Surface-coordinated metal–organic framework thin films (SURMOFs) for electrocatalytic applications

Yi-Hong Xiao ab, Zhi-Gang Gu *ab and Jian Zhang *ab
aState Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China. E-mail: zggu@fjirsm.ac.cn; zhj@fjirsm.ac.cn
bUniversity of Chinese Academy of Sciences, Beijing, 100049, P.R. China

Received 21st April 2020 , Accepted 21st May 2020

First published on 22nd May 2020


Abstract

The design and development of highly efficient electrocatalysts are very important in energy storage and conversion. As a kind of inorganic organic hybrid material, metal–organic frameworks (MOFs) have been used as electrocatalysts in electrocatalytic reactions due to their structural diversities and fascinating functionalities. Particularly, MOF thin films are coordinated on substrate surfaces by a liquid phase epitaxial (LPE) layer by layer (LBL) growth method (called surface-coordinated MOF thin films, SURMOFs), and recently have been studied in various applications due to their precisely controlled thickness, preferred growth orientation and homogeneous surface. In this review, we will summarize the preparation and electrocatalysis of SURMOFs and their derived thin films (SURMOF-D). The SURMOF based thin films possess diverse topological structures and flexible properties, providing abundant catalytically active sites and fast charge transfer for efficient electrocatalytic performance in the oxygen evolution reaction (OER), oxygen reduction reaction (ORR), hydrogen evolution reaction (HER), carbon dioxide reduction reaction (CRR), supercapacitors, tandem electrocatalysis and so on. The research challenges and problems of SURMOFs for electrocatalytic applications are also discussed at the end of the review.


image file: d0nr03115a-p1.tif

Yi-Hong Xiao

Yi-Hong Xiao received his B.S. degree in 2017 from Fujian Normal University. He currently is a Ph.D. student under the supervision of Prof. Zhi-Gang Gu and Prof. Jian Zhang at the Fujian Institute of Research on the Structure of Matter. His current research interests focus on the preparation and photo/electric properties of composite MOF films.

image file: d0nr03115a-p2.tif

Zhi-Gang Gu

Zhi-Gang Gu obtained his PhD degree from the Karlsruhe Institute of Technology (KIT) in 2014 under the supervision of Prof. Christof Wöll, and then he worked as a postdoctoral fellow at the KIT. In 2015, he was an associate professor at the Fujian Institute of Research on the Structure of Matter (FJIRSM), Chinese Academy of Sciences (CAS) and was promoted to professor in 2018. He has been selected the ‘Hundred-Talent’ at the FJIRSM and a member of the Youth Innovation Promotion Association CAS as well as high-level talent of Fujian province. His current research interests focus on the development of functional thin films (e.g. SURMOF) for guest molecule (chiral) adsorption/separation and optical applications.

image file: d0nr03115a-p3.tif

Jian Zhang

Jian Zhang graduated from Xiamen University in 2001 and obtained his PhD in 2006 from the Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (FJIRSM-CAS). After three years’ postdoctoral work with Prof. Xianhui Bu at California State University, Long Beach, he came back to FJIRSM-CAS and served as a full research professor in September 2009. His current research interest is in the synthesis and application of metal–organic clusters and frameworks.


1 Introduction

With human increased demand for energy resources in modern society, the development of energy storage and conversion has attracted much attention on searching for new electrocatalysts.1–5 Electrocatalysts have been utilized in various practical energy applications, including fuel cells,6–8 batteries,9–13 supercapacitors,14–18 electrolysis19–22 and electrochemical sensors and devices.23–27 The electrocatalytic reactions involve the hydrogen evolution reaction (HER), oxygen evolution reaction (OER), oxygen reduction reaction (ORR), carbon dioxide reduction reaction (CRR), nitrogen reduction reaction (NRR) and so on.28–43 Up to now, various electrocatalysts have been developed, including noble-metal based catalysts (e.g. Pt, RuO2, IrO2, etc.),44–47 transition metal based catalysts (e.g. metal oxides, metal sulfides, metal phosphides, etc.),48–57 nitrides,58–61 carbon materials,62–68 hybrid materials69–76 and so on.77,78 However, the high cost of noble metal catalysts and low storage capacity of non-noble metal catalysts lead to the fact that they are difficult to be applied on a large scale.79–82 Therefore, the design and development of highly efficient electrocatalysts to accelerate the electrocatalytic reaction are very important but challenging.

Metal–organic frameworks (MOFs),83–87 also known as porous coordination polymers (PCPs),88–90 are constructed by the coordination of metal nodes with organic ligands.91,92 As MOFs possess tunable components, diverse topological structures, high porosity and functional diversities, they have been extensively explored in adsorption and separation,93–95 catalysis,96–101 optics,102–104 magnetics,105–107 electronics,108,109 sensors110,111 and biomedical engineering.112,113 Particularly, MOFs have abundant metal nodes, high porosity and large surface areas, and are very suitable for eletrocatalysis.114–131 So far, scientists have focused on different functional MOFs in water splitting,132–137 fuel cells,138–140 various batteries,141–144 supercapacitors145–147 and CO2 reduction.148–150 Considering the low conductivity and poor chemical stability in many MOFs, scientists utilize MOFs as precursors to obtain MOF derived materials, including carbon materials,151–159 single-atom materials,160–163 metal (oxide) compounds164–166 and so on. These derived catalytic materials will effectively improve the electrocatalytic performance compared to the pristine MOFs.167–173 In addition, MOF composite materials combining host MOFs with other functional guests will also overcome the electrochemical drawback of pristine MOFs.174–182 However, usually these MOF-based electrocatalysts in the form of bulk and powder will severely limit the practical applications to some extent.

For practical electrocatalytic applications, thin film electrocatalysts of MOFs are crucial to achieve effective reactions due to their fast charge transfer and sufficient catalytic sites.183–191 The different types of substrates (e.g. conductors, semiconductors, polymer materials, etc.) can be selected to grow MOF thin films. There are different growth methods, such as spin coating,192,193 electrochemical deposition,194,195 liquid phase epitaxy,196–198in situ deposition,199,200 vapor-assisted conversion (VAC),201 hot-pressing (HoP) method202 and so on. Since powder catalysts require the addition of polymeric binders (e.g. Nafion solution, etc.) during the measurement,203 MOF thin films directly assembled on the substrate surface will effectively enhance the electrocatalytic performance. Besides, in order to improve the electrocatalytic activities, MOF thin films can be combined with other functional materials.204–207 In addition, MOF thin films with different morphologies grown on conductive substrates can affect the charge transport and utilization of the active sites.96,208–210 Furthermore, the hierarchical structures of MOF thin films are also good candidates to promote the electrocatalytic performance.211–213 Notably, among the preparation methods for MOF thin films, the liquid phase epitaxial (LPE) layer by layer (LBL) growth method is used to sequentially immerse the functionalized substrate in metal salt and organic ligand solutions step by step.214–216 Then the MOF thin films are tightly assembled on the substrate surface by coordination bonding after repeating the process cycles, which are called surface-coordinated MOF thin films (SURMOFs).217–219

In order to grow SURMOFs, the growth surface is important and first should be modified by organic functional groups. Several methods for the surface modification of various substrates (metal, glass, polymer, etc.) can be adopted in the preparation. Usually the self-assembled monolayers (SAMs) are used as flexible organic modifiers, which spontaneously adsorb on substrate surfaces to form an ordered monomolecular layer. Typically, SAMs contain a head group, tail and functional end groups. Head groups can be thiols, silanes, phosphonates, etc. Tail groups are usually alkyl chains. Functional end groups can be carboxyl, hydroxy, pyridyl and amino groups, etc., which not only provide ideal coordination sites for MOF thin film growth at the surfaces but also act as tailoring templates for controlling the growth orientation of MOF thin films.

The LPE LBL method is based on the sequential immersion of functionalized substrates in the metal salt and organic ligand solutions step by step. The sample is rinsed to remove the uncoordinated precursors between each step. Such an approach can precisely control the thickness by repeating growth cycles, and promote highly-oriented films by functional group surfaces. Furthermore, the homogeneous surface of MOF thin films can be obtained by washing in each step. Therefore, recently, SURMOFs with such advantages have particularly attracted great interest in electrocatalysis.

In this review, we will summarize the related electrocatalytic studies on SURMOF and SURMOF-derived thin films (SURMOF-D). Benefiting from the fabrication of the LPE LBL growth strategy, SURMOF based thin films show some advantages with a homogeneous surface, highly oriented growth and controlled thickness, which will expand their diverse functionalities, especially their electrocatalytic applications (Fig. 1). On the one hand, since the SURMOFs were reported in 2007, their electrochemical behavior, CRR and OER as well as tandem electrocatalysis were studied. On the other hand, since the first SURMOF-D sample was obtained by the calcination of typical SURMOF HKUST-1 in 2017, very recently, SURMOF-D has been applied to electrocatalytic applications in the OER, ORR, HER and supercapacitors due to its high stability and good performance. The clear historical progress of SURMOF and SURMOF-D in electrocatalysis is shown in Fig. 2.220–229 Furthermore, the challenges and problems on the electrocatalytic applications of SURMOF based thin films are also discussed in this review.


image file: d0nr03115a-f1.tif
Fig. 1 Schematic illustration presenting SURMOFs and SURMOF-D for electrocatalysis.

image file: d0nr03115a-f2.tif
Fig. 2 The historical progress of SURMOFs and SURMOF-D in electrocatalysis.

2 Preparation and electrocatalysis of SURMOFs

2.1 Preparation of SURMOFs

There are several LPE LBL growth strategies that have been reported for SURMOF preparation, such as LBL spray, LBL immersion, LBL pump and LBL spin-coating approaches.230–234 The synthesis steps of these thin films are summarized in the following two parts. Firstly, the substrates are modified with functionalized groups. By immersing the substrate in SAM precursor solutions, the first layer of metal ions is coordinated on the substrate surface. For example, the Au substrate is immersed in 16-mercaptohexadecanoic acid ethanol solution to functionalize the carboxyl group and235 Si and different glass substrates are treated with piranha solution to provide a hydroxyl group,236etc. Secondarily, the functionalized substrates are alternately immersed in metal salt and organic ligand solutions using the LBL approach. At each interval of alternate immersion steps, the samples are washed with a solvent to remove unreacted or excess precursors for obtaining continuous surface and highly orientated films. As illustrated in Fig. 3, there is a LPE LBL growth process of SURMOFs on SAM functionalized substrates.
image file: d0nr03115a-f3.tif
Fig. 3 Schematic illustration for the SURMOF growth process on SAM functionalized substrates.

Such thin films prepared with the LPE LBL growth method have unique advantages. For example, the thickness of SURMOFs can be tuned by controlling the number of growth cycles, and the preferred growth orientations can be controlled by the functionalized groups of substrate surfaces.237–240 Moreover, the homogeneous and compact thin films with a low defect interface can be obtained by such an accurate layer by layer process and rinsing with a solvent to remove excessive precursors. Thus the advantages of SURMOFs have attracted researchers to study the applications on optical/electric sensors and devices,241–243 molecule adsorption/separation244,245 and thin film electrocatalysis.222–224

In addition, thanks to the abundant and ordered nanopores in the structures, SURMOFs offer an ideal template to encapsulate guest nanospecies into pores for extending their functionalities and applications.246 More recently, SURMOFs have served as host frameworks to precisely encapsulate diverse functional nanospecies (such as metallic nanoparticles, carbon derivatives, quantum dots, organic polymer materials, etc.) to form the composite thin films.247–249 Different encapsulation strategies have been reported, including (a) the direct encapsulation strategy:250 there is one-step impregnation of guests into as-prepared SURMOFs; (b) the stepwise encapsulation strategy:247 there is a multistep impregnation of guest precursors into the pores of SURMOFs and then they react to form guest nanoparticles (NPs), which is a novel means of confining the uniform and ultra-small NPs in the MOF pores; (c) the epitaxial encapsulation strategy:251 the functionalized substrates are alternately immersed in metal ion, organic ligand and guest species dispersed solutions with a layer by layer approach to in situ form guest encapsulated SURMOFs; (d) the post-treated encapsulation strategy:252 the guest precursor is first loaded into the pore of the as-prepared SURMOF and then post-treated with heat, light and electricity to form guest encapsulated SURMOFs. Combining the characteristics and functionalities of the host–guest, the encapsulated SURMOFs provide advanced composite thin films for improving their practical utilizations.253

Besides, the LPE LBL growth of MOFs on MOF thin films (called hetero-SURMOFs)254–256 provides an available strategy for the preparation of multifunctional MOF thin films. The multilayers of thin films can be large lattice mismatched MOFs with different metal ions, organic ligands and guests. The multifunctional hetero-SURMOFs combining different MOF properties will also offer potential for various applications.

