduction of STHs. The CdGa₂O₃ film shows the distinct recombination channels of green and blue emissions attributed to Cd_{Ga} and V_{Ga} defects, which exhibit slow decay time constants of 38.45 and 13.31 μ s, respectively. Density functional calculations reveal that a few atom% of Cd in β-Ga₂O₃ induces an intermediate valence band state due to the formation of Cd_{Ga} and V_{Ga} defects in the octahedral sites. The calculated energy levels of Cd_{Ga} and V_{Ga} defects are 0.72 and 0.18 eV, respectively, which are significantly lower than the energy levels of 0.99 eV for STHs, resulting in the destabilization of STHs and promoting p-type conductivity. The Mott-Schottky measurement confirms the p-type conductivity in CdGa₂O₃ film with an acceptor concentration of 3.65×10¹⁷ cm⁻³. This p-type CdGa₂O₃ film is used in fabricating Ag/p-CdGa₂O₃ Schottky diodes, which operate as high-performance self-powered ultraviolet photodetectors possessing a high responsivity of 164 mA/W and specific detectivity of 7.5×10¹¹Jones. This p-type

CdGa₂O₃ film could provide better flexibility in designing efficient homojunction based coasses optoelectronic devices.

Keywords: p-type CdGa₂O₃, Cd-induced defects, Self-trap holes, Schottky diodes, Photodetectors,

1. Introduction

Gallium oxide (Ga₂O₃) crystallizes in various phases such as α , β , γ , δ , and ϵ .¹ Among all phases, monoclinic β-Ga₂O₃ is the most stable phase, and it has an ultra-wide optical bandgap of 4.8 eV and a high breakdown electric field of 13 MV cm⁻¹, which are promising for power electronics.^{2, 3} However, these applications are restricted owing to the poor understanding of acceptor impurities and the lack of a highly conductive p-type β-Ga₂O₃ layer. β-Ga₂O₃ is an inherently n-type semiconducting material, but recently, Chikoidze et al. reported p-type conductivity in this material.⁴ Moreover, oxygen vacancy has a lower formation energy in β-Ga₂O₃ and is present in a significant concentration, compensating for the acceptor density.⁵ Moreover, the self-trapped holes are easily formed in β-Ga₂O₃ and act as polaronic acceptors, prohibiting p-type conductivity. First-principle calculations have shown that Cd, Cu, N, and Zn are promising acceptor impurities for achieving p-type β-Ga₂O₃. Experimental studies reported that N- and Zn-doped β-Ga₂O₃ have shown a low free hole density in the range of 10¹⁴-10¹⁵ cm⁻³, which is insufficient to fabricate efficient power electronic devices.^{8, 9} Density functional calculations have shown that Cd preferably occupies the Ga site (Cd_{Ga}) , acting as an acceptor in β-Ga₂O₃, and this defect is effective in modifying the near valence-band structure and optoelectrical properties of this material, 10 however, experimental studies of the Cdinduced defects on the optoelectrical properties of β-Ga₂O₃ have not been conducted.

Monoclinic β-Ga₂O₃ typically shows blue emission in the 2.8-3.0 eV energy range and ultraviolet emission in the 3.3-3.4 eV energy range.¹¹ The ultraviolet emissions are attributed to the self-trap hole, while the blue emission is attributed to gallium vacancy (V_{Ga}) .¹¹ The

presence of a significant amount of V_{Ga} in β -Ga₂O₃ contributes to p-type conductivity in the properties of β -Ga₂O₃ can be material. Moreover, the optical bandgap and electrical properties of β -Ga₂O₃ can be modulated significantly by alloying with CdO. However, the effect of Cd-induced defects on the luminescence properties of β -Ga₂O₃ and their recombination kinetics has not yet been studied.

This research focuses on the combined experimental and theoretical analysis of the influence of Cd-induced defects on the optical, electronic, and electrical properties of β -Ga₂O₃ thin films and utilizes this material in power electronic and photodetector devices. The current work also examines the simulation of steady-state and transient luminescence spectral line shapes to determine the energy position of Cd dopants-induced defects, the zero-phonon line energy, electron-phonon coupling strength, and carrier dynamics in β -Ga₂O₃ films.

2. Experimental Section

2.1 Material and Synthesis

Pristine and CdGa₂O₃ films were synthesized on glass substrates and indium tin oxide (ITO)-coated glass using an atomizing spray pyrolysis technique. Highly pure (99.9% Sigma Aldrich) Ga(NO₃)₃. xH₂O and Cd(CH₃COO)₂·2H₂O were mixed in the deionized water to obtain a solution of 0.05 M, containing Cd concentrations of up to 15 atom%. The film thickness (200 ± 20) nm was kept constant by adjusting the deposition time and the spray rate. The structure, morphology, and chemical analysis of the films were investigated using an X-ray diffractometer (XRD), scanning electron microscope (SEM), an energy-dispersive X-ray spectrometer (EDS), and X-ray photoelectron spectra (XPS). Optical properties of the films were studied by UV-VIS and FS5 photoluminescence spectrometers. The carrier type and concentration were measured using an electrochemical workstation.

View Article Online

DOI: 10.1039/D5TC02386F

2.2 Device Fabrication

For the fabrication of Ag/CdGa₂O₃ Schottky diodes, a 200 nm thick layer of CdGa₂O₃ was deposited on a glass substrate using a shadow mask of 5x5 mm². The silver was used as an electrode material for the Schottky contact on CdGa₂O₃ films. A thin layer of Ag was deposited on CdGa₂O₃ films to fabricate the Ag/CdGa₂O₃ Schottky diodes. The current-voltage (*I-V*)

characteristics of power devices were analyzed using a Keithley source measuring unit. The

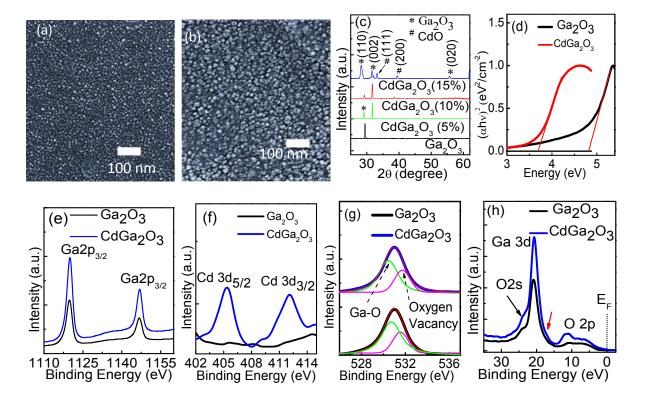
photodetection properties of the Ag/CdGa₂O₃ Schottky photodiodes were measured using a

UV light source of wavelength 365 nm and power 500μW/cm².

2.3 Theoretical details

First-principles calculations were performed to investigate the Cd-induced defects in β -Ga₂O₃. A 1 x 1 x 2 supercell of β -Ga₂O₃, consisting of 16 gallium and 24 oxygen atoms, was investigated. The Cd_{Ga} and V_{Ga} defects structure was introduced by substituting or removing a Cd atom in the same structure. The substitution of two Cd atoms leads to a defect density of (2/16) ~12 atom%. The DFT + U method was applied for this investigation, with a U_d value of 7 eV for Cd-4d orbitals and the U_p value of 7 eV for O-2p orbitals. A Hubbard U value of 7 was considered to align the theoretical bandgap with the experimental data, addressing the underestimation issue of the standard GGA-PBE methods. All computations were done in this investigation, applying the CASTEP. The energy positions of luminescence centers are estimated using the configuration coordinate model and Franck-Condon approximation. The luminescence centers in wide bandgap materials typically act as electron-phonon (e-p) coupling. This e-p coupling strength redshifts the defect luminescence band corresponding to the localized states. The e-p coupling strength (S) for wide band gap semiconducting material is high. For the semiconducting materials with high e-p coupling (S >>1), the spectral line

shape of the steady-state photoluminescence (I_{PL}) can be calculated by the following correspond equation.¹⁸


 $I_{PL}(\hbar\omega)\sim\sum_{n}exp(-S)\frac{S^{n}}{n!}\times exp\Big[\frac{1}{2\sigma}\times(E_{ZPL}-n\hbar\omega_{LO}-\hbar\omega)^{2}\Big]$(1) where, $\hbar\omega$ is the photon energy, n is the number of phonons, and ω_{LO} longitudinal optics phonon frequency. The key parameters in expression (1) that generate the PL spectral line shape are: (i) σ stand for the emission bandwidth $(FWHM=\sqrt{8ln2}\ \sigma)$, (ii) S is the Huang-Rhys factor, which calculates the PL peak energy, and (iii) E_{ZPL} estimates the energy position of defects in the bandgap.