2.2 Electrocatalytic applications of SURMOFs

SURMOFs have advantages including controllable growth thickness, high orientation, large exposed active sites and homogeneous morphologies, which provide good candidates or templates for electrocatalysis in practical application.209,214,231

The electrochemical behaviors of SURMOF have been investigated from 2012. Schlettwein and Wöll et al. reported that the charge transport was enabled by loading ferrocene (Fc) as an immobilised redox mediator into insulating SURMOF HKUST-1 on a thiol monolayer modified Au surface.221 Furthermore, the relationship between the structures (orientation and morphology) of SURMOFs and their electrochemical behavior has also been understood.257–259

2.2.1 Electrocatalytic OER of SURMOFs. Electrocatalytic water splitting including the OER and HER is a reliable strategy in energy and environmental applications.260,261 The OER is a half-reaction of water splitting and requires four electron transfer, and is a rate-determining step of water splitting for renewable energy.262 Particularly, the aforementioned advantages of SURMOFs have attracted research interest on OER electrocatalysis.

In 2019, we first developed an oriented thin film of 3-D MOF Co/Ni(BDC)2TED (BDC, 1,4-benzenedicarboxylate; TED, triethylenediamine) nanosheet arrays on Cu foam (CF) by the LPE LBL growth approach.222 The obtained thin film of bimetallic MOF nanosheet arrays has preferred growth with [001]-orientation and strong adhesion on the substrate without the use of binder materials. It provides high accessible active sites for electrocatalytic performance and durable stability. As shown in Fig. 4a, the functionalized CF substrate was alternately immersed in a metal ion (Co2+, Ni2+ or Co2+/Ni2+) ethanol solution and mixed organic ligand (BDC/TED) ethanol solution by an automatic pump LBL growth method to form a homogeneous SURMOF M2(BDC)2TED. The SEM morphologies displayed the homogeneous ultrathin nanosheet arrays with a certain growth direction. The thin films of M2(BDC)2TED@CF (M = Co, Ni and Co/Ni) with 40 cycles were obtained to investigate the performance of the OER in 1 M KOH aqueous solution. The linear sweep voltammetry (LSV) curves (Fig. 4b) of Co2(BDC)2TED, Ni2(BDC)2TED, Co/Ni(BDC)2TED and IrO2 on CF showed that Co/Ni(BDC)2TED demonstrated the best OER catalytic activity compared to others, and the overpotentials were 260 and 287 mV at the current density of 10 and 50 mA cm−2 respectively, which were much better than those of commercial IrO2 deposited on CF. Besides, the Co/Ni ratio of 1/1 displayed a superior catalytic activity. The curves (Fig. 4c) showed that Co/Ni(BDC)2TED@CF with 40 cycles exhibited the lowest overpotential (287 mV) at the current density of 50 mA cm−2. The density functional theory (DFT) calculation also verified that Co/Ni(BDC)2TED thin films with bimetallic oriented nanosheet arrays had highly efficient OER performance.


image file: d0nr03115a-f4.tif
Fig. 4 (a) The preparation of the 3-D thin film of M2(BDC)2TED nanosheet arrays grown on CF; (b) the LSV curves of Co2(BDC)2TED, Ni2(BDC)2TED, Co/Ni(BDC)2TED and IrO2 on CF; (c) the LSV curves for Co/Ni(BDC)2TED@CF with different LPE cycles. Reproduced with permission from ref. 222. Copyright 2019 Royal Society of Chemistry.
2.2.2 Electrocatalytic CO2 reduction reaction of SURMOFs. The emission of large amounts of CO2 causes the greenhouse effect in the rapid development of high-energy industries. Electrocatalytic CO2 reduction is a promising strategy for converting CO2 into available products. MOF thin films as electrocatalyst materials have rich metal centers, mixed metal states and unique uniform nanostructures, providing the opportunity for the CO2 reduction reaction.263–265 The SURMOF as a kind of advanced MOF thin film can provide good candidates for CO2 reduction.

In 2016, Liu and coworkers found that a SURMOF thin film achieved a high Faraday efficiency of CO2 to CO conversion.223 As shown in Fig. 5a and b, the metal salt (zinc acetate) and organic ligand (ReL(CO)3Cl, L = 2,2′-bipyridine-5,5′-dicarboxylic acid) ethanol solutions were alternately sprayed onto the hydroxyl functionalized FTO substrate by using the LBL process, and the Re-SURMOF with high orientation and growth along the [001] direction was obtained after repeating the growth cycles. The homogeneous Re-SURMOF with a sheet-like hierarchical structure was beneficial for the adsorption of CO2 and provided a large electrocatalytically active surface area. The cyclic voltammograms (CV) (Fig. 5c) of Re-SURMOFs displayed a higher current density in a CO2-saturated electrolyte than that in a N2-saturated electrolyte when the reduction potential reached over −1.3 V vs. NHE, revealing the existence of CO2 reduction. By collecting the gas products of Re-based linkers and Re-SURMOFs, Re-SURMOFs showed a higher Faraday efficiency (Fig. 5d) with a value of 93 ± 5% of CO production at −1.6 V vs. NHE. The turnover number (TON) was 580 after 2 hours of electrolysis and no other liquid products were produced. Notably, the DFT proved that the high electrocatalytic CO2 reduction performance was attributed to the effective charge transport along the [001] direction in the oriented Re-SURMOF (Fig. 5e).


image file: d0nr03115a-f5.tif
Fig. 5 (a) The fabrication process of Re-SURMOFs on the functionalized FTO substrate in a LBL spray fashion; (b) the XRD data of Re-SURMOF; the CV (c) and faradaic efficiency (d) of Re-SURMOFs; (e) schematic representation of the preferred charge transfer pathway in epitaxial Re-SURMOFs fabricated on a FTO substrate along the [001] direction. Reproduced with permission from ref. 223. Copyright 2016 Royal Society of Chemistry.
2.2.3 Tandem electrocatalysis of SURMOFs. Additionally, the tandem electrocatalysis can promote different catalytic reactions at the same time. It has been realized that it can serve as a highly efficient approach to improve the conversion rate of the catalyzed reactants.266–268 In 2018, Eddaoudi and Sargent et al. reported a tandem electrocatalysis of MOF thin films grown on gold nanostructured microelectrodes (AuNMEs) with high-curvature nanostructures by the LBL growth approach.224 Although AuNMEs had been studied in the electrocatalytic CRR for fuel production and had a high Faraday efficiency of CO production, combining MOF with AuNMEs to reduce CO2 to enhance the valuable products was promising in practical application. ZIF-8 and Cu(bdc)·xH2O were prepared by using the LPE LBL growth strategy, and the RE-ndc-fcu-MOF and Al2(OH)2TCPP were prepared via the solvothermal method (Fig. 6a). The Faraday efficiencies (Fig. 6b) of the sample indicated that MOF@AuNME thin films had electrocatalytic CO2 reduction different from that of AuNME. It was found that the MOF thin films significantly suppressed the production of CO from AuNME and further produced CH4 and C2H4. This work proved that the MOF thin films grown on nanostructured metal catalysts could be used as effective tandem catalysts in electrocatalysis.
image file: d0nr03115a-f6.tif
Fig. 6 (a) Schematic illustration of MOF thin film growth on AuNMEs by either the layer-by-layer method or the solvothermal method; (b) the Faraday efficiencies of MOF@AuNMEs and AuNME control.224 Reproduced with permission from ref. 224. Copyright 2018 American Chemical Society.

Most of the bulk and powder MOFs are rarely used directly in electrocatalytic devices because of their inferior performance (e.g. poor stability on electrodes and low charge transfer rate). The LPE LBL growth strategy provides an opportunity to expand the diversities and functionalities of MOFs, which results in SURMOF improving the electrocatalytic performance to a certain extent.

3 Preparation and electrocatalysis of SURMOF derived thin films

3.1 Preparation of SURMOF derived thin films

In order to expand functionalities and applications for SURMOFs, recently, scientists have been devoted to studying SURMOF derived thin film (SURMOF-D) materials. Similar to the treatment of powder MOFs for electrocatalysis, such derivatives cover a wide range of species including carbon-based materials, hydroxides, oxides, sulfides and other functional materials.227,269–272

Particularly, MOF derived carbon-based materials show huge potential for the development of energy and environment applications due to their high chemical stability, high effective activity and good compatibility.275–277 Here, the strategy for the preparation of SURMOF-D materials is to use the as-prepared SURMOF or SURMOF composite materials as the precursors for annealing under a gas or vapor atmosphere (N2, Ar, S, P, NH3, air, etc.).173,232,270,278 The stable and conductive substrates are firstly used as the growth surface for SURMOF preparation. For example, the conductive glass (e.g. FTO, ITO, etc.) is treated with plasma treatment to functionalize the OH-terminated surface for MOF thin film growth. Later, the functionalized substrate is alternately immersed or sprayed with metal ion and organic ligand solutions by using the LPE LBL approach. Between each alternate step, the sample is washed with a solvent to remove unreacted or excess precursors for obtaining high-quality SURMOFs. After calcination in different atmospheres, the SURMOF can be transferred to various composite nanomaterials. The existing composites of derivatives usually are metal-containing nanoparticles, carbon and heteroatom based materials, which depend on the components of MOFs, guest species and treatment conditions. The SURMOF can be calcined at a certain temperature to enhance the conductivity and expose more active sites, and thus will be beneficial for applications in energy catalysis. Therefore, the derivations of SURMOFs to carbon-based thin films with a facile route and effective achievement have become a universal means for enhancing their functionalities.252

For example, in 2017, we reported homogeneous metal (or metal oxide) doped carbon thin films by carbonizing SURMOFs and metal oxo-cluster loaded SURMOFs (Fig. 7a).273 The HKUST-1 thin film was prepared on an OH-functionalized Si wafer substrate using the LPE LBL method, and guest (TinOC) loaded HKUST-1 (TinOC@ HKUST-1) was obtained by the epitaxial encapsulation strategy. Then on calcination under an N2 atmosphere at 800 °C for 5 hours, Cu@C and TiO2/Cu@C thin films were obtained, which showed effective degradation of methylene blue and reduction of nitrobenzene. Similarly, in 2018, we developed unique hollow carbon nanospheres with metals or metal oxides carbonized from core–shell structural SiO2@SURMOF templates for efficient photocatalytic H2 production (Fig. 7b).274 Firstly, the SURMOF HKUST-1 thin film was fabricated on the OH-terminated SiO2 NP surface (SiO2@HKUST-1) by the LPE LBL approach. After immersing SiO2@HKUST-1 in titanium(IV) isopropoxide (Ti(O-ipr)4) solution, Ti(O-ipr)4 loaded SiO2@HKUST-1 (named SiO2@HKUST-1-Ti) was prepared. Then SiO2@HKUST-1-Ti was carbonized continuously at 400 °C for 2 hours and 800 °C for 3 hours under a N2 atmosphere to form SiO2@Cu-TiO2/C. Finally, on etching the template SiO2 with 1 M KOH at 80 °C for 12 hours, hollow Cu-TiO2/C nanospheres were obtained.


image file: d0nr03115a-f7.tif
Fig. 7 Schematic illustration of the preparation examples of SURMOF-D: (a) metal-nanocatalyst incorporated carbon thin films by carbonizing SURMOFs;273 (b) hollow carbon nanospheres with Cu-TiO2 (Cu-TiO2/C) carbonized from core–shell structural SiO2@SURMOF nanospheres.274 Reproduced with permission from ref. 273 and 274. Copyright 2017 American Chemical Society and Copyright 2018 Royal Society of Chemistry.

Furthermore, the derivatives can also be obtained by reacting with other chemical substances, such as SURMOFs react with the secondary reactants to prepare related phosphides, sulfides, selenides and hydroxides under specific conditions.232,269 The derived thin films from SURMOFs will effectively overcome the disadvantages of SURMOFs and improve the performance during their catalytic reactions.

3.2 Electrocatalytic applications of SURMOF-D

The thin films derived from SURMOFs have been extensively explored in energy storage and conversion, particularly in electrocatalysis with diverse functionalities.
3.2.1 Electrocatalytic OER of SURMOF-D. Since the OER is a sluggish reaction which restricts the electrocatalytic efficiency in water splitting, the efficient electrocatalysts for the OER play a crucial role in the applications.279 Interestingly, SURMOF derived thin films are one of the most studied research objects on OER properties in terms of electrocatalysis. In 2017, we reported a CeO2 encapsulated cobalt-porphyrin network thin film derived from cerium(III) complex encapsulated SURMOFs for OER performance.225 As illustrated in Fig. 8a, Ce(pdc)3@PIZA-1 with preferred [110]-orientation as a precursor was prepared by the LPE LBL process of loading a Ce(III) complex into PIZA-1 grown on the OH-functionalized FTO substrate. After calcinating at 400 °C under a N2 atmosphere, the derivative CeO2@PIZA-1 thin film was obtained. The CeO2 encapsulated cobalt-based material showed a uniform surface, good electronic conductivity and high oxygen storage/release capacity, which provided the potential for enhancing the OER activity. The polarization curves (Fig. 8b and c) of PIZA-1 powder after calcination at different temperatures and PIZA-1-400 thin films with different cycles indicated that the calcination temperature and thicknesses can effectively optimize the OER performance. Therefore, the SURMOF Ce(pdc)3@PIZA-1 with 20 cycles obtained using the LBL encapsulation process and calcination at 400 °C exhibited efficient electrocatalytic OER performance with a very small overpotential of 370 mV at a geometric current density of 10 mA cm−2 (Fig. 8d).
image file: d0nr03115a-f8.tif
Fig. 8 (a) Schematic illustration of the preparation of CeO2@PIZA-1 thin films derived from the modified LPE fabrication process of the Ce(pdc)3 encapsulated PIZA-1 thin films on the OH-functionalized FTO glass substrate for OER performance; (b) the LSV polarization curves of PIZA-1 powder after calcination at different temperatures under a N2 atmosphere; (c) the polarization curves of PIZA-1-400/FTO with different cycles; (d) the polarization curves of bare FTO, PIZA-1-400 and CeO2@PIZA-1-400. Reproduced with permission from ref. 225. Copyright 2017 Royal Society of Chemistry.

In 2019, we developed a CoFe2O4 thin film with a well-aligned mesoporous structure derived from a highly oriented CoFe-PBA (PBA: Prussian blue analogues) thin film with the LPE LBL method.226 As shown in Fig. 9a, the SURMOF CoFe-PBA thin film was fabricated by immersing subsequently functionalized Ni foam with a rich 3-D macroporous structure in Co(OAc)2·4H2O and K3[Fe(CN)6] aqueous solutions, and then calcined at 350 °C for 2 hours under an air atmosphere. Compared with the aggregation and shedding of the powder catalysts, the obtained bimetallic oxide thin film prevented the catalytic active sites being covered by surfactants and adhesives. The SEM morphology (Fig. 9b) displayed the compact and homogeneous CoFe-PBA SURMOF with [100] orientation. After calcination, the CoFe-PBA thin film was oxidized into the CoFe2O4 thin film (Fig. 9c) with the same morphology. The LSV curves (Fig. 9d) of the CoFe2O4 thin film showed an overpotential of ∼266 mV at the geometric current density of 10 mA cm−2, implying the high electrocatalytic OER activity compared to that of RuO2, CoFe2O4 powder and CoFe-PBA thin films. DFT calculations proved that the Co atom was the main catalytically active center and the synergistic effect of bimetallic (Co/Ni) oxides in the electrocatalytic OER performance. In addition, the electrocatalyst had a long-time durability at high current density. The results showed that the oriented PBA SURMOFs grown on a Ni foam by LPE LBL method would serve as a good derivative electrocatalyst for OER performance.


image file: d0nr03115a-f9.tif
Fig. 9 (a) Schematic illustration of the formation of CoFe2O4 thin films on Ni foam; SEM images of (b) CoFe-PBA and (c) CoFe2O4 thin films; (d) LSV curves of (1) CoFe2O4 thin films, (2) RuO2, (3) CoFe2O4 powder, (4) CoFe-PBA thin films, and (5) Ni foam-350 with a scan rate of 2 mV s−1. Reproduced with permission from ref. 226. Copyright 2019 Elsevier.

The bifunctional ORR and OER play a significant role in the design of relevant applications such as full cells, metal–air batteries and electrolyzers.280–282 The pursuit of a small overpotential window (ΔEORR–OER) has always been the aim to improve the ORR/OER performance.

3.2.2 Electrocatalytic ORR of SURMOF-D. In 2020, Fischer, Bandarenka and Zhou et al. developed an advanced electrocatalyst with bifunctional ORR and OER derived from NiFe-BDC SURMOFs.227 As illustrated in Fig. 10a, the preferred [100]-orientation of NiFe-BDC SURMOFs was fabricated on the 16-mercaptohexadecanoic acid modified Au electrodes. As the lattice strain in catalysts could improve their catalytic activity, various functional groups such as Br, OCH3, and NH2 were introduced into BDC to form NiFe-BDC (X) SURMOFs (X = NH2, H, OCH3 and Br) using the strain modulation approach. By using the one-step treatment of NiFe-BDC (X) SURMOFs with KOH, the bimetallic NiFe-hybrid hydroxide thin films SURMOF-Ds (X) (denoted as 1-X) with the retained BDC were obtained. In an O2-saturated 0.1 M KOH aqueous solution, the SURMOF-D 1-NH2 showed the highest anodic current density of about 0.86 A cm−2 at the overpotential of 300 mV among the SURMOF-D (Fig. 10b). Such high OER performance of SURMOF-D 1-NH2 would be explored for the potential application of bifunctional ORR/OER electrocatalysts. Expectedly, the polarization curves (Fig. 10c) of SURMOF-D 1-NH2 indicated that so far the narrowest overpotential window ΔEORR–OER of 0.69 V, and outstanding performance with the mass loading of two orders of magnitude was lower than other typical benchmark electrocatalysts. Such bifunctional ORR/OER thin films were assumed to adjust the binding strength between the reaction intermediates and catalytically active sites.
image file: d0nr03115a-f10.tif
Fig. 10 (a) Preparation of NiFe-BDC (X) SURMOF (X = NH2, H, OCH3) and transformation of NiFe-BDC (X) SURMOF to NiFe-BDC (X) SURMOF-D (denoted as 1-X); (b) anodic polarization curves of SURMOF-D 1-X (supported on a Pt microelectrode, diameter = 25 μm), recorded in O2-saturated 0.1 M KOH at a scan rate of 5 mV s−1. Temperature: 25 °C. All polarization curves are shown without iR drop compensation; (c) the polarization curves of 1-NH2 (supported on an Au disc electrode) at various rotational speeds.227 Reproduced with permission from ref. 227. Copyright 2020 Wiley-VCH.
3.2.3 Trifunctional electrocatalysts of SURMOF-D. The research of trifunctional electrocatalysts to replace expensive precious metals has been widespread for the integration of energy conversion and storage.283,284 In 2017, Fu and Li et al. reported that 3-D hierarchical nanoarchitecture catalysts were derived from SURMOFs for excellent trifunctional electrocatalysis for the ORR, HER and OER.228 As illustrated in Fig. 11a, the ZIF-67 SURMOF thin films were prepared on the surface of 3-D macroporous structural melamine sponge (MS) with NaOH treated using the LPE method. By pyrolysis treatment at different temperatures, MSZIF-T (T = thermal treatment temperature) was obtained. The SEM and TEM images of MSZIF-900 (Fig. 11b and c) show that cobalt metals were well-aligned and distributed in the apex of ordered nitrogen-doped carbon nanotubes (NCNTs) derived from the SURMOF. The ORR polarization curve (Fig. 11d) of MSZIF-900 demonstrated a lower onset potential of 0.91 V vs. RHE, a lower half-wave potential of 0.84 V vs. RHE and a larger diffusion-limited current density of 5.0 mA cm−2 than other MSZIF-T materials. Besides, MSZIF-900 had also been confirmed to exhibit higher HER and OER performance compared to other three electrocatalysts (Fig. 11e and f). Furthermore, the sample exhibited a good long-term electrocatalytic stability and superior methanol tolerance. The unique nanomaterial architectures of electrocatalysts with abundant catalytically active sites and effective mass transport derived from SURMOFs exhibited excellent trifunctional electrocatalytic activity for the ORR, HER and OER.
image file: d0nr03115a-f11.tif
Fig. 11 (a) Illustration of the synthesis process for the MSZIF-T electrocatalysts; SEM (b) and TEM (c) images of MSZIF-900; (d) the ORR polarization curves for the various electrocatalysts at a rotation speed of 1600 rpm; the HER (e) and OER (f) of electrochemical performance of the MSZIF-900 catalyst. Reproduced with permission from ref. 228. Copyright 2017 Wiley-VCH.
3.2.4 Supercapacitor application of SURMOF-D. Supercapacitors are a new type of storage and conversion device between traditional capacitors and rechargeable batteries. Because of their high power density, long cycle life, fast charging/discharge rates and pollution-free nature, they have served as a promising candidate for the practical utilization.285 In 2018, we developed helical carbon tubes containing metal oxides and carbon materials derived from HKSUT-1 SURMOF coated on cotton textiles for enhancing the supercapacitor performance.229 As shown in Fig. 12a, the HKUST-1 SURMOF was prepared on a cotton textile material (from T-shirt, named TS) by the LPE LBL approach, and then calcined at 800 °C to obtain the sample HKUST-1@TS-800 with metal nanoparticle-incorporated hierarchical carbon materials. Because of the homogeneous and compact Cu-based hierarchical carbon material with a helical tube, HKUST-1@TS-800 had good conductivity and provided numerous active sites for redox reactions. The GCD (galvanostatic charge/discharge) curves (Fig. 12b) of HKUST-1@TS-800 demonstrated high areal capacitance with the discharge time of 1812 s at a current density of 1 mA cm−2, and a high capacitance of 510 mF cm−2 even at a high current density of 20 mA cm−2 due to the large surface area and small resistance channels of the helical and tubular structures. Besides, the cycling stability curve (Fig. 12c) of HKUST-1@TS-800 revealed a higher recyclability of ∼90% of the initial value after 2000 cycles compared to that of 44% of HKUST-1@CC-800 (reference sample). The material with the advantage of MOFs and cotton textiles offered an available strategy for enhancing the capacitance performance of supercapacitors.
image file: d0nr03115a-f12.tif
Fig. 12 (a) The preparation process of hierarchical carbon cloth derived from Cu-MOF HKUST-1 epitaxial coating on textiles; (b) GCD curves of HKUST-1@TS-800; (c) the cycling stability curves of HKUST-1@CC-800 and HKUST-1@TS-800 at 5 mA cm−2 current density after 2000 cycles (inset: the glow of a LED powered by our assembled two-electrode supercapacitor). Reproduced with permission from ref. 229. Copyright 2018 Royal Society of Chemistry.