3. Results and Discussion

3.1 Structural, Morphological, and Electronic Properties

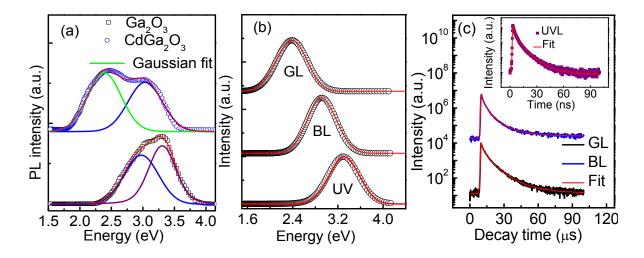
Figure (a)-(b) shows the SEM images of Ga_2O_3 and $CdGa_2O_3$ films. Both films show smooth surfaces containing a uniform distribution of spherical grains. The grain size of pristine Ga_2O_3 is in the range of 15-30 nm, and slightly increases for $CdGa_2O_3$ film, resulting from the higher atomic size of Cd^{2+} (95 pm) than that of Ga^{3+} (62 pm). The Cd concentration in $CdGa_2O_3$ is confirmed by an EDS spectrometer and found to be 9.95 (~10) atom% [Figure S1 and Table S1]. XRD patterns of pristine and $CdGa_2O_3$ films with various Cd concentrations are displayed in Figure 1(c). XRD patterns confirm the formation of a monoclinic structure for both the pristine and $CdGa_2O_3$ films. At higher doping levels of Cd (>10 atom%), the film becomes an alloy structure of CdO-Ga₂O₃. The β-Ga₂O₃ film with 10 atom% Cd was selected for this investigation to limit this study to a pure monoclinic structure of β-Ga₂O₃. The monoclinic structure of $CdGa_2O_3$ film remains unchanged when the film is annealed at 900 °C under a vacuum environment [Figure S2]. All XRD orientations are explored from the JCPDS card no. 75-0592 for β-Ga₂O₃ and identified as (110) crystallographic orientation for the pristine β-Ga₂O₃ and (002), (110) orientations for $CdGa_2O_3$ films. The observed (111), (200), and (220)

crystallographic orientations in the film with the high doping level of Cd are for cubic $C_{3}^{\text{ticle Online}}$. The Cd in β -Ga₂O₃ causes significant modification of the structural properties of the β -Ga₂O₃ film. The (111) crystallographic orientation of the pristine β -Ga₂O₃ film shifts to lower Bragg angles in the CdGa₂O₃ film. This shifting of the XRD peak position is due to the incorporation of Cd²⁺, which has a larger ionic radius (0.092 nm) than that of Ga³⁺(0.062 nm).

Figure 1. (a) and (b) show SEM images of Ga₂O₃ and CdGa₂O₃ films. The films show spherical grains uniformly distributed throughout the film. (c) The XRD pattern of pristine and CdGa₂O₃ thin films confirms the formation of a monoclinic structure in both films. (d) Tauc's plot for the determination of the optical band gap of Ga₂O₃ and CdGa₂O₃ films. The pristine films show a band gap of 4.8 eV, which is reduced to 3.68 eV for the CdGa₂O₃ film. (e) Ga 2p doublets are separated by a binding energy difference of 27 eV. (f) Cd 3d doublets are separated by an energy interval of 6.7 eV. The peak nature and energy position of the Ga 2p peak demonstrate that the valence state of Ga is Ga³⁺, without any intermediate valence states. (g)The O 1s peak of pristine and CdGa₂O₃ films and the deconvolution of the O 1s peak gives two components

at 530.48 eV and 531.68 eV. (h) Near valence band XPS spectra of pristine and CdGa₂Q₃Virtual Co_{2386F} films. The valence band maxima for Ga₂Q₃ and CdGa₂Q₃ films are 2.4 and 1.6 eV, respectively [Figure S2].

The optical bandgap of β -Ga₂O₃ films has been estimated from Tauc's plot [Figure 1 (d)] and found to be 4.8 eV, which decreased to 3.68 eV for the CdGa₂O₃ film. This decrease in the optical bandgap is associated with Cd-induced defects, where the Cd occupying a Ga site (Cd_{Ga}) acts as an acceptor in the film. The formation of Cd_{Ga} acceptors forms a defect state above the valence band. At a high level of Cd, the wavefunctions of Cd_{Ga} acceptors induce an impurity band that subsequently merges with the valence band, decreasing the band gap.


Figure 1(e) displays the core-level photoelectron spectra of the Ga 2p doublet for both Ga₂O₃ and CdGa₂O₃ films. The binding energy values of the Ga 2p_{3/2} and Ga 2p_{1/2} peaks are found to be at 1120.0 and 1145.0 eV, respectively, and show no significant change with the incorporation of Cd dopant. The analysis of the Ga 2p peak provided insights into the Ga valence state. The energy position and nature of the Ga 2p peak indicate that Ga exists in its highest valence state, Ga³⁺, without any intermediate valence states. The peak-to-peak difference between the Ga 2p doublet is 27 eV, consistent with the previously reported data for Ga 2p.¹⁹ Figure 1 (f) shows the Cd 3d core-level spectra of the CdGa₂O₃ film. The Cd 3d_{5/2} and Cd 3d_{3/2} doublet peaks are observed at 405.48 and 412.18 eV binding energy, respectively. The double is separated by 6.7 eV. This result indicates the presence of Cd²⁺ state in CdGa₂O₃ films.²⁰ The X-ray photoelectron spectra of the high-resolution O 1s of the pristine and CdGa₂O₃ films are shown in Figure 1 (g). The Gaussian function was employed to deconvolute the O 1s core level, which shows two peaks at 530.48 and 531.68 eV. The 530.48 eV peak is related to lattice oxygen (Ga-O), while the peak at 531.68 eV is associated with oxygen vacancies (V₀).¹⁹ The high binding energy peak at 531.5 eV of the O 1s spectra is almost

identical for pristine and CdGa₂O₃ films, indicating the oxygen vacancy concentration remains concentration remains concentration remains concentration. unchanged in both films. The Oxygen vacancy level has not significantly changed in the Cddoped Ga₂O₃ film. In Cd-doped Ga₂O₃ film, the Cd_{Ga} and V_{Ga} acceptor concentrations increase. The oxygen vacancy gets a chance to recombine with Cd_{Ga} and V_{Ga} acceptors, resulting in the intense blue and green emissions. The oxygen vacancy concentration has not significantly changed because the formation of more Cd_{Ga} and V_{Ga} acceptors creates an opportunity for oxygen vacancies to recombine with these acceptor defects. While oxygen vacancies induce n-type conductivity, Cd_{Ga} and V_{Ga} acceptor dopants can compensate for these defects and potentially lead to p-type conductivity. The potential limit of compensation depends on the energy levels at which the acceptor dopants introduce holes, affecting their potential to compensate for electrons from oxygen vacancies. From the photoluminescence analysis, it is observed that the Cd_{Ga} is a deep-type acceptor, while the V_{Ga} is a shallow-type acceptor in Cddoped Ga₂O₃ films. The potential compensation of the oxygen vacancy is caused by the V_{Ga} and Cd_{Ga} defecta. The near valence band XPS spectra of pristine and CdGa₂O₃ films are displayed in Figure 1 (h). Three distinct core levels of O 2s, O 2p, and Ga 3d are observed in the near valence band spectra of both the pristine and CdGa₂O₃ films. The broad peak at 20.8 is due to the superposition of O 2s at 24.0 eV and Ga 3d at 20.8 eV. A small shoulder is found at 19.0 eV (indicated by the red arrow symbol), which is attributed to the hybridization of O 2s and Ga 3d.²¹ The broad O 2p core-level peak with a full-width half maxima (FWHM) of 7.9 eV owing to the contribution of the three oxygen sites of β-Ga₂O₃.²¹ The valence band maxima of pristine and CdGa₂O₃ films have been determined from the linear extrapolation method and found to be 2.4 and 1.6 eV for the pristine and CdGa₂O₃ films, respectively [Figure S3 (a) and (b)].