SURMOF-Ds with unique nanostructures and diverse components provide abundant catalytically active sites with a large surface area and accelerated charge transfer. Such thin films have exhibited excellent electrocatalytic performance and become promising electrocatalysts for energy conversion and storage.

4 Summary and perspectives

This review offers a comprehensive overview of the preparation and electrocatalysis of SURMOFs and their derived thin films. The LPE LBL strategy growth of MOF thin films has advantages including controllable thickness, high growth orientation and homogeneous compact surface, which provides a promising platform or serves as a precursor for extending their functionalities. One the one hand, SURMOFs can be well coordinated on the substrate surface without using adhesives, and accelerate the charge transfer during the electrocatalysis. On the other hand, the development of the thin films derived from SURMOFs is an available strategy for expanding their functionalities and applications, such as carbonization and reaction with secondary reactants.

The summarized advantages and disadvantages of SURMOF and SURMOF-D for electrocatalysis are shown in Table 1. Although SURMOF based thin films have demonstrated some advantages, they still have lots of challenges to improve their performance and some problems to be solved in practical utilization on a large scale. For example, (a) there are extremely few types of SURMOFs used for electrocatalysis. Most of the reported SURMOFs are Cu and Zn based SURMOFs, which are limited in the application of electrocatalysis. Therefore, the development of SURMOFs containing other Co, Fe, Ni, etc. metal based SURMOFs is important in the further research. Some strategies can be tried to obtain new SURMOFs by exchanging metal ions and organic ligands and tuning the synthesis conditions. (b) Since the morphology and defect interface affect the performance and stability during the electrocatalytic reactions, the quality of SURMOFs with fewer defects can be improved for enhancing the stability and accelerating the charge transfer in the electrocatalysis. The fresh immersion solutions are changed frequently and the samples are treated with appropriate ultrasonication in each immersion, which will enhance their performance and stability. (c) High electrocatalytic performance of SURMOF materials can be designed and prepared, which meets the industrial and commercial utilizations. (d) The relationships between the structure of thin films and electrocatalytic behavior can be further understood, for example, by studying the influence of growth orientation, thickness, and morphology of SURMOFs on their performance. Moreover, new electrocatalytic and photo-electrocatalysis systems can be developed for SURMOFs, such as nitrogen fixation, CO2 fixation, O2 reduction, alcohol oxidation and so on. The abovementioned challenges and problems must be overcome before SURMOFs can be directly applied. We believe that SURMOFs will be further extended in practical energy applications with efforts to address the challenges and problems.

Table 1 The advantages and disadvantages of SURMOF and SURMOF-D for electrocatalysis
  Advantages Disadvantages
SURMOF • High porosity • Low conductivity
• High growth orientation • Poor stability
• Precisely controllable thickness • Few types of elctrocatalysis
• Homogeneous morphology
• Large surface area
• Without using a binder
• Abundant catalytically active sites
• Expand the diversities and functionalities of MOFs
 
SURMOF-D • High porosity • Indistinct structure
• Precisely controllable thickness • Too many defects
• Homogeneous morphology • Difficulty in characterization
• Large surface area
• Without using a binder
• Unique nanostructure
• Abundant catalytically active sites
• Good conductivity
• Durable stability
• Expand the functionalities and applications of SURMOFs


Conflicts of interest

There are no conflicts to declare.

Acknowledgements

This work was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB20000000), the National Key Research and Development Program of China (2018YFA0208600), the NSFC (21872148 and 21601189) and the Youth Innovation Promotion Association of Chinese Academy of Sciences (2018339).