3.2 Cadmium-Induced Defect Luminescence

View Article Online DOI: 10.1039/D5TC02386F

Figure 2(a) shows photoluminescence (PL) spectra (open circles) of pristine and CdGa₂O₃ films at room temperature. The PL bands in the pristine and CdGa₂O₃ films are broad, resulting from strong electron-phonon coupling.²² The deconvolution of PL spectra is required to understand the luminescence properties of these films. The PL spectra were deconvoluted using the Gaussian fitting methods as previously described in β-Ga₂O₃ films.²³ The Gaussian fitting spectra (solid lines) for pristine and CdGa₂O₃ films are also shown in Figure 2 (a). Using this method, the PL spectra of the pristine β-Ga₂O₃ films are deconvoluted with two emission bands peaking at 3.30 ± 0.02 and 2.98 ± 0.02 eV with a corresponding full width at half maximum of 0.55 ± 0.03 and 0.58 ± 0.03 eV, respectively. The 2.98 and 3.30 eV emission bands have been assigned as blue luminescence (BL) and ultraviolet luminescence (UVL), respectively. For CdGa₂O₃ films, the PL spectrum is deconvoluted with an intense BL band with the same FWHM and peak position of the pristine β-Ga₂O₃ film and a green luminescence (GL) band at 2.38 eV with an FWHM of 0.56 ± 0.05 . As the BL band is observed in both pristine and CdGa₂O₃ films, the peak parameter of the BL band was kept constant for pristine and CdGa₂O₃ films to avoid uncertainty in fitting. These BL and UVL bands are the intrinsic property of pristine β-Ga₂O₃ films and are attributed to gallium vacancy (V_{Ga}) and STHs, respectively.¹¹ The broadening of PL spectral lineshape and significant quenching of the UVL band are observed in CdGa₂O₃ film, resulting in the reduction of STHs and introducing a new recombination channel of GL along with the intrinsic BL bands of the pristine film. This result indicates that the Cd-induced defects play a crucial role in rebating the STHs and generating GL bands in CdGa₂O₃ film. We proposed that this GL band in the CdGa₂O₃ film is attributed to the recombination of the Cd_{Ga} acceptor with a conduction band electron or oxygen vacancy defects in this material. The presence of strong BL and GL in CdGa₂O₃ films indicates a high concentration of Cd_{Ga} and V_{Ga} acceptor defects in this film. To obtain further information on

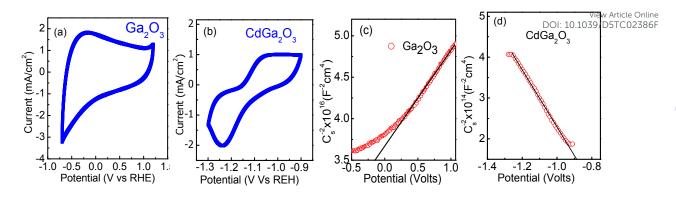
Figure 2. (a) Photoluminescence spectra (open circles) of pristine and CdGa₂O₃ thin films at room temperature, and the deconvoluted PL spectra (solid lines) using the Gaussian peak fitting method. Ultraviolet and blue emission bands are observed at 3.30 and 2.98 eV for pristine and CdGa₂O₃ film showing the green and blue emission bands at 2.38 and 2.98 eV, respectively. (b) Theoretically obtained PL spectra (solid red lines) for ultraviolet, blue, and green emission bands using the configuration coordinate model are consistent with the experimentally observed PL (open circles). (c) Transient PL decay curves were measured for the 2.38 eV green and 3.0 eV blue bands. The inset of (c) displays the transient PL spectrum for the ultraviolet emission band measured at the central wavelength of 3.30 eV.

The energy position of the blue luminescence center, V_{Ga} , and the green luminescence centers, Cd_{Ga} , have been determined using the configuration coordinate model. The PL spectral line shape of the blue and green emission bands has been calculated theoretically using the configuration coordinate equation (1) and is displayed in Figure 2(b), indicated by the solid line. The experimental photoluminescence spectra are also shown in Figure 2(b) and are indicated by an open circle. The theoretical PL spectra agree with the experimental spectra for

the following parameters: $\omega_{LO} = 71$ meV, $E_{ZPL} = 3.9$ eV, $\sigma = 0.15$ eV eV, and S = 8.5 for the BL band the UVL band; $\hbar\omega_{LO} = 71$ meV, $E_{ZPL} = 3.5$ eV, $\sigma = 0.15$ eV eV, and S = 8.5 for the BL band and $\hbar\omega_{LO} = 71$ meV, $E_{ZPL} = 2.96$ eV, $\sigma = 0.18$ eV eV, and S = 8.3 for the GL band. The energy position of the V_{Ga} and Cd_{Ga} luminescence centers involved in the recombination mechanism of blue and green emission bands can be estimated using the following equation as: $E_A = E_g - E_{ZPL}$, where E_A is the acceptor state involved in this recombination channel, and E_g is the optical bandgap of the corresponding material. He Huang-Rhys factors for the BL and GL agree with the literature value of pristine β -Ga₂O₃ films. He high value of S in $CdGa_2O_3$ film indicates strong electron-phonon coupling at the deep centers, leading to the significant broadening of the BL emission band. Considering 3.68 eV, the optical band gap of $CdGa_2O_3$ film at room temperature, the energy levels of the blue luminescence centers V_{Ga} and green luminescence centers V_{Ga} are estimated and found to be 0.18 and 0.72 eV, respectively, above the valence band maximum. These defects act as acceptor defects in V_{Ga} films. The energy position of STHs in V_{Ga} films is found to be 0.9 eV.

The recombination dynamics of UVL, BL, and GL have been investigated by time-resolved PL (TRPL). Figure 2 (c) displays the room temperature TRPL spectra measured at central wavelengths of 376 nm (UVL), 416 nm (BL), and 521 nm (GL) to investigate the decay time of UVL, BL, and GL color centers. The TRPL spectra are best fitted with triexponential decay time and can be expressed as: $I(t) = B_1 \exp(t/\tau_1) + B_2 \exp(t/\tau_2) + B_1 \exp(t/\tau_3)$, where I indicates the TRPL intensity, $I_{1,2,3}$ are the constant and $I_{1,2,3}$ are the decay life times. The mean decay time constants have been calculated using the equation; $I_{1,2,3}$ are the decay life times. The transient PL is well-fitted with triexponential decay constants as: $I_{1,2,3} = 1.55 I_{1,2,3} = 1.55 I_{1,2$

report.²⁸ The GL component $CdGa_2O_3$ films show a faster decay time constant of 13.336/657C023866 than the BL component of $38.45~\mu s$, suggesting a different recombination channel involved in the GL band. Incorporating Cd into β -Ga₂O₃ boosts the transfer of energy to the luminescence centers responsible for the green emission band, leading to the fast decay time constant of the GL centers and a much more intense visible luminescence compared to the BL band. The slower decay lifetimes for BL and GL bands reveal that these luminescence bands are attributed to the recombination of a conduction band electron and defect levels formed above the valence band.