References

  1. C. Zhu, H. Li, S. Fu, D. Du and Y. Lin, Chem. Soc. Rev., 2016, 45, 517–531 RSC .
  2. W. Zhu, Z. Chen, Y. Pan, R. Dai, Y. Wu, Z. Zhuang, D. Wang, Q. Peng, C. Chen and Y. Li, Adv. Mater., 2019, 31, 1800426 CrossRef PubMed .
  3. S.-i. Yamazaki, Coord. Chem. Rev., 2018, 373, 148–166 CrossRef CAS .
  4. L.-H. Zhang, Y. Shi, Y. Wang and N. R. Shiju, Adv. Sci., 2020, 7, 1902126 CrossRef CAS PubMed .
  5. L. Zhang, Y. Wang, Z. Niu and J. Chen, Small Methods, 2019, 3, 1800443 CrossRef .
  6. M. Kiani, J. Zhang, Y. Luo, C. Jiang, J. Fan, G. Wang, J. Chen and R. Wang, J. Energy Chem., 2018, 27, 1124–1139 CrossRef .
  7. N. Zion, A. Friedman, N. Levy and L. Elbaz, Adv. Mater., 2018, 30, 1800406 CrossRef PubMed .
  8. S. Zhao, L. Yan, H. Luo, W. Mustain and H. Xu, Nano Energy, 2018, 47, 172–198 CrossRef CAS .
  9. X. Xu, K. S. Hui, D. A. Dinh, K. N. Hui and H. Wang, Mater. Horiz., 2019, 6, 1306–1335 RSC .
  10. H. Tang, M. Zheng, Q. Hu, Y. Chi, B. Xu, S. Zhang, H. Xue and H. Pang, J. Mater. Chem. A, 2018, 6, 13999–14024 RSC .
  11. J. Pan, Y. Y. Xu, H. Yang, Z. Dong, H. Liu and B. Y. Xia, Adv. Sci., 2018, 5, 1700691 CrossRef PubMed .
  12. E. Davari and D. G. Ivey, Sustainable Energy Fuels, 2018, 2, 39–67 RSC .
  13. X. Cai, L. Lai, J. Lin and Z. Shen, Mater. Horiz., 2017, 4, 945–976 RSC .
  14. X. Lang, A. Hirata, T. Fujita and M. Chen, Nat. Nanotechnol., 2011, 6, 232–236 CrossRef CAS PubMed .
  15. Y. Zhu, S. Murali, M. D. Stoller, K. J. Ganesh, W. Cai, P. J. Ferreira, A. Pirkle, R. M. Wallace, K. A. Cychosz, M. Thommes, D. Su, E. A. Stach and R. S. Ruoff, Science, 2011, 332, 1537 CrossRef CAS PubMed .
  16. A. G. Pandolfo and A. F. Hollenkamp, J. Power Sources, 2006, 157, 11–27 CrossRef CAS .
  17. G. Cheng, T. Kou, J. Zhang, C. Si, H. Gao and Z. Zhang, Nano Energy, 2017, 38, 155–166 CrossRef CAS .
  18. Y. Jiao, W. Hong, P. Li, L. Wang and G. Chen, Appl. Catal., B, 2019, 244, 732–739 CrossRef CAS .
  19. Y. Zhao, B. Jin, A. Vasileff, B. Shi, Y. Jiao and S.-Z. Qiao, Chem. – Eur. J., 2020, 26, 3898–3905 CAS .
  20. C. Tang, R. Zhang, W. Lu, Z. Wang, D. Liu, S. Hao, G. Du, A. M. Asiri and X. Sun, Angew. Chem., Int. Ed., 2017, 56, 842–846 CrossRef CAS PubMed .
  21. M.-S. Balogun, W. Qiu, Y. Huang, H. Yang, R. Xu, W. Zhao, G.-R. Li, H. Ji and Y. Tong, Adv. Mater., 2017, 29, 1702095 CrossRef PubMed .
  22. C. D. Giovanni, Á. Reyes-Carmona, A. Coursier, S. Nowak, J. M. Grenèche, H. Lecoq, L. Mouton, J. Rozière, D. Jones, J. Peron, M. Giraud and C. Tard, ACS Catal., 2016, 6, 2626–2631 CrossRef CAS .
  23. M.-S. Wu and J.-C. Lin, Appl. Surf. Sci., 2019, 471, 455–461 CrossRef CAS .
  24. R. K. Pal, A. A. Farghaly, C. Wang, M. M. Collinson, S. C. Kundu and V. K. Yadavalli, Biosens. Bioelectron., 2016, 81, 294–302 CrossRef CAS PubMed .
  25. M. H. Naveen, N. G. Gurudatt and Y.-B. Shim, Appl. Mater. Today, 2017, 9, 419–433 CrossRef .
  26. A. J. Bandodkar, C. S. López, A. M. Vinu Mohan, L. Yin, R. Kumar and J. Wang, Sci. Adv., 2016, 2, e1601465 CrossRef PubMed .
  27. M. Bariya, Z. Shahpar, H. Park, J. Sun, Y. Jung, W. Gao, H. Y. Y. Nyein, T. S. Liaw, L.-C. Tai, Q. P. Ngo, M. Chao, Y. Zhao, M. Hettick, G. Cho and A. Javey, ACS Nano, 2018, 12, 6978–6987 CrossRef CAS PubMed .
  28. K. Jiang, S. Siahrostami, T. Zheng, Y. Hu, S. Hwang, E. Stavitski, Y. Peng, J. Dynes, M. Gangisetty, D. Su, K. Attenkofer and H. Wang, Energy Environ. Sci., 2018, 11, 893–903 RSC .
  29. Z.-Q. Jiang, Y.-F. Li, X.-J. Zhu, J. Lu, L. Zhang and T. Wen, RSC Adv., 2018, 8, 38562–38565 RSC .
  30. A. Kumar and S. Bhattacharyya, ACS Appl. Mater. Interfaces, 2017, 9, 41906–41915 CrossRef CAS PubMed .
  31. Y. Li, S. Chen, D. Xi, Y. Bo, R. Long, C. Wang, L. Song and Y. Xiong, Small, 2018, 14, 1702109 CrossRef PubMed .
  32. S. Liu, Y. Liu, X. Gao, Y. Tan, Z. Shen and M. Fan, Appl. Surf. Sci., 2020, 500, 144032 CrossRef CAS .
  33. X. Lu, X. Tan, D.-W. Wang, Y. H. Ng, H. A. Tahini, H. Tan, W. Yan, S. C. Smith and R. Amal, Adv. Sustainable Syst., 2017, 1, 1700032 CrossRef .
  34. D. K. Yadav, V. Ganesan, P. K. Sonkar and R. Gupta, ChemElectroChem, 2017, 4, 3134–3139 CrossRef CAS .
  35. M. Yao, H. Hu, B. Sun, N. Wang, W. Hu and S. Komarneni, Small, 2019, 15, 1905201 CrossRef CAS PubMed .
  36. K. Zhang, W. Guo, Z. Liang and R. Zou, Sci. China: Chem., 2019, 62, 417–429 CrossRef CAS .
  37. B. Zhang and J. Zhang, J. Energy Chem., 2017, 26, 1050–1066 CrossRef .
  38. J. Wu, T. Sharifi, Y. Gao, T. Zhang and P. M. Ajayan, Adv. Mater., 2019, 31, 1804257 CrossRef PubMed .
  39. Z. Sun, T. Ma, H. Tao, Q. Fan and B. Han, Chem, 2017, 3, 560–587 CAS .
  40. T. Sharifi, E. Gracia-Espino, A. Chen, G. Hu and T. Wagberg, Adv. Energy Mater., 2019, 10, 1902084 CrossRef .
  41. C. Li, X. Tong, P. Yu, W. Du, J. Wu, H. Rao and Z. M. Wang, J. Mater. Chem. A, 2019, 7, 16622–16642 RSC .
  42. X.-F. Bai, W. Chen, B.-Y. Wang, G.-H. Feng, W. Wei, Z. Jiao and Y.-H. Sun, Acta Phys.–Chim. Sin., 2017, 33, 2388–2403 CAS .
  43. J. Hou, M. Yang and J. Zhang, Nanoscale, 2020, 12, 6900–6920 RSC .
  44. T. T. Duy, J. Balamurugan, T. N. Thanh, H. Jeong, S. H. Lee, N. H. Kim and J. H. Lee, Biosens. Bioelectron., 2017, 89, 750–757 CrossRef PubMed .
  45. J. Tang, D. Chen, Q. Yao, J. Xie and J. Yang, Mater. Today Energy, 2017, 6, 115–127 CrossRef .
  46. J. Liu, Q. Ma, Z. Huang, G. Liu and H. Zhang, Adv. Mater., 2019, 31, 1800696 CrossRef PubMed .
  47. Q. Shi, C. Zhu, D. Du and Y. Lin, Chem. Soc. Rev., 2019, 48, 3181–3192 RSC .
  48. C. Liu, G. Zhang, L. Yu, J. Qu and H. Liu, Small, 2018, 14, 1800421 CrossRef PubMed .
  49. G. Rahman, S. Y. Chae and O.-s. Joo, Int. J. Hydrogen Energy, 2018, 43, 13022–13031 CrossRef CAS .
  50. S. Sirisomboonchai, S. Li, A. Yoshida, S. Kongparakul, C. Samart, Y. Kansha, X. Hao, A. Abudula and G. Guan, Catal. Sci. Technol., 2019, 9, 4651–4658 RSC .
  51. A. Sivanantham, P. Ganesan, L. Estevez, B. P. McGrail, R. K. Motkuri and S. Shanmugam, Adv. Energy Mater., 2018, 8, 1702838 CrossRef .
  52. Y. Tang, C. Yang, Y. Yang, X. Yin, W. Que and J. Zhu, Electrochim. Acta, 2019, 296, 762–770 CrossRef CAS .
  53. X. Wang, T.-T. Li and Y.-Q. Zheng, Int. J. Hydrogen Energy, 2018, 43, 2009–2017 CrossRef CAS .
  54. B. You and Y. Sun, ChemPlusChem, 2016, 81, 1045–1055 CrossRef CAS PubMed .
  55. J. Wang, X. Xiao, Y. Liu, K. Pan, H. Pang and S. Wei, J. Mater. Chem. A, 2019, 7, 17675–17702 RSC .
  56. S. Sultan, J. N. Tiwari, A. N. Singh, S. Zhumagali, M. Ha, C. W. Myung, P. Thangavel and K. S. Kim, Adv. Energy Mater., 2019, 9, 1900624 CrossRef .
  57. J. Mohammed-Ibrahim, J. Power Sources, 2020, 448, 227375 CrossRef CAS .
  58. J. Zhang, Y. Wang, S. Zheng, H. Xue and H. Pang, ChemNanoMat, 2019, 5, 79–84 CrossRef CAS .
  59. C. Zhu, B. Yang, Y. Zhang, Y. Sheng, C. Yin, Z. Du, J. Zhao and W. Huang, ChemistrySelect, 2017, 2, 9007–9013 CrossRef CAS .
  60. J. Xie and Y. Xie, Chem. – Eur. J., 2016, 22, 3588–3598 CrossRef CAS PubMed .
  61. S. S. Shinde, C.-H. Lee, A. Sami, D.-H. Kim, S.-U. Lee and J.-H. Lee, ACS Nano, 2017, 11, 347–357 CrossRef CAS PubMed .
  62. J.-C. Li, P.-X. Hou, C. Shi, S. Y. Zhao, D.-M. Tang, M. Cheng, C. Liu and H.-M. Cheng, Carbon, 2016, 109, 632–639 CrossRef CAS .
  63. X. Li, Z. Niu, J. Jiang and L. Ai, J. Mater. Chem. A, 2016, 4, 3204–3209 RSC .
  64. Z. Zhou, N. Mahmood, Y. Zhang, L. Pan, L. Wang, X. Zhang and J.-J. Zou, J. Energy Chem., 2017, 26, 1223–1230 CrossRef .
  65. Y. He, X. Zhuang, C. Lei, L. Lei, Y. Hou, Y. Mai and X. Feng, Nano Today, 2019, 24, 103–119 CrossRef CAS .
  66. X. Zhang, J. Shao, W. Huang and X. Dong, Sci. China Mater., 2018, 61, 1143–1153 CrossRef CAS .
  67. L. Zhang, L. Li, H. Chen and Z. Wei, Chem. – Eur. J., 2019, 3973–3990 Search PubMed .
  68. D. Liu, L. Tao, D. Yan, Y. Zou and S. Wang, ChemElectroChem, 2018, 5, 1775–1785 CrossRef CAS .
  69. B. You, N. Jiang, X. Liu and Y. Sun, Angew. Chem., Int. Ed., 2016, 55, 9913–9917 CrossRef CAS PubMed .
  70. D. Zhang, R. Huang, H. Xie, X. Liu, Y. Lei and M. Pan, Nano, 2019, 14, 1950101 CrossRef CAS .
  71. J.-X. Wu, C.-T. He, G.-R. Li and J.-P. Zhang, J. Mater. Chem. A, 2018, 6, 19176–19181 RSC .
  72. I. Hod, P. Deria, W. Bury, J. E. Mondloch, C.-W. Kung, M. So, M. D. Sampson, A. W. Peters, C. P. Kubiak, O. K. Farha and J. T. Hupp, Nat. Commun., 2015, 6, 8304 CrossRef CAS PubMed .
  73. N. Meng, C. Liu, Y. Liu, Y. Yu and B. Zhang, Angew. Chem., Int. Ed., 2019, 58, 18908–18912 CrossRef CAS PubMed .
  74. J.-Q. Chi, W.-K. Gao, J.-H. Lin, B. Dong, J.-F. Qin, Z.-Z. Liu, B. Liu, Y.-M. Chai and C.-G. Liu, J. Catal., 2018, 360, 9–19 CrossRef CAS .
  75. Y. Xiong, S. Zhou, W. Hou and Y. Xu, ChemistrySelect, 2016, 1, 6250–6256 CrossRef CAS .
  76. Y. J. Cheng, R. Wang, S. Wang, X. J. Xi, L. F. Ma and S. Q. Zang, Chem. Commun., 2018, 54, 13563–13566 RSC .
  77. L. Lv, Z. Yang, K. Chen, C. Wang and Y. Xiong, Adv. Energy Mater., 2019, 9, 1803358 CrossRef .
  78. J. Su, R. Ge, Y. Dong, F. Hao and L. Chen, J. Mater. Chem. A, 2018, 6, 14025–14042 RSC .
  79. W. Xia, A. Mahmood, Z. Liang, R. Zou and S. Guo, Angew. Chem., Int. Ed., 2016, 55, 2650–2676 CrossRef CAS PubMed .
  80. Y. Qian, I. A. Khan and D. Zhao, Small, 2017, 13, 1701143 CrossRef PubMed .
  81. Y. Yang, Y. Ma, P. Li and Q. Li, Battery Bimon., 2018, 48, 56–59 Search PubMed .
  82. Z. Xia, L. An, P. Chen and D. Xia, Adv. Energy Mater., 2016, 6, 201600458 Search PubMed .
  83. A. Schneemann, V. Bon, I. Schwedler, I. Senkovska, S. Kaskel and R. A. Fischer, Chem. Soc. Rev., 2014, 43, 6062–6096 RSC .
  84. J. R. Long and O. M. Yaghi, Chem. Soc. Rev., 2009, 38, 1213–1214 RSC .
  85. Z. J. Zhang and M. J. Zaworotko, Chem. Soc. Rev., 2014, 43, 5444–5455 RSC .
  86. H.-C. Zhou, J. R. Long and O. M. Yaghi, Chem. Rev., 2012, 112, 673–674 CrossRef CAS PubMed .
  87. S. L. James, Chem. Soc. Rev., 2003, 32, 276–288 RSC .
  88. J.-P. Zhang, P.-Q. Liao, H.-L. Zhou, R.-B. Lin and X.-M. Chen, Chem. Soc. Rev., 2014, 43, 5789–5814 RSC .
  89. S. Kitagawa, R. Kitaura and S.-i. Noro, Angew. Chem., Int. Ed., 2004, 43, 2334–2375 CrossRef CAS PubMed .
  90. S. Horike, D. Umeyama and S. Kitagawa, Acc. Chem. Res., 2013, 46, 2376–2384 CrossRef CAS PubMed .
  91. X.-M. Kang, Y. Shi, C.-S. Cao and B. Zhao, Sci. China: Chem., 2019, 62, 622–628 CrossRef CAS .
  92. E. M. Miner and M. Dincă, Nat. Energy, 2016, 1, 16186 CrossRef .
  93. L. Alaerts, C. E. A. Kirschhock, M. Maes, M. A. van der Veen, V. Finsy, A. Depla, J. A. Martens, G. V. Baron, P. A. Jacobs, J. F. M. Denayer and D. E. De Vos, Angew. Chem., Int. Ed., 2007, 46, 4293–4297 CrossRef CAS PubMed .
  94. J.-R. Li, R. J. Kuppler and H.-C. Zhou, Chem. Soc. Rev., 2009, 38, 1477–1504 RSC .
  95. Y.-C. He, J. Yang, W.-Q. Kan, H.-M. Zhang, Y.-Y. Liu and J.-F. Ma, J. Mater. Chem. A, 2015, 3, 1675–1681 RSC .
  96. L. Zhuang, L. Ge, H. Liu, Z. Jiang, Y. Jia, Z. Li, D. Yang, R. K. Hocking, M. Li, L. Zhang, X. Wang, X. Yao and Z. Zhu, Angew. Chem., Int. Ed., 2019, 58, 13565–13572 CrossRef CAS PubMed .
  97. W. Zheng, M. Liu and L. Y. S. Lee, ACS Catal., 2020, 10, 81–92 CrossRef CAS .
  98. H. Noh, C.-W. Kung, K.-i. Otake, A. W. Peters, Z. Li, Y. Liao, X. Gong, O. K. Farha and J. T. Hupp, ACS Catal., 2018, 8, 9848–9858 CrossRef CAS .
  99. W. Wang, X. Xu, W. Zhou and Z. Shao, Adv. Sci., 2017, 4, 1600371 CrossRef PubMed .
  100. B. Zhu, R. Zou and Q. Xu, Adv. Energy Mater., 2018, 8, 1801193 CrossRef .
  101. Y. Zhao, X.-G. Yang, X.-M. Lu, C.-D. Yang, N.-N. Fan, Z.-T. Yang, L.-Y. Wang and L.-F. Ma, Inorg. Chem., 2019, 58, 6215–6221 CrossRef CAS PubMed .
  102. L. R. Mingabudinova, V. V. Vinogradov, V. A. Milichko, E. Hey-Hawkins and A. V. Vinogradov, Chem. Soc. Rev., 2016, 45, 5408–5431 RSC .
  103. T. N. Nguyen, F. M. Ebrahim and K. C. Stylianou, Coord. Chem. Rev., 2018, 377, 259–306 CrossRef CAS .
  104. C. Wang, T. Zhang and W. Lin, Chem. Rev., 2012, 112, 1084–1104 CrossRef CAS PubMed .
  105. M. Kurmoo, Chem. Soc. Rev., 2009, 38, 1353–1379 RSC .
  106. Y. Shao, L. Zhou, C. Bao, J. Ma, M. Liu and F. Wang, Chem. Eng. J., 2016, 283, 1127–1136 CrossRef CAS .
  107. K. M. L. Taylor, W. J. Rieter and W. Lin, J. Am. Chem. Soc., 2008, 130, 14358–14359 CrossRef CAS PubMed .
  108. E. A. Dolgopolova, V. A. Galitskiy, C. R. Martin, H. N. Gregory, B. J. Yarbrough, A. M. Rice, A. A. Berseneva, O. A. Ejegbavwo, K. S. Stephenson, P. Kittikhunnatham, S. G. Karakalos, M. D. Smith, A. B. Greytak, S. Garashchuk and N. B. Shustova, J. Am. Chem. Soc., 2019, 141, 5350–5358 CrossRef CAS PubMed .
  109. I. Stassen, N. Burtch, A. Talin, P. Falcaro, M. Allendorf and R. Ameloot, Chem. Soc. Rev., 2017, 46, 3185–3241 RSC .
  110. Y. Zhang, J. Xu, J. Xia, F. Zhang and Z. Wang, ACS Appl. Mater. Interfaces, 2018, 10, 39151–39160 CrossRef CAS PubMed .
  111. S. Kempahanumakkagari, K. Vellingiri, A. Deep, E. E. Kwon, N. Bolan and K.-H. Kim, Coord. Chem. Rev., 2018, 357, 105–129 CrossRef CAS .
  112. K. Okada, S. Sawai, K. Ikigaki, Y. Tokudome, P. Falcaro and M. Takahashi, CrystEngComm, 2017, 19, 4194–4200 RSC .
  113. J. D. Rocca, D. Liu and W. Lin, Acc. Chem. Res., 2011, 44, 957–968 CrossRef PubMed .
  114. Y. Yang, S. Lee, D. E. Brown, H. Zhao, X. Li, D. Jiang, S. Hao, Y. Zhao, D. Cong, X. Zhang and Y. Ren, Electrochim. Acta, 2016, 211, 524–532 CrossRef CAS .
  115. J. Yang, H. Ye, F. Zhao and B. Zeng, ACS Appl. Mater. Interfaces, 2016, 8, 20407–20414 CrossRef CAS PubMed .
  116. F. Yang, P. Zhao, X. Hua, W. Luo, G. Cheng, W. Xing and S. Chen, J. Mater. Chem. A, 2016, 4, 16057–16063 RSC .
  117. B. Xu, H. Yang, L. Yuan, Y. Sun, Z. Chen and C. Li, J. Power Sources, 2017, 366, 193–199 CrossRef CAS .
  118. L. Xiong, J. Bi, L. Wang and S. Yang, Int. J. Hydrogen Energy, 2018, 43, 20372–20381 CrossRef CAS .
  119. Y. Wei, X. Ren, H. Ma, X. Sun, Y. Zhang, X. Kuang, T. Yan, D. Wu and Q. Wei, Chem. – Eur. J., 2018, 24, 2075–2079 CrossRef CAS PubMed .
  120. X. Wei, N. Li and X. Zhang, Appl. Surf. Sci., 2017, 425, 663–673 CrossRef CAS .
  121. N. Wang, L. Feng, Y. Shang, J. Zhao, Q. Cai and P. Jin, RSC Adv., 2016, 6, 72952–72958 RSC .
  122. S. A. M. Rizvi, N. Iqbal, M. D. Haider, T. Noor, R. Anwar and S. Hanif, Catal. Lett., 2019, 1397–1407 Search PubMed .
  123. F. Ming, H. Liang, H. Shi, X. Xu, G. Mei and Z. Wang, J. Mater. Chem. A, 2016, 4, 15148–15155 RSC .
  124. Y. Li, L. Zhao, Z. Du, J. Du, W. Wang, Y. Wang, L. Zhao, X.-M. Cao and X. Zhong, J. Mater. Chem. A, 2018, 6, 2129–2138 RSC .
  125. Y. Xu, Q. Li, H. Xue and H. Pang, Coord. Chem. Rev., 2018, 376, 292–318 CrossRef CAS .
  126. P.-Q. Liao, J.-Q. Shen and J.-P. Zhang, Coord. Chem. Rev., 2018, 373, 22–48 CrossRef CAS .
  127. B. D. McCarthy, A. M. Beiler, B. A. Johnson, T. Liseev, A. T. Castner and S. Ott, Coord. Chem. Rev., 2020, 406, 213137 CrossRef CAS PubMed .
  128. Y. Hua, X. Li, C. Chen and H. Pang, Chem. Eng. J., 2019, 370, 37–59 CrossRef CAS .
  129. L. Tao, C.-Y. Lin, S. Dou, S. Feng, D. Chen, D. Liu, J. Huo, Z. Xia and S. Wang, Nano Energy, 2017, 41, 417–425 CrossRef CAS .
  130. X. Li, K. Maindan and P. Deria, Comments Inorg. Chem., 2018, 38, 166–209 CrossRef CAS .
  131. Y.-P. Wu, J.-W. Tian, S. Liu, B. Li, J. Zhao, L.-F. Ma, D.-S. Li, Y.-Q. Lan and X. Bu, Angew. Chem., Int. Ed., 2019, 58, 12185–12189 CrossRef CAS PubMed .
  132. L. Jiao, Y. X. Zhou and H. L. Jiang, Chem. Sci., 2016, 7, 1690–1695 RSC .
  133. X. Wang, X. Huang, W. Gao, Y. Tang, P. Jiang, K. Lan, R. Yang, B. Wang and R. Li, J. Mater. Chem. A, 2018, 6, 3684–3691 RSC .
  134. K. E. Ramohlola, G. R. Monana, M. J. Hato, K. D. Modibane, K. M. Molapo, M. Masikini, S. B. Mduli and E. I. Iwuoha, Composites, Part B, 2018, 137, 129–139 CrossRef CAS .
  135. Q. Qian, Y. Li, Y. Liu, L. Yu and G. Zhang, Adv. Mater., 2019, 31, 1901139 CrossRef PubMed .
  136. W. Peng, G. Zheng, Y. Wang, S. Cao, Z. Ji, Y. Huan, M. Zou and X. Yan, Int. J. Hydrogen Energy, 2019, 44, 19782–19791 CrossRef CAS .
  137. Q. Shi, S. Fu, C. Zhu, J. Song, D. Du and Y. Lin, Mater. Horiz., 2019, 6, 684–702 RSC .
  138. X. Liang, C. Wang, Y. Lei, Y. Liu, B. Zhao and F. Liu, Prog. Chem., 2018, 30, 1770–1783 Search PubMed .
  139. Z. Song, N. Cheng, A. Lushington and X. Sun, Catalysts, 2016, 6, 116 CrossRef .
  140. H. M. Barkholtz and D.-J. Liu, Mater. Horiz., 2017, 4, 20–37 RSC .
  141. C. Noh, C. S. Lee, W. S. Chi, Y. Chung, J. H. Kim and Y. Kwon, J. Electrochem. Soc., 2018, 165, A1388–A1399 CrossRef CAS .
  142. Y. Li, Y. Fu, W. Liu, Y. Song and L. Wang, J. Alloys Compd., 2019, 784, 439–446 CrossRef CAS .
  143. W. Shi, X. Xu, L. Zhang, W. Liu and X. Cao, Funct. Mater. Lett., 2018, 11, 1830006 CrossRef CAS .
  144. A. Morozan and F. Jaouen, Energy Environ. Sci., 2012, 5, 9269–9290 RSC .
  145. K. M. Choi, H. M. Jeong, J. H. Park, Y.-B. Zhang, J. K. Kang and O. M. Yaghi, ACS Nano, 2014, 8, 7451–7457 CrossRef CAS PubMed .
  146. D. Sheberla, J. C. Bachman, J. S. Elias, C. J. Sun, Y. Shao-Horn and M. Dinca, Nat. Mater., 2017, 16, 220–224 CrossRef CAS PubMed .
  147. L. Wang, Y. Han, X. Feng, J. Zhou, P. Qi and B. Wang, Coord. Chem. Rev., 2016, 307, 361–381 CrossRef CAS .
  148. P. Shao, L. Yi, S. Chen, T. Zhou and J. Zhang, J. Energy Chem., 2020, 40, 156–170 CrossRef .
  149. B. A. Rosen and I. Hod, Adv. Mater., 2018, 30, 1706238 CrossRef PubMed .
  150. Q. Zhu, D. Yang, H. Liu, X. Sun, C. Chen, J. Bi, J. Liu, H. Wu and B. Han, Angew. Chem., 2020, 59, 1–7 CrossRef .