3.3 Electrical Properties of CdGa₂O₃-Based Heterojunction

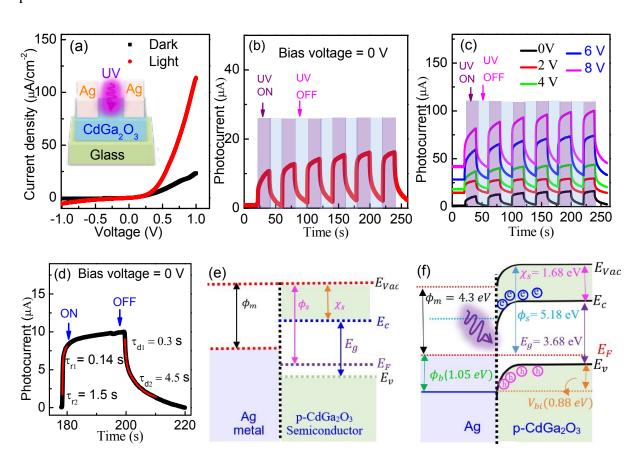
Published on 30 July 2025. Downloaded on 8/2/2025 11:52:26 PM

The electrochemical impedance spectroscopic technique is employed to identify the carrier type and estimate the carrier concentration of the pristine and CdGa₂O₃ films from the Mott-Schottky measurement. Before the Mott-Schottky analysis, cyclic voltammetry (C-V) measurement was performed to identify the suitable voltage range for the electrochemical reactions. Figure 4 (a) and (b) show C-V plots for Ga₂O₃ and CdGa₂O₃ films. The C-V analysis indicates that the curves remain undistorted within the -0.5 to 1.0 voltage range for pristine and -1.3 to -0.9 voltage range for CdGa₂O₃ films, which is considered the working window for the Mott-Schottky analysis. The Mott-Schottky expression can be expressed as:²⁹

$$\frac{1}{C_{sc}^2} = \frac{2}{\varepsilon \varepsilon_0 e A^2 N_a} \left(V - V_{fb} - \frac{kT}{e} \right) \dots (2)$$

where, C stands for the capacitance of the space charge layer, A indicates the active area of the film, N_a stands for the acceptor density, V_{fb} is the flat band potential, V is the applied potential, T is the temperature, and k is the Boltzmann constant. The ε and ε_0 are the relative permittivity and the free space permittivity of β -Ga₂O₃, respectively. The relative permittivity for β -Ga₂O₃ is 12.4 used for this calculation.³⁰

Figure 3. Cyclic voltammetry plots for (a) Ga₂O₃ and (b) CdGa₂O₃ films. These narrow voltage windows were considered because the films show more stability under the reaction mechanism at this potential range. Mott-Schottky plot for (c) Ga₂O₃ and (d) CdGa₂O₃ films.


Figures 3 (c) and (d) show the Mott-Schottky plot of the Ga₂O₃ and CdGa₂O₃ thin films. The positive slopes of pristine β-Ga₂O₃ films indicate that this film has an n-type semiconductor nature. The negative slopes of CdGa₂O₃ reveal that this film represents p-type conductivity. The electron density in the pristine and hole density in CdGa₂O₃ can be achieved from the slope of the Mott-Schottky plot, where $N_{a(n)} = \frac{2}{\varepsilon \varepsilon_0 e A^2} (slope)$. The electron density is 7.4 x 10¹⁴ cm⁻¹ ³ for the pristine β-Ga₂O₃ film. The hole density is $3.65 \times 10^{17} \text{ cm}^{-3}$ for CdGa₂O₃ films. The flat band potential (V_{fb}) was determined from the intercept on the voltage axis of the Mott-Schottky plot. The calculated value of V_{fb} is 0.88 eV. The resistance and mobility of CdGa₂O₃ film were determined from the Nyquist plot [Figure S4]. The conductivity (σ) can be estimated using the following equation: $\sigma = \frac{1}{R_p} \times \frac{t}{A}$, where, R_p is the parallel resistance modelled with the constant phase element (CPE), t is the film thickness (200 nm) and A (2.3 × 10⁻⁷ m^2) is the cross sectional area of the deposited electrode. Employing the Zview software, the Nyquist plot was fitted according to the provided circuit diagram (inset of Figure S4), and the values for the R_p for CdGa₂O₃ film is 10500 ohms. The carrier mobility (μ) is associated to σ by the following equation: $\sigma = N_A q \mu$, where N_A is the acceptor density, q is the magnitude of charge

and μ is the hole mobility. Using the hole density estimated from Mott-Schottky plot, the value conductivity of the hole mobility for CdGa₂O₃ film is found to be 14.13 cm^2 / Vs. The p-type conductivity is also examined by fabricating the Ga₂O₃ film-based homojunction devices. A 200 nm layer of vanadium (V)-doped Ga₂O₃ (VGa₂O₃) film on an ITO-coated glass substrate, followed by the deposition of CdGa₂O₃ film on the V-doped Ga₂O₃ film. The forward current-voltage characteristic of n-type VGa₂O₃/p-type CdGa₂O₃ homojunction diodes [Figure S5], which exhibits the rectifying characteristics of the semiconducting diode.

3.4 Performance of CdGa₂O₃ as a Self-powered Photodetector.

The p-type CdGa₂O₃ films with an optical bandgap of 3.68 are sensitive to ultraviolet light. The inset of Figure 4(a) shows the schematic diagram of Ag/CdGa₂O₃ Schottky photodiodes. Figure 4 (a) shows the current-voltage characteristics of a typical Ag/CdGa₂O₃ Schottky photodiode under dark and illumination. The current-voltage curve of the Ag/CdGa₂O₃ Schottky diode shows a typical rectifying behavior, stipulating the development of the Schottky barrier at the interface of the Ag/CdGa₂O₃ junction. The device current increases significantly under illumination of 365 nm, indicating that the fabricated Schottky diodes are sensitive to ultraviolet light. The UV photoelectric properties of Ag/CdGa₂O₃ Schottky photodiode are investigated by ultraviolet light of wavelength 365 nm with an optical power of 500 µW/cm². Figure 4 (b) shows the time-dependent photo response behavior by periodically switching on and off the source with an optical power of 500 µW/cm2 under an external applied voltage of 0 volts. The dark current is found to be approximately 0.88 μA. When the UV light source was switched on, the photocurrent instantaneously increased to 10.74 µA under zero bias voltage. The current intensity ratio of I_{photo}/I_{dark} is roughly 10 times the value of the dark current. The photocurrent is decreased to the initial dark current when the light source is switched off. The result indicates that the Ag/CdGa₂O₃ Schottky photodetector operates without any bias voltage, indicating the self-powered characteristics of photodiodes.

The sensitivity of the photodetector has been calculated by measuring the responsivity R_J and R_J are the value of R can be expressed by the following equation: $^{31}R = (I_{photo} - I_{dark})/PS$, I_{photo} is the current under illumination, I_{dark} stands for the current under dark condition, P indicates the intensity of the UV light source, and S is the operative illuminated zone of the detector. 32 Under 365 nm illumination, the responsivity was found to be 164 mA/W obtained for the Ag/Ga_2O_3 photodetector. This increased photoresponsivity resulted from enhanced light absorption efficiency and increased collection of electron-hole pairs within the device. A significant concentration of oxygen vacancies is present in the sample, and Cd doping increases the hole concentrations, resulting in an increase in electron-hole pairs in the sample. The figure of merit of a photodetector is investigated by measuring the detectivity (D), and can be described by the following expression: $D = R/(2eI)^{0.5}$, where I is the current density under dark condition. The value of D is found to be $T.5 \times 10^{11}$ Jones under zero bias and $500 \, \mu \text{W/cm}^2$ power.

contact and (f) in equilibrium.