  151. T. Y. Ma, S. Dai, M. Jaroniec and S. Z. Qiao, J. Am. Chem. Soc., 2014, 136, 13925–13931 CrossRef CAS PubMed .
  152. P. Zhao, H. Nie, J. Yu, J. Wang and G. Cheng, Inorg. Chem. Front., 2018, 5, 2546–2553 RSC .
  153. X.-Y. Yu, Y. Feng, B. Guan, X. W. Lou and U. Paik, Energy Environ. Sci., 2016, 9, 1246–1250 RSC .
  154. Y. Wang, H. Ge, G. Ye, H. Chen and X. Hu, J. Mater. Chem. B, 2015, 3, 3747–3753 RSC .
  155. F. Li, J. Du, X. Li, J. Shen, Y. Wang, Y. Zhu and L. Sun, Adv. Energy Mater., 2018, 8, 1702598 CrossRef .
  156. D. Li, Z. Zong, Z. Tang, Z. Liu, S. Chen, Y. Tian and X. Wang, ACS Sustainable Chem. Eng., 2018, 6, 5105–5114 CrossRef CAS .
  157. L. Yang, X. Zeng, W. Wang and D. Cao, Adv. Funct. Mater., 2018, 28, 1704537 CrossRef .
  158. K. Sakaushi and M. Antonietti, Acc. Chem. Res., 2015, 48, 1591–1600 CrossRef CAS PubMed .
  159. L. Du, L. Xing, G. Zhang and S. Sun, Carbon, 2020, 156, 77–92 CrossRef CAS .
  160. Y. Guo, R. Lang and B. Qiao, Catalysts, 2019, 9, 135 CrossRef .
  161. K.-i. Otake, Y. Cui, C. T. Buru, Z. Li, J. T. Hupp and O. K. Farha, J. Am. Chem. Soc., 2018, 140, 8652–8656 CrossRef CAS PubMed .
  162. L. Jiao, G. Wan, R. Zhang, H. Zhou, S.-H. Yu and H.-L. Jiang, Angew. Chem., Int. Ed., 2018, 57, 8525–8529 CrossRef CAS PubMed .
  163. C. Zhao, X. Dai, T. Yao, W. Chen, X. Wang, J. Wang, J. Yang, S. Wei, Y. Wu and Y. Li, J. Am. Chem. Soc., 2017, 139, 8078–8081 CrossRef CAS PubMed .
  164. Z. Chen, H. Qing, K. Zhou, D. Sun and R. Wu, Prog. Mater. Sci., 2020, 108, 100618 CrossRef .
  165. W. Gu, L. Hu, J. Li and E. Wang, Electroanalysis, 2018, 30, 1217–1228 CrossRef CAS .
  166. L. Zhang, H. B. Wu and X. W. Lou, J. Am. Chem. Soc., 2013, 135, 10664–10672 CrossRef CAS PubMed .
  167. P. Zhao, X. Hua, W. Xu, W. Luo, S. Chen and G. Cheng, Catal. Sci. Technol., 2016, 6, 6365–6371 RSC .
  168. W.-D. Zhang, H. Yu, T. Li, Q.-T. Hu, Y. Gong, D.-Y. Zhang, Y. Liu, Q.-T. Fu, H.-Y. Zhu, X. Yan and Z.-G. Gu, Appl. Catal., B, 2020, 264, 118532 CrossRef .
  169. M. Wang, Y. Liu, L. Yang, K. Tian, L. He, Z. Zhang, Q. Jia, Y. Song and S. Fang, Sens. Actuators, B, 2019, 281, 1063–1072 CrossRef CAS .
  170. T. Sun, S. Zhang, L. Xu, D. Wang and Y. Li, Chem. Commun., 2018, 54, 12101–12104 RSC .
  171. M.-s. Li, Z.-y. Lin and Q.-w. Chen, Chin. J. Chem. Phys., 2019, 32, 731–738 CrossRef CAS .
  172. M. Liu, N. Cai, V. Chan and F. Yu, Nanomaterials, 2019, 9, 1306 CrossRef CAS PubMed .
  173. H. B. Wu and X. W. Lou, Sci. Adv., 2017, 3, eaap9252 CrossRef PubMed .
  174. X. Zhao, B. Pattengale, D. Fan, Z. Zou, Y. Zhao, J. Du, J. Huang and C. Xu, ACS Energy Lett., 2018, 3, 2520–2526 CrossRef CAS .
  175. Z. Wang, Y. Lu, Y. Yan, T. Y. P. Larissa, X. Zhang, D. Wuu, H. Zhang, Y. Yang and X. Wang, Nano Energy, 2016, 30, 368–378 CrossRef CAS .
  176. T. Noor, N. Zaman, H. Nasir, N. Iqbal and Z. Hussain, Electrochim. Acta, 2019, 307, 1–12 CrossRef CAS .
  177. X. Liu, J. Dong, B. You and Y. Sun, RSC Adv., 2016, 6, 73336–73342 RSC .
  178. Y. Lin, G. Chen, H. Wan, F. Chen, X. Liu and R. Ma, Small, 2019, 15, 1900348 CrossRef PubMed .
  179. Z. Li, J. Cui, Y. Liu, J. Li, K. Liu and M. Shao, ACS Appl. Mater. Interfaces, 2018, 10, 34494–34501 CrossRef CAS PubMed .
  180. X. Wen and J. Guan, Appl. Mater. Today, 2019, 16, 146–168 CrossRef .
  181. Q.-C. Wang, J. Wang, Y.-P. Lei, Z.-Y. Chen, Y. Song and S.-B. Luo, Chin. J. Inorg. Chem., 2018, 34, 807–822 CAS .
  182. G. Huang, D. M. Yin and L. M. Wang, J. Mater. Chem. A, 2016, 4, 15106–15116 RSC .
  183. J.-H. Li, Y.-S. Wang, Y.-C. Chen and C.-W. Kung, Appl. Sci., 2019, 9, 2427 CrossRef CAS .
  184. C.-H. Su, C.-W. Kung, T.-H. Chang, H.-C. Lu, K.-C. Ho and Y.-C. Liao, J. Mater. Chem. A, 2016, 4, 11094–11102 RSC .
  185. C.-W. Kung, J. E. Mondloch, T. C. Wang, W. Bury, W. Hoffeditz, B. M. Klahr, R. C. Klet, M. J. Pellin, O. K. Farha and J. T. Hupp, ACS Appl. Mater. Interfaces, 2015, 7, 28223–28230 CrossRef CAS PubMed .
  186. C.-W. Kung, T.-H. Chang, L.-Y. Chou, J. T. Hupp, O. K. Farha and K.-C. Ho, Electrochem. Commun., 2015, 58, 51–56 CrossRef CAS .
  187. B. A. Johnson, A. Bhunia, H. Fei, S. M. Cohen and S. Ott, J. Am. Chem. Soc., 2018, 140, 2985–2994 CrossRef CAS PubMed .
  188. S. J. Hoseini, M. Bahrami and S. M. Nabavizadeh, New J. Chem., 2019, 43, 15811–15822 RSC .
  189. I. Hod, M. D. Sampson, P. Deria, C. P. Kubiak, O. K. Farha and J. T. Hupp, ACS Catal., 2015, 5, 6302–6309 CrossRef CAS .
  190. L. Wang, Y. Wu, R. Cao, L. Ren, M. Chen, X. Feng, J. Zhou and B. Wang, ACS Appl. Mater. Interfaces, 2016, 8, 16736–16743 CrossRef CAS PubMed .
  191. D. Zacher, O. Shekhah, C. Wöll and R. A. Fischer, Chem. Soc. Rev., 2009, 38, 1418–1429 RSC .
  192. Y. Cheng, X. Wang, C. Jia, Y. Wang, L. Zhai, Q. Wang and D. Zhao, J. Membr. Sci., 2017, 539, 213–223 CrossRef CAS .
  193. H. Guo, Y. Zhu, S. Qiu, J. A. Lercher and H. Zhang, Adv. Mater., 2010, 22, 4190–4192 CrossRef CAS PubMed .
  194. N. Campagnol, T. R. C. Van Assche, M. Li, L. Stappers, M. Dincă, J. F. M. Denayer, K. Binnemans, D. E. De Vos and J. Fransaer, J. Mater. Chem. A, 2016, 4, 3914–3925 RSC .
  195. S. D. Worrall, H. Mann, A. Rogers, M. A. Bissett, M. P. Attfield and R. A. W. Dryfe, Electrochim. Acta, 2016, 197, 228–240 CrossRef CAS .
  196. Q. Zhao, Y. Fan, Y. Zhang, J. Liu, W. Li and Y. Weng, ACS Appl. Mater. Interfaces, 2019, 11, 7872–7883 CrossRef CAS PubMed .
  197. J.-L. Zhuang, A. Terfort and C. Wöll, Coord. Chem. Rev., 2016, 307, 391–424 CrossRef CAS .
  198. S. Hermes, F. Schröder, R. Chelmowski, C. Wöll and R. A. Fischer, J. Am. Chem. Soc., 2005, 127, 13744–13745 CrossRef CAS PubMed .
  199. S. Roy, Z. Huang, A. Bhunia, A. Castner, A. K. Gupta, X. Zou and S. Ott, J. Am. Chem. Soc., 2019, 141, 15942–15950 CrossRef CAS PubMed .
  200. J. Xing, K. Guo, Z. Zou, M. Cai, J. Du and C. Xu, Chem. Commun., 2018, 54, 7046–7049 RSC .
  201. E. Virmani, J. M. Rotter, A. Mähringer, T. von Zons, A. Godt, T. Bein, S. Wuttke and D. D. Medina, J. Am. Chem. Soc., 2018, 140, 4812–4819 CrossRef CAS PubMed .
  202. Y. F. Chen, S. Q. Li, X. K. Pei, J. W. Zhou, X. Feng, S. H. Zhang, Y. Y. Cheng, H. W. Li, R. D. Han and B. Wang, Angew. Chem., Int. Ed., 2016, 55, 3419–3423 CrossRef CAS PubMed .
  203. J. Duan, S. Chen and C. Zhao, Nat. Commun., 2017, 8, 15341 CrossRef CAS PubMed .
  204. S. Lin, Y. Pineda-Galvan, W. A. Maza, C. C. Epley, J. Zhu, M. C. Kessinger, Y. Pushkar and A. J. Morris, ChemSusChem, 2017, 10, 514–522 CrossRef CAS PubMed .
  205. I. Hod, W. Bury, D. M. Gardner, P. Deria, V. Roznyatovskiy, M. R. Wasielewski, O. K. Farha and J. T. Hupp, J. Phys. Chem. Lett., 2015, 6, 586–591 CrossRef CAS PubMed .
  206. Y. Wang, W. Cao, L. Wang, Q. Zhuang and Y. Ni, Microchim. Acta, 2018, 185, 315 CrossRef PubMed .
  207. Y. Mao, G. Li, Y. Guo, Z. Li, C. Liang, X. Peng and Z. Lin, Nat. Commun., 2017, 8, 14628 CrossRef PubMed .
  208. J. Rong, F. Qiu, T. Zhang, Y. Fang, J. Xu and Y. Zhu, Electrochim. Acta, 2019, 313, 179–188 CrossRef CAS .
  209. J. Liu, S. Hou, W. Li, A. S. Bandarenka and R. A. Fischer, Chem. – Asian J., 2019, 14, 3474–3501 CrossRef CAS PubMed .
  210. S. R. Ahrenholtz, C. C. Epley and A. J. Morris, J. Am. Chem. Soc., 2014, 136, 2464–2472 CrossRef CAS PubMed .
  211. X.-J. Bai, Y.-N. Li, X.-M. Yang, M.-Y. Zhang, L. Shao, B. Zhang, T.-Q. Wang, X.-M. Zhang, L.-Y. Zhang, Y. Fu and W. Qi, Chem. Commun., 2019, 55, 9343–9346 RSC .
  212. X. Liu, T. Yue, K. Qi, Y. Qiu, B. Y. Xia and X. Guo, Chin. Chem. Lett., 2019, in press Search PubMed .
  213. S. Wannapaiboon, M. Tu, K. Sumida, K. Khaletskaya, S. Furukawa, S. Kitagawa and R. A. Fischer, J. Mater. Chem. A, 2015, 3, 23385–23394 RSC .
  214. J. Liu and C. Wöll, Chem. Soc. Rev., 2017, 46, 5730–5770 RSC .
  215. D. Bradshaw, A. Garai and J. Huo, Chem. Soc. Rev., 2012, 41, 2344–2381 RSC .
  216. M. C. So, S. Jin, H.-J. Son, G. P. Wiederrecht, O. K. Farha and J. T. Hupp, J. Am. Chem. Soc., 2013, 135, 15698–15701 CrossRef CAS PubMed .
  217. Z.-G. Gu and J. Zhang, Coord. Chem. Rev., 2019, 378, 513–532 CrossRef CAS .
  218. X. J. Yu, Y. M. Xian, C. Wang, H. L. Mao, M. Kind, T. Abu-Husein, Z. Chen, S. B. Zhu, B. Ren, A. Terfort and J. L. Zhuang, J. Am. Chem. Soc., 2019, 141, 18984–18993 CrossRef CAS PubMed .
  219. A. Betard and R. A. Fischer, Chem. Rev., 2012, 112, 1055–1083 CrossRef CAS PubMed .
  220. O. Shekhah, H. Wang, S. Kowarik, F. Schreiber, M. Paulus, M. Tolan, C. Sternemann, F. Evers, D. Zacher, R. A. Fischer and C. Wöll, J. Am. Chem. Soc., 2007, 129, 15118–15119 CrossRef CAS PubMed .
  221. A. Dragässer, O. Shekhah, O. Zybaylo, C. Shen, M. Buck, C. Wöll and D. Schlettwein, Chem. Commun., 2012, 48, 663–665 RSC .