Figure 4. (a) Current-voltage characteristics of Ag/CdGa₂O₃ Schottky diodes. The inset of Co₂₃₈₆F shows the schematic diagram of the Ag/CdGa₂O₃ photodetector. (b) Photocurrent response of a typical prototype Ag/CdGa₂O₃ photodetector as a function of time under 365 nm light and zero bias voltage. (c) Time-dependent photocurrent response of the Ag/CdGa₂O₃/Ag photodetector under different bias voltage with 365 nm LED light illumination. (d) The photo response decay curve of Ag/CdGa₂O₃ detector are good fitted with a biexponential relaxation equation. The value of $\tau_{r1}(\tau_{d1})$ and $\tau_{r2}(\tau_{d2})$ are found to be 0.14 s (1.5s) and 0.3 s (4.5s), respectively. Energy band diagram between Ag and p-CdGa₂O₃ semiconductor; (e) before

The effect of bias voltages on the photocurrent response of the Ag/CdGa₂O₃ photodetector was also investigated. Figure 4 (c) shows the photocurrent of Ag/CdGa₂O₃ Schottky photodiodes at different bias voltages. Both the I_{photo} and I_{dark} increases consistently with increases of applied voltage. The increase of dark current with the applied voltage is attributed to the increase of the drift velocity and liberation of excess carriers from the oxygen vacancy.³³ The increase in photocurrent with the applied bias voltage is due to the increase in the number of photogenerated electron-hole pairs in the film. The dynamic response of the Ag/CdGa₂O₃ Schottky detector exhibits excellent reproducibility and stability. The photo response decay curve of Ag/CdGa₂O₃ detector are good fitted with a biexponential relaxation equation, I(t) = $I_o + Aexp\left(-\frac{t}{\tau_1}\right) + Bexp\left(-\frac{t}{\tau_2}\right)$, where I(t) and I_o are the current at time t and steady state photocurrent. $\tau_{r1}(\tau_{d1})$ and $\tau_{r2}(\tau_{d2})$ are the first and slow components of the rise and decay time constants, respectively, whereas A and B are fitting constants. Figure 4 (d) shows the experimental decay curve (black) along with the fitted curve (red lines). The value of $\tau_{r1}(\tau_{d1})$ and τ_{r2} (τ_{d2}) are found to be 0.14 s (1.5s) and 0.3 s (4.5s), respectively. The slow response of the photodetector is due to the existence of vacancies and structural defects formed during the growth of the CdGa₂O₃ film. The response time of the detector is slightly slower than the stateof-the-art β-Ga₂O₃ photodetectors.^{34, 35} we have also observed a slow decay time constant his constant because of the same also observed as low decay time constant because of the constant bec

Published on 30 July 2025. Downloaded on 8/2/2025 11:52:26 PM

the TRPL measurement. The slower decay lifetimes for BL and GL bands reveal that these luminescence bands are attributed to the recombination of Cd_{Ga} and V_{Ga} defect levels formed above the valence band. The response can be made fast by introducing the metal nanoparticles on the film, known as local surface plasmon resonance (LSPR), an effective method to enhance the optical absorbance and carrier excitation.³⁵ It has been reported that the response speed β -Ga₂O₃ photodetector has significantly increased after LSPR enhancement by Pt nanoparticles.³⁵ This increase in device response speed is due to the less traps in the localized interface of Pt and Ga₂O₃ and the enhancement of faster band-to-band transitions. The slow response has previously been observed in NiO/Ga₂O₃ and Ag (graphene)/ β -Ga₂O₃ photodetectors, attributed to gallium vacancies and oxygen vacancies.^{36, 37}

Figure 4 (e) shows the energy band diagram of $Ag/CdGa_2O_3$ Schottky photodetectors when the metal (Ag) and semiconductor ($CdGa_2O_3$) are in contact. In this band diagram, the work function of Ag and $CdGa_2O_3$ are indicated by ϕ_m and ϕ_s . The value of the work function for Ag is 4.3 eV. ³⁸ The band edge position for $CdGa_2O_3$ with respect to vacuum level (E_{vac}) can be determined by the valence band position (E_v) following expression, $E_{vac} = V_{FB} + \phi_m + \Delta$ E_{FV} , where V_{FB} is the flat band potential determined from the intercept on the voltage axis of the Mott-Schottky plot (Figure 3d) and is found to be 0.88 eV. The $\Delta E_{FV} = E_F - E_v$ is the difference between the E_v and the Fermi level (E_F). The value of ΔE_{FV} can be determined from the following relation; $\Delta E_{FV} = (kT/q) \ln(N_V/N_A)$, where N_V , k, and T are effective hole density of states in the valence band, Boltzmann constant, and temperature, respectively. The N_A (3.65 x10¹⁷ cm^{-3}) is the acceptor concentration determined from the Mott-Schottky measurement. The value of N_V can be determined using the expression $N_V = 2$ ($2\pi m_h^* kT/h^2$)^{3/2}, where m_h^* stand for the effective mass of hole, which was calculated from $m_h^* = 5.56 m_o$, where m_o is the rest mas of electron.³⁹ The values of N_V and ΔE_{FV} for

CdGa₂O₃ semiconductor are 3.32 ×10²⁰ cm⁻³ and 0.17 eV, respectively. The work function of continuous forms and 0.17 eV, respectively.

Published on 30 July 2025. Downloaded on 8/2/2025 11:52:26 PM

CdGa₂O₃ semiconductor is determined using the expression $\phi_s = V_{FB} + \phi_m$ and is found to be 5.18 eV. The electron affinity (χ_s) is related to the work function and band gap of a semiconductor as $\phi_s = E_g + \chi_s - V_{FB}$, and the value calculated value for CdGa₂O₃ is found to be 1.68 eV. Figure 4(f) shows the Energy band diagram between Ag and p-CdGa₂O₃ semiconductor in equilibrium under illumination. As the value of ϕ_s is greater than ϕ_m , when the Ag is deposited on the CdGa₂O₃ thin film, electrons will move from the Ag to the CdGa₂O₃ film, resulting in the alignment of the Fermi levels of this metal and semiconductor, and the thermal equilibrium is obtained. As a result, the downward band bending at the interface of the CdGa₂O₃ is observed owing to the accumulation of uncompensated ionised acceptors near the interface, resulting in space charge formation. The built-in potential of this Schottky diode photodetector is governed by the Schottky junction formed at the interface of the Ag/CdGa₂O₃. This potential is responsible for the low dark current of this detector. Under the illumination of a 365 nm UV light source, the CdGa₂O₃ film absorbs light energy and generates a lot of electron-hole pairs. Moreover, the total built-in potential increases the separation efficiency of these electron-hole pairs, resulting in the enhancement of photocurrent and responsivity of the detector at 0 volts. Table 1 compiles the key performance parameters of the Ag/CdGa₂O₃ Schottky photodiode UV detector at zero bias voltage in this work, and the earlier reported self-driven photodetector is presented. The Ag/CdGa₂O₃ Schottky photodetector exhibits enhanced detectivity and responsivity compared to the previously reported UV self-powered photodetector.

Table 1: Summary of the key performance parameters of the CdGa₂O₃ film-based Schöff Article Online photodiodes with earlier reported self-powered UV photodetector.

Photodetector	Bias	$ au_r$	τ_d (ms)	Responsivity,	Detectivity,	Reference
	(volts)	(ms)		R (mA/W)	D (Jones)	
Ga ₂ O ₃ /GaN	0	7	9	72	3.32 x10 ¹²	40
Ag/Ga ₂ O ₃	0	20	25	14.8	5.1 x10 ¹²	41
FTO/Ga ₂ O ₃	0	2	8	9.2	5.27 x10 ¹¹	42
β-Ga ₂ O ₃ /Ga:ZnO	0	210	272	0.76		43
β-Ga ₂ O ₃ /NSTO	0	210	70	2.6		44
Ag / β-Ga ₂ O ₃	0	540	3320	0.26	2.8 x 10 ⁹	37
β-Ga ₂ O ₃ /ZnO	0	523	32	4.12	2.2 1012	45
NiO/Ga ₂ O ₃	0	340	3650	0.057	5.45×10^9	36
Ag/a-Ga2O3	0	70	90	11.23		46
NiO/Ga ₂ O ₃	0	240	340	0.047	3.84 ×10 ⁹	47
NiO _x /Ga ₂ O ₃	0	1690	320	0.40	3.0 ×10 ¹⁰	48
p-CuSCN/n-Ga ₂ O ₃	0	3800	260	5.5	3.8 ×10 ¹¹	49
Ag/CdGa ₂ O ₃	0	140	300	164	7.5×10 ¹¹	This work

3.5 Mechanism of Hole Self-trapping Reduction and p-type Conduction

The XPS spectroscopy and total density of the state (TDOS) calculations have been studied to describe the electronic structure of the near valence band and the p-type conduction mechanism in CdGa₂O₃ films. Figure 5 (a) displays the valence band of X-ray photoelectron spectra for pristine and CdGa₂O₃ films. The spectra show that the top edge of the valence band of the CdGa₂O₃ film moves down to the lower energy side compared to the pristine film. This result demonstrates that Cd-induced acceptor-type defect states are generated on top of the valence band. The spectra also manifest that a tail state extended toward the Fermi level appears [displayed by dotted circle in Figure 5 (a)]. This tail state lies in the binding energy range of ~0-1.2 eV on top of the valence band. The linear extrapolation method is applied to the lower straight-line region of O 2p to determine the valence band maxima of pristine and CdGa₂O₃ films. The value of valence band maxima for pristine and CdGa₂O₃ films is 2.4 and 1.6 eV,

respectively. This result indicates a 0.8 eV upward shift of the valence band edge is observed co2386F for CdGa₂O₃ films compared to the pristine β-Ga₂O₃ film. Chikoidze et al. proposed that the lower energy side of the O 2p core level for p-type β-Ga₂O₃ is flat and lies within the 0-2.0 eV binding energy range. This consent agrees with the energy position of the valence band edge of 1.6 eV for CdGa₂O₃ as a p-type conductive material.¹²

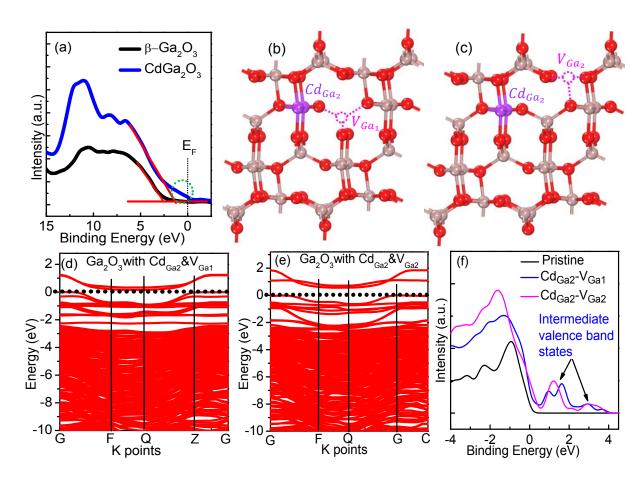


Figure 5. (a) Determination of the energy position of the valence band maximum using the linear extrapolation method. Extrapolating the linear portion of the low-energy side of O 2p core level spectra provides the valence band maximum of 2.4 and 1.6 eV for pristine and CdGa₂O₃ films. The atomic arrangement of a 1 x 1 x 2 β-Ga₂O₃ supercell contains (b) Cd_{Ga_2} and V_{Ga_1} , and (c) Cd_{Ga_2} and V_{Ga_2} defects. The gray and red balls are gallium and oxygen atoms, respectively. The subscript 1 and 2 indicates the tetrahedral and octahedral sites of Ga atoms, respectively. The near valence band structure of pristine β-Ga₂O₃ with (d) Cd_{Ga_2} and

 V_{Ga_1} , and (e) Cd_{Ga_2} and V_{Ga_2} defects. (f) The total density of state for pristine $\beta_T Ga_2 Q_{03}$ with the colors of Cd_{Ga_2} and V_{Ga_1} , and (ii) Cd_{Ga_2} and V_{Ga_2} . The TDOS calculations indicate that an upward shift of the valence band edge and an intra-valence band state is observed with the formation of Cd_{Ga_2} and V_{Ga_2} defects in β - $Ga_2 O_3$.

The hole self-trapping in β -Ga₂O₃ can be reduced by: (i) acceptor dopants, which have a higher atomic radius than Ga,⁵⁰ (ii) controlling the optical bandgap of this material by specific impurity doping, ⁵¹ and (iii) alloying with a material which less tendency of hole self-trapping. ⁵⁰ As the atomic size of the Cd²⁺ (0.097nm) is larger compared to Ga³⁺ (0.062nm), when Cd occupies the Ga site, the lattice volume of $CdGa_2O_3$ becomes larger than the pristine β -Ga₂O₃, resulting in the reduction of hole self-trapping. As CdGa₂O₃ film shows V_{Ga}-related BL and Cd_{Ga}-associated GL emission bands, the Cd_{Ga} and V_{Ga} defects are intentionally incorporated in the 1x1x2 supercell of β -Ga₂O₃ to understand the near valence band electronic structure of β -Ga₂O₃ film [Figure 5 (b) and (c)]. The tetrahedral and octahedral Ga atoms are indicated by Ga_1 and Ga_2 , respectively. For the incorporation of $Cd_{Ga_1(Ga_2)}$ and $V_{Ga_1(Ga_2)}$ defects, two Ga atoms are replaced by Cd atoms (2/16 = -12 atom% Cd), and one $Ga_1(Ga_2)$ atom is removed from the supercell simultaneously. The near valence band structure of pristine β-Ga₂O₃ with (d) Cd_{Ga_2} and V_{Ga_1} , and (e) Cd_{Ga_2} and V_{Ga_2} defects has been investigated, as displayed in Figure 5 (b) and (c). The near valence band structures of β -Ga₂O₃ with (a) Cd_{Ga_1} , (b) Cd_{Ga_2} and V_{Ga_1} , (c) Cd_{Ga_1} and V_{Ga_2} , defects have also been studied [Figure S6 (a-c)]. The corresponding total density of state (TDOS) is shown in [Figure S6 (d)]. DFT calculations reveal that the optical band gap of pristine β-Ga₂O₃ is 4.9 eV [Figure S7 (b)]. The band gap slightly increases for the substitution of tetrahedral Ga_1 atoms with Cd (Cd_{Ga_1}) [Figure S7 (c)] and decreases when Cd occupies the octahedral Ga_2 sites (Cd_{Ga_2}) in β -Ga₂O₃ [Figure S7 (d)]. The calculations show that there are no intermediate valence band states above the Fermi level