  222. D.-J. Li, Q.-H. Li, Z.-G. Gu and J. Zhang, J. Mater. Chem. A, 2019, 7, 18519–18528 RSC .
  223. L. Ye, J. Liu, Y. Gao, C. Gong, M. Addicoat, T. Heine, C. Woell and L. Sun, J. Mater. Chem. A, 2016, 4, 15320–15326 RSC .
  224. P. De Luna, W. Liang, A. Mallick, O. Shekhah, F. P. G. de Arquer, A. H. Proppe, P. Todorovic, S. O. Kelley, E. H. Sargent and M. Eddaoudi, ACS Appl. Mater. Interfaces, 2018, 10, 31225–31232 CrossRef CAS PubMed .
  225. D.-J. Li, Z.-G. Gu, W. Zhang, Y. Kang and J. Zhang, J. Mater. Chem. A, 2017, 5, 20126–20130 RSC .
  226. S. Lei, Q.-H. Li, Y. Kang, Z.-G. Gu and J. Zhang, Appl. Catal., B, 2019, 245, 1–9 CrossRef CAS .
  227. W. Li, S. Xue, S. Watzele, S. Hou, J. Fichtner, A. L. Semrau, L. Zhou, A. Welle, A. S. Bandarenka and R. A. Fischer, Angew. Chem., 2020, 59, 5837–5843 CrossRef CAS PubMed .
  228. G. Jia, W. Zhang, G. Fan, Z. Li, D. Fu, W. Hao, C. Yuan and Z. Zou, Angew. Chem., Int. Ed., 2017, 56, 13781–13785 CrossRef CAS .
  229. D. J. Li, S. Lei, Y. Y. Wang, S. Chen, Y. Kang, Z. G. Gu and J. Zhang, Dalton Trans., 2018, 47, 5558–5563 RSC .
  230. H. Yoo, A. Welle, W. Guo, J. Choi and E. Redel, Nanotechnology, 2017, 28, 115605 CrossRef PubMed .
  231. L. D. B. Mandemaker, M. Rivera-Torrente, G. Delen, J. P. Hofmann, M. Lorenz, A. Belianinov and B. M. Weckhuysen, Chem. – Eur. J., 2019, 26, 691–698 CrossRef PubMed .
  232. J. Ou, J. Xiang, J. Liu and L. Sun, ACS Appl. Mater. Interfaces, 2019, 11, 14862–14870 CrossRef CAS PubMed .
  233. H. K. Arslan, O. Shekhah, D. C. F. Wieland, M. Paulus, C. Sternemann, M. A. Schroer, S. Tiemeyer, M. Tolan, R. A. Fischer and C. Wöll, J. Am. Chem. Soc., 2011, 133, 8158–8161 CrossRef CAS PubMed .
  234. Z.-G. Gu, A. Pfriem, S. Hamsch, H. Breitwieser, J. Wohlgemuth, L. Heinke, H. Gliemann and C. Wöll, Microporous Mesoporous Mater., 2015, 211, 82–87 CrossRef CAS .
  235. B. H. Bowser, L. J. Brower, M. L. Ohnsorg, L. K. Gentry, C. K. Beaudoin and M. E. Anderson, Nanomaterials, 2018, 8, 650 CrossRef PubMed .
  236. Z. G. Gu, J. Burck, A. Bihlmeier, J. X. Liu, O. Shekhah, P. G. Weidler, C. Azucena, Z. B. Wang, S. Heissler, H. Gliemann, W. Klopper, A. S. Ulrich and C. Wöll, Chem. – Eur. J., 2014, 20, 9879–9882 CrossRef CAS .
  237. T. P. Vello, M. Strauss, C. A. R. Costa, C. C. Corrêa and C. C. Bof Bufon, Phys. Chem. Chem. Phys., 2020, 22, 5839–5846 RSC .
  238. Q. Li, J. Gies, X.-J. Yu, Y. Gu, A. Terfort and M. Kind, Chem. – Eur. J., 2020, 26, 1–6 CrossRef .
  239. Z. Wang, S. Henke, M. Paulus, A. Welle, Z. Fan, K. Rodewald, B. Rieger and R. A. Fischer, ACS Appl. Mater. Interfaces, 2020, 12, 2655–2661 CrossRef CAS PubMed .
  240. Z. Wang, K. Rodewald, R. Medishetty, B. Rieger and R. A. Fischer, Cryst. Growth Des., 2018, 18, 7451–7459 CrossRef CAS .
  241. T. Haraguchi, K. Otsubo and H. Kitagawa, Eur. J. Inorg. Chem., 2018, 2018, 1697–1706 CrossRef CAS .
  242. S. Ahmad, J. Liu, C. Gong, J. Zhao and L. Sun, ACS Appl. Energy Mater., 2018, 1, 249–253 CrossRef CAS .
  243. S. Begum, Z. Hassan, S. Bräse, C. Wöll and M. Tsotsalas, Acc. Chem. Res., 2019, 52, 1598–1610 CrossRef CAS PubMed .
  244. D. J. Li, Z. G. Gu, I. Vohra, Y. Kang, Y. S. Zhu and J. Zhang, Small, 2017, 13, 1604035 CrossRef PubMed .
  245. Z.-G. Gu, H. Fu, T. Neumann, Z.-X. Xu, W.-Q. Fu, W. Wenzel, L. Zhang, J. Zhang and C. Wöll, ACS Nano, 2016, 10, 977–983 CrossRef CAS PubMed .
  246. L. Heinke and C. Wöll, Adv. Mater., 2019, 31, 1806324 CrossRef PubMed .
  247. Z. Chen, Z.-G. Gu, W.-Q. Fu, F. Wang and J. Zhang, ACS Appl. Mater. Interfaces, 2016, 8, 28737–28742 CrossRef CAS PubMed .
  248. M. I. Vohra, D.-J. Li, Z.-G. Gu and J. Zhang, Nanoscale, 2017, 9, 7734–7738 RSC .
  249. W.-Q. Fu, M. Liu, Z.-G. Gu, S.-M. Chen and J. Zhang, Cryst. Growth Des., 2016, 16, 5487–5492 CrossRef CAS .
  250. W. Guo, J. Liu, P. G. Weidler, J. Liu, T. Neumann, D. Danilov, W. Wenzel, C. Feldmann and C. Wöll, Phys. Chem. Chem. Phys., 2014, 16, 17918–17923 RSC .
  251. D.-J. Li, Z.-G. Gu and J. Zhang, Chem. Sci., 2020, 11, 1935–1942 RSC .
  252. Z. G. Gu, D. J. Li, C. Zheng, Y. Kang, C. Wöll and J. Zhang, Angew. Chem., Int. Ed., 2017, 56, 6853–6858 CrossRef CAS PubMed .
  253. X. Liu, M. Kozlowska, T. Okkali, D. Wagner, T. Higashino, G. Brenner-Weiß, S. M. Marschner, Z. Fu, Q. Zhang, H. Imahori, S. Bräse, W. Wenzel, C. Wöll and L. Heinke, Angew. Chem., Int. Ed., 2019, 58, 9590–9595 CrossRef CAS PubMed .
  254. Z. Wang, J. Liu, B. Lukose, Z. Gu, P. G. Weidler, H. Gliemann, T. Heine and C. Wöll, Nano Lett., 2014, 14, 1526–1529 CrossRef CAS PubMed .
  255. K. Ikigaki, K. Okada, Y. Tokudome, T. Toyao, P. Falcaro, C. J. Doonan and M. Takahashi, Angew. Chem., Int. Ed., 2019, 58, 6886–6890 CrossRef CAS PubMed .
  256. B. Liu, M. Tu, D. Zacher and R. A. Fischer, Adv. Funct. Mater., 2013, 23, 3790–3798 CrossRef CAS .
  257. J. Liu, T. Wächter, A. Irmler, P. G. Weidler, H. Gliemann, F. Pauly, V. Mugnaini, M. Zharnikov and C. Wöll, ACS Appl. Mater. Interfaces, 2015, 7, 9824–9830 CrossRef CAS PubMed .
  258. J. Liu, M. Paradinas, L. Heinke, M. Buck, C. Ocal, V. Mugnaini and C. Wöll, ChemElectroChem, 2016, 3, 713–718 CrossRef CAS .
  259. V. Mugnaini, M. Tsotsalas, F. Bebensee, S. Grosjean, A. Shahnas, S. Bräse, J. Lahann, M. Buck and C. Wöll, Chem. Commun., 2014, 50, 11129–11131 RSC .
  260. D. Friebel, M. W. Louie, M. Bajdich, K. E. Sanwald, Y. Cai, A. M. Wise, M.-J. Cheng, D. Sokaras, T.-C. Weng, R. Alonso-Mori, R. C. Davis, J. R. Bargar, J. K. Nørskov, A. Nilsson and A. T. Bell, J. Am. Chem. Soc., 2015, 137, 1305–1313 CrossRef CAS PubMed .
  261. B. You and Y. Sun, Acc. Chem. Res., 2018, 51, 1571–1580 CrossRef CAS PubMed .
  262. N.-T. Suen, S.-F. Hung, Q. Quan, N. Zhang, Y.-J. Xu and H. M. Chen, Chem. Soc. Rev., 2017, 46, 337–365 RSC .
  263. N. Kornienko, Y. Zhao, C. S. Kley, C. Zhu, D. Kim, S. Lin, C. J. Chang, O. M. Yaghi and P. Yang, J. Am. Chem. Soc., 2015, 137, 14129–14135 CrossRef CAS PubMed .
  264. S. Y. Lee, H. Jung, N.-K. Kim, H.-S. Oh, B. K. Min and Y. J. Hwang, J. Am. Chem. Soc., 2018, 140, 8681–8689 CrossRef CAS .
  265. I. Hod, M. D. Sampson, P. Deria, C. P. Kubiak, O. K. Farha and J. T. Hupp, ACS Catal., 2015, 5, 6302–6309 CrossRef CAS .
  266. H. Ge, B. Zhang, X. Gu, H. Liang, H. Yang, Z. Gao, J. Wang and Y. Qin, Angew. Chem., Int. Ed., 2016, 55, 7081–7085 CrossRef CAS PubMed .
  267. Z. Li, Y. Qu, J. Wang, H. Liu, M. Li, S. Miao and C. Li, Joule, 2019, 3, 570–583 CrossRef CAS .
  268. M.-L. Li, J.-H. Yu, Y.-H. Li, S.-F. Zhu and Q.-L. Zhou, Science, 2019, 366, 990 CrossRef CAS PubMed .
  269. W. Li, S. Watzele, H. A. El-Sayed, Y. Liang, G. Kieslich, A. S. Bandarenka, K. Rodewald, B. Rieger and R. A. Fischer, J. Am. Chem. Soc., 2019, 141, 5926–5933 CrossRef CAS PubMed .
  270. S. Mirza, H. Chen, S.-M. Chen, Z.-G. Gu and J. Zhang, Cryst. Growth Des., 2018, 18, 7150–7157 CrossRef CAS .
  271. S. Begum, T. Hashem, M. Tsotsalas, C. Wöll and M. H. Alkordi, Energy Technol., 2019, 7, 1900967 CrossRef CAS .
  272. X. Li, X. Yang, H. Xue, H. Pang and Q. Xu, EnergyChem, 2020, 2, 100027 CrossRef .
  273. Z. G. Gu, D. X. Zhang, W. Q. Fu, Z. H. Fu, M. I. Vohra, L. Zhang, C. Wöll and J. Zhang, Inorg. Chem., 2017, 56, 3526–3531 CrossRef CAS PubMed .
  274. H. Chen, Z.-G. Gu, S. Mirza, S.-H. Zhang and J. Zhang, J. Mater. Chem. A, 2018, 6, 7175–7181 RSC .
  275. Y. Xia, Z. Yang and Y. Zhu, J. Mater. Chem. A, 2013, 1, 9365–9381 RSC .
  276. O. C. Compton and S. T. Nguyen, Small, 2010, 6, 711–723 CrossRef CAS PubMed .
  277. L. L. Zhang and X. S. Zhao, Chem. Soc. Rev., 2009, 38, 2520–2531 RSC .
  278. Y.-Y. Wang, S.-M. Chen, R. Haldar, C. Wöll, Z.-G. Gu and J. Zhang, Adv. Mater. Interfaces, 2018, 5, 1800985 CrossRef .
  279. W. Zhou, D. D. Huang, Y. P. Wu, J. Zhao, T. Wu, J. Zhang, D. S. Li, C. H. Sun, P. Y. Feng and X. H. Bu, Angew. Chem., Int. Ed., 2019, 58, 4227–4231 CrossRef CAS PubMed .
  280. B. Zhu, D. Xia and R. Zou, Coord. Chem. Rev., 2018, 376, 430–448 CrossRef CAS .
  281. Y. Jiao, Y. Zheng, M. Jaroniec and S. Z. Qiao, Chem. Soc. Rev., 2015, 44, 2060–2086 RSC .
  282. B. Y. Xia, Y. Yan, N. Li, H. B. Wu, X. W. Lou and X. Wang, Nat. Energy, 2016, 1, 15006 CrossRef CAS .
  283. C. Hu and L. Dai, Adv. Mater., 2017, 29, 1604942 CrossRef PubMed .
  284. H. Jiang, J. Gu, X. Zheng, M. Liu, X. Qiu, L. Wang, W. Li, Z. Chen, X. Ji and J. Li, Energy Environ. Sci., 2019, 12, 322–333 RSC .
  285. K. Naoi, W. Naoi, S. Aoyagi, J.-i. Miyamoto and T. Kamino, Acc. Chem. Res., 2013, 46, 1075–1083 CrossRef CAS PubMed .

This journal is © The Royal Society of Chemistry 2020
Click here to see how this site uses Cookies. View our privacy policy here.