is observed for the simultaneous formation of Cd_{Ga_1} & V_{Ga_1} defects [Figure S7 (b)] and $C_{Ga_1}^{Vew Article Online}$ and V_{Ga_2} defects [Figure S4 (c)]. However, the simultaneous formation of Cd_{Ga_2} and V_{Ga_1} (or V_{Ga_2}) defects in β -Ga₂O₃ exhibits a significant shift of the near valence band edge [Figure 5 (d-e)], resulting the formation of an intermediate valence band state above the Fermi level [Figure 5 (f)]. These theoretical results are consistent with the near valence band of XPS spectra. Theoretical calculation and experimental observations reveal that the octahedral Ga_2 site is more favourable for Cd, and this element is preferably occupied at the Ga_2 site than the tetrahedral Ga_1 site, producing Cd_{Ga_2} , which is responsible for the green emission band in the photoluminescence spectra. The calculations also indicate that the intermediate valence band state only appears with the simultaneous formation of $\mathcal{C}d_{\mathcal{G}a_2}$ defect and $V_{\mathcal{G}a_1}$ (or $V_{\mathcal{G}a_2}$) vacancies. Therefore, the blue emission can appear due to the formation of a tetrahedral V_{Ga_1} vacancy or an octahedral V_{Ga_2} defect. Li et al. reported that the V_{Ga_2} has lower formation energy than V_{Gal}, and both of them have lower formation energy than the other intrinsic defect of Ga₂O₃ at above 1 eV Fermi energy level.⁵² The TDOS curves for a 1x1x2 supercell of β-Ga2O3 containing (i) Cd_{Ga_2} , (ii) Cd_{Ga_2} and V_{Ga_1} , and (iii) Cd_{Ga_2} and V_{Ga_2} are displayed in Figure 5(f). The formation of the occupied intra-valence band state leads to the downward shift of the Fermi level. The FWHM of this intra-valence state is ~1 eV and lies above the Fermi level. For pristine β-Ga₂O₃, the valence band maximum mainly arises from the O 2p states. The partial density of state for Ga, O, and Cd is shown in Figure S8. For the CdGa₂O₃, the occupied intra-valence band appears from the orbital contribution of Ga 2p, O 2p, and Cd 4d orbitals. We observed that the valence band edge in the β -Ga₂O₃ containing Cd_{Ga_2} and V_{Ga_2} defects is notably higher than that of the pristine β -Ga₂O₃, resulting in a decrease of the band gap and promoting p-type conductivity. These results are consistent with the decreasing trend of experimentally observed bandgap and p-type conduction in CdGa₂O₃ films. This result is consistent with the result observed by Zhang et al., they reported the Cd dopant induce a

shallow acceptor level, which contributed to the conductivity in the Cd-doped Ga₂Q₃ system 55 icle Online Conductivity in the Cd-doped Ga₂Q₃ system

Published on 30 July 2025. Downloaded on 8/2/2025 11:52:26 PM

The Mott-Schottky measurement confirms a significant concentration of holes in $CdGa_2O_3$ films attributed to the presence of Cd_{Ga_2} and V_{Ga_2} acceptor defects. The Franck-Condon analysis of PL spectral line shape confirms that the energy levels of Cd_{Ga_2} and V_{Ga_2} acceptor defects are 720 and 180meV, respectively, which are significantly lower than that of the energy level of 900 meV for the STHs in $CdGa_2O_3$ films. The formation of Cd_{Ga_2} and V_{Ga_2} acceptors in $CdGa_2O_3$ films reduces the STHs by competing with the formation of STH sites. The formation of these Cd_{Ga_2} and V_{Ga_2} acceptor defects in $CdGa_2O_3$ film destabilizes STHs by lowering the Fermi level, rendering it energetically less favorable for holes to be captured in STH configurations. As the values of energy levels for these acceptors are lower than that of the energy level of STHs, the holes are captured by these Cd_{Ga_2} and V_{Ga_2} acceptor levels before they can form STHs.

4. Conclusions

Ga₂O₃ and CdGa₂O₃ thin films were prepared by a standard atomizing spray pyrolysis technique. Both pristine and CdGa₂O₃ films show a monoclinic crystal structure. The Cd incorporation in β-Ga₂O₃ significantly quenches the characteristic ultraviolet luminescence, indicating the destabilization of STHs and introducing a distinct recombination channel of green luminescence attributed to Cd_{Ga} defects along with gallium vacancy (V_{Ga})-associated blue emission. The slow decay time constants of 38.45 and 13.31μs for the blue and green emission indicate that the recombination involves a conduction band electron and V_{Ga} and Cd_{Ga} defects for these emissions. First-principle calculations reveal that incorporating Cd in β-Ga₂O₃ forms Cd_{Ga} and V_{Ga} defects, which leads to an intravalence band state adequately high in energy to promote p-type conductivity in CdGa₂O₃ film. These acceptor defects lower the Fermi level and make it energetically unfavourable for holes to be trapped in the STHs configuration. The

Data Availability Statement

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Author Contributions

Published on 30 July 2025. Downloaded on 8/2/2025 11:52:26 PM

Tasfia Chowdhury: Writing – original draft (equal); Data curation (equal); Formal analysis (equal); **Rahima Khatun**: Writing – original draft (equal); Data curation (equal); Formal analysis (equal), Software (supporting), Data curation (lead). **Md. Rabiur Rahaman**: Data curation (supporting). **Md. Azizar Rahman**: Writing – review & editing (lead); Investigation (lead); Conceptualization (lead); Supervision (lead).

Conflict of Interest

The authors have no conflicts to disclose.

Acknowledgements

The authors greatly acknowledge the financial support of the Committee for Advanced Studies and Research (CASR), Bangladesh University of Engineering and Technology (BUET). The authors are also thankful to the Department of Physics, BUET, for allowing us to use different equipment for this research. This work is partially supported by a grant from UNESCO-TWAS,

the Swedish International Development and Cooperation Agency (SIDA), and the Ministry of Pole Online Street Co2386F Science and Technology, Government of Bangladesh.

References

- 1. M. Bosi, P. Mazzolini, L. Seravalli and R. Fornari, *J. Mater. Chem. C*, 2020, **8**, 10975-10992.
- 2. M.-G. Ju, X. Wang, W. Liang, Y. Zhao and C. Li, J. Mater. Chem. A, 2014, 2, 17005-17014.
- 3. E. Chikoidze, T. Tchelidze, C. Sartel, Z. Chi, R. Kabouche, I. Madaci, C. Rubio, H. Mohamed, V. Sallet and F. Medjdoub, *Mater. Today Phys.*, 2020, **15**, 100263.
- 4. E. Chikoidze, C. Sartel, H. Mohamed, I. Madaci, T. Tchelidze, M. Modreanu, P. Vales-Castro, C. Rubio, C. Arnold and V. Sallet, *J. Mater. Chem. C*, 2019, **7**, 10231-10239.
- 5. M. D. McCluskey, J. Appl. Phys., 2020, **127**,101101.
- 6. J. B. Varley, A. Janotti, C. Franchini and C. G. Van de Walle, *Phys. Rev. B*, 2012, **85**, 081109.
- C. Yan, J. Su, Y. Wang, Z. Lin, J. Zhang, J. Chang and Y. Hao, J. Alloys Compd., 2021, 854, 157247.
- 8. X. Wang, F. Zhang, K. Saito, T. Tanaka, M. Nishio and Q. Guo, *J. Phys. Chem. Solids*, 2014, **75**, 1201-1204.
- 9. S. Luan, L. Dong, X. Ma and R. Jia, *J. Alloys Compd.*, 2020, **812**, 152026.
- 10. C. Tang, J. Sun, N. Lin, Z. Jia, W. Mu, X. Tao and X. Zhao, RSC Adv., 2016, 6, 78322-78334.
- 11. T. Onuma, S. Fujioka, T. Yamaguchi, M. Higashiwaki, K. Sasaki, T. Masui and T. Honda, *Appl. Phys. Lett.*, 2013, **103**, 041910.
- 12. E. Chikoidze, A. Fellous, A. Perez-Tomas, G. Sauthier, T. Tchelidze, C. Ton-That, T. T. Huynh, M. Phillips, S. Russell and M. Jennings, *Mater. Today Phys.*, 2017, **3**, 118-126.
- 13. X. Xiao, L. Liang, Y. Pei, J. Yu, H. Duan, T.-C. Chang and H. Cao, *Appl. Phys. Lett.*, 2020, **116**, 192102.
- 14. C. P. Liu, C. Y. Ho, R. Dos Reis, Y. Foo, P. F. Guo, J. A. Zapien, W. Walukiewicz and K. M. Yu, *ACS Appl. Mater. Interfaces*, 2018, **10**, 7239-7247.
- 15. X. Ma, B. Lu, D. Li, R. Shi, C. Pan and Y. Zhu, *J. Phys. Chem. C*, 2011, **115**, 4680-4687.
- 16. M. Segall, P. J. Lindan, M. a. Probert, C. J. Pickard, P. J. Hasnip, S. Clark and M. Payne, *J. Condens. Matter Phys.*, 2002, **14**, 2717.
- 17. K. Huang and A. Rhys, Proc. R. Soc. Lond. A Math. Phys. Sci., 1950, 204, 406-423.
- 18. A. Alkauskas, M. D. McCluskey and C. G. Van de Walle, J. Appl. Phys., 2016, **119**, 181101.
- 19. X. Sun, K. Liu, X. Chen, Q. Hou, Z. Cheng, J. Yang, Q. Ai, Y. Zhu, B. Li and L. Liu, *J. Mater. Chem. C*, 2023, **11**, 3227-3234.
- 20. P. Zhou, Z. Le, Y. Xie, J. Fang and J. Xu, J. Alloys Compd., 2017, **692**, 170-177.
- 21. A. Navarro-Quezada, S. Alamé, N. Esser, J. Furthmüller, F. Bechstedt, Z. Galazka, D. Skuridina and P. Vogt, *Phys. Rev. B*, 2015, **92**, 195306.
- 22. L. Cheng, Y. Zhu, W. Wang and W. Zheng, J. Phys. Chem. Lett., 2022, 13, 3053-3058.
- 23. C. P. Irvine, A. Stopic, M. T. Westerhausen, M. R. Phillips and C. Ton-That, *Phys. Rev. Mater.*, 2022, **6**, 114603.
- 24. M. Reshchikov, J. D. McNamara, F. Zhang, M. Monavarian, A. Usikov, H. Helava, Y. Makarov and H. Morkoç, *Phys. Rev. B*, 2016, **94**, 035201.
- 25. Y. Y. Tay, T. Tan, F. Boey, M. H. Liang, J. Ye, Y. Zhao, T. Norby and S. Li, *Phys. Chem. Chem. Phys.*, 2010, **12**, 2373-2379.

Journal of Materials Chemistry C Accepted Manuscript

- 26. C. F. Klingshirn, A. Waag, A. Hoffmann and J. Geurts, *Zinc Oxide: From Fundamental* View Article Online Properties Towards Novel Applications, Springer Berlin Heidelberg, 2010.
- 27. H. He, Z. Ye, S. Lin, B. Zhao, J. Huang and H. Tang, J. Phys. Chem. C, 2008, **112**, 14262-14265.
- 28. T. Chowdhury, D. K. Paul, M. R. Rahaman, C. Ton-That and M. A. Rahman, *J. Alloys Compd.*, 2025, **1010**, 177609.
- 29. K. Gelderman, L. Lee and S. Donne, *J. Chem. Edu.*, 2007, **84**, 685.
- 30. A. Fiedler, R. Schewski, Z. Galazka and K. Irmscher, ECS J. Solid State Sci. Technol., 2019, **8**, Q3083.
- 31. W.-Y. Kong, G.-A. Wu, K.-Y. Wang, T.-F. Zhang, Y.-F. Zou, D.-D. Wang and L.-B. Luo, *Adv. Mater.*, 2016, **28**, 10725-10731.
- 32. S. Kim, S. Oh and J. Kim, ACS Photonics, 2019, **6**, 1026-1032.
- D. Guo, Y. Su, H. Shi, P. Li, N. Zhao, J. Ye, S. Wang, A. Liu, Z. Chen and C. Li, ACS Nano, 2018, 12, 12827-12835.
- 34. M. Zhang, J. Wu, H. Lin, X. Zhang, J.-L. Xu, Y. Yan, S.-D. Wang, M. Wong and H.-S. Kwok, *IEEE Electron Device Lett.*, 2021, **42**, 998-1001.
- 35. Z. Liu, S.-L. Sha, G.-H. Shen, M.-M. Jiang, M.-L. Zhang, Y.-F. Guo and W.-H. Tang, *IEEE Electron Device Lett.*, 2023, **44**, 1324-1327.
- 36. Y. Wang, C. Wu, D. Guo, P. Li, S. Wang, A. Liu, C. Li, F. Wu and W. Tang, *ACS Appl. Electron. Mater.*, 2020, **2**, 2032-2038.
- 37. C. Wu, C. He, D. Guo, F. Zhang, P. Li, S. Wang, A. Liu, F. Wu and W. Tang, *Mater. Today Phys.*, 2020, **12**, 100193.
- 38. A. Kumatani, Y. Li, P. Darmawan, T. Minari and K. Tsukagoshi, Sci. Rep., 2013, 3, 1026.
- 39. A. Mock, R. Korlacki, C. Briley, V. Darakchieva, B. Monemar, Y. Kumagai, K. Goto, M. Higashiwaki and M. Schubert, *Phys. Rev. B*, 2017, **96**, 245205.
- 40. W. Chen, X. Xu, M. Li, S. Kuang, K. H. Zhang and Q. Cheng, *Adv. Opt. Mater.*, 2023, **11**, 2202847.
- 41. P. Tan, X. Zhao, X. Hou, Y. Yu, S. Yu, X. Ma, Z. Zhang, M. Ding, G. Xu and Q. Hu, *Adv. Opt. Mater.*, 2021, **9**, 2100173.
- 42. Y. Li, Z. Zhou, H. Pan, J. Chen, Y. Wang, Q. Qu, D. Zhang, M. Li, Y. Lu and Y. He, *J. Mater. Res. Technol.*, 2023, **22**, 2174-2185.
- 43. Z. Wu, L. Jiao, X. Wang, D. Guo, W. Li, L. Li, F. Huang and W. Tang, *J. Mater. Chem. C*, 2017, **5**, 8688-8693.
- 44. G. Daoyou, L. Han, L. Peigang, W. Zhenping, W. Shunli, C. Can, L. Chaorong and T. Weihua, *ACS Appl. Mater. Interfaces* 2017, **9**, 1619–1628.
- 45. T. Mei, S. Li, S. Zhang, Y. Liu and P. Li, *Phys. Scr.*, 2022, **97**, 015808.
- 46. C. Yu, H. Li, K. Ding, L. Huang, H. Zhang, D. Pang, Y. Xiong, P. A. Yang, L. Fang and W. Li, *Adv. Opt. Mater.*, 2024, **12**, 2400116.
- 47. M. Amari, O. H. AL-Zoubi, P. Bansal, H. Kaur, A. A. Telba, E. M. Awwad, A. Kumar, M. S. Alhassan and M. K. Abosaoda, *Sens. Actuators A: Phys.*, 2024, **373**, 115360.
- 48. J. M. T. Vasquez, A. Ashai, Y. Lu, V. Khandelwal, M. Rajbhar, M. Kumar, X. Li and B. Sarkar, *J. Phys. D: Appl. Phys.*, 2023, **56**, 065104.
- 49. B. Sun, W. Sun, S. Li, G. Ma, W. Jiang, Z. Yan, X. Wang, Y. An, P. Li and Z. Liu, *Opt. Commun.*, 2022, **504**, 127483.
- 50. X. Cai, F. P. Sabino, A. Janotti and S.-H. Wei, *Phys. Rev. B*, 2021, **103**, 115205.
- 51. F. Matar, Y.-L. Shi, F. C.-C. Ling, A. Salih, C. P. Irvine, S. De Silva, M. R. Phillips and C. Ton-That, *J. Alloys Compd.*, 2023, **960**, 170983.
- 52. Q. Li, J. Zhao, Y. Li, X. Guan, Z. Jia, N. Lin and X. Zhao, *J. Phys. Chem. C*, 2024, **128**, 11817-11826.
- 53. C. Zhang, X. Fu and H. Wang, *Mater. Today Commun.*, 2025, **42**, 111524.

View Article Online DOI: 10.1039/D5TC02386F

Data availability

The experimental and theoretical data that support the findings of this investigation are available from the corresponding author upon request